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ABSTRACT

In this paper. we obtain elementary abelian coverings of the regular hypermaps of genus 2
corresponding to the orientation-preserving automorphism groups SL,(3). the special linear group of

order 24. and (), . the quaternion group of order 8. We also determine the reflexibility of these coverings.
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1. INTRODUCTION

In [1] Azevedo and Jones showed that there are 43 regular hypermaps of genus
2. of which 10 are maps. Another 20 regular hypermaps can be obtained from these
regular maps. The remaining 13 regular hypermaps are not associates of these
maps: they are 5 regular hypermaps and their associates. In [11] Kazaz obtained the

representations p, and characters 7, on the first integer homology group H, (S, Z)

= N/N' = Z% of the orientation-preserving automorphism groups (7 of regular
hypermaps of genus 2, where Sis the Riemann surface underlying the regular
hypermaps of genus 2, N is a normal subgroup of the triangle group
A=A(l.m.n) and N’ is the commutator subgroup of N.

On the other hand, the universal coefficient theorem [5] implies that
H (S:Ry=H,®; R for any commutative ring R of coefficients, so one can view

7, as giving the character of the representation p, of G on H,(S:R).If we take

R=Z, (q prime) as the ring of coefficients, we obtain the reduction of p, mod

" This work is originated from the Author’s Ph.D. thesis.
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g. that is. the representation of (G on the homology  group

H (S Zq) =N/N'N"z Z: of the underlying surface S. Then we use this
representation to construct finite abelian coverings of a given genus 2 regular
hypermap H of type {l ,m,n} corresponding to  hypermap-subgroup
N<aA= A(/. m, n): any (7 -submodule of Z: corresponds to a normal subgroup A

of the triangle group A = A(/,m, n) lying between N and N'N”, so it gives a regular
unbranched covering X /M — X /N =S, with the elementary abelian ¢ -group
N/M as the group of covering transformations. Since A/ < A, this also corresponds
to a regular hypermaps A which covers H of type {l,m,n} and genus § with Aut &

= A/M . If a (G -invariant submodule of H, (S, Zq)has codimension ¢ then it

gives a ¢ -sheeted regular covering of the hypermap, since ¢” is the index of
normal subgroup corresponding to this submodule.

We also use these representations and characters to study the reflexibility of
these coverings. It is well-known that a regular hypermap H of type {l,m,n}
corresponding to a normal subgroup N< A(I,m.n)is reflexible if and only if NV is
also normal in the extended triangle group,

Al m.n)y=<r.r,.nr =r =1 =L(rn) =(rg)"=(rr) =1>
which contains A=<7r,.rnr> with index 2: in this case A /N= Aut H.
including orientation-reversing automorphism. It follows that H is reflexible if and
only if N* =N for some i. Hence H is reflexible if and only if Aut H has an
automorphism (induced by r,) which inverts g, (the image of 7, ) and g, (the
image of rr,). Jones and Azevedo, in [1], showed that the regular hypermaps of

genus 2 are all reflexible, that is, each has an additional orientation-reversing
automorphism.

Now suppose that N/ <M <N <A < A", where M< A and Na A, so the

hypermap. say H,. corresponding to M is regular and Hy corresponding to N is
reflexible. Then as A/N has an automorphism which inverts g, and g, . it follows

that H, is reflexible if and only if this lifts to an automorphism of A/M . If it does.
it induces an automorphism of N /M . Since N'<M (so that N /M is abelian), the
character of A/N onN/M must be invariant under this automorphisin, say « . so
whenever an irreducible character X is a summand, then so is the conjugate
character y“ given by y* (g)= Z(a(g)) for every ge (G with the same multiplicity,

or equivalently the corresponding (i -submodule W of ZZ is invariant under
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o, (that is. o, W =W,k where ¢, is the matrix of the orientation-reversing

automorphism « on the homology group [L1]). If it is not invariant then the
corresponding hypermap is called chiral; in this case the corresponding normal
subgroup is not normal in the extended triangle group, thus M has another

conjugate M ° =AM (g eA \A), so M and M° correspond to two chiral hypermaps
of type {/.m.n } that is, there is a chiral pair.

If M =N'N?then M is a characteristic subgroup of N . so that M g A, thus Hy
is reflexible. Thus. in the case of genus 2, we always have two reflexible hypermaps
corresponding to N and N'N? (also corresponding to A, = Z: and the 0-

submodule). Any reflexible hypermap which does not correspond to N or N'N? is

called a proper reflexible hypermap, and unless explicitly stated otherwise, we will
always consider the proper reflexible hypermaps.

2. REGULAR MAPS AND HYPERMAPS

In this chapter we define maps and hypermaps, more importantly regular maps
and regular hypermaps, and indicate the related results [2]. 31 [4]. [7). [8). 19].
{10].

A (topological) map M is an imbedding (without crossings) of a finite connected
graph G onto a surface S which is compact, connected, orientable and without
boundary. where each face of M (the connected components of S\G) is
homeomorphic to an open disc. Then S is homeomorphic to a surface .Sq consisting
a sphere with g handles attached, for some integer g > 0: and we call g the genus of
M [8].

We may describe a map by means of permutations. We define a dart of Mto be a
pair consisting of an edge and an incident vertex, and draw it as an arrow on the
edge towards the vertex. We let Q0 be the set of all darts; ie. Q ={(e.v) lee E,

veV, e¢mv=v . where E and V are the sets of edges and vertices of M ,

respectively. We define a permutation xon by interchanging two darts on an
edge. so that x is a product of transpositions. The orientation of § induces cyclic
permutations of the darts pointing to each vertex v, and these form the disjoint
cycles of a permutation yof €. Similarly, by following the orientation of S

around each face of M . we obtain a permutation z of €. Then these give the
relations. x°=v"=z"=xyz=1, where mand n are the least common multiple of the
valencies of the vertices and faces. Now let (F=<x, y> be a subgroup of %, the

group of all permutations of €. Since (i is connected, it follows that G is
transitive [9].
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An algebraic map A is a quadruple (G, €2, x, y) . where Q) is a set and x,yare
permutations of 2 such that x’=1 and (G=<x, y> is transitive on €2 . We say that
Ahastvpe {m.n if Y and xy™ have orders mand n . respectively.

Let A=A(2.m,n)=<X Y Z|X*=Y"=7"=XYZ=1> be the triangle group
and let Mbe a map of type { m.n . Then there is an epimorphism 8:A —( given by
X —=x.I' >v.Z—>z 5o A hasa transitive action on . If A/ is the stabilizer of

adart & in this action of A, thatis, M = 07 (G,), where G_ = {g eGlag =o:},

then we call A/ a map-subgroup for M
The study of maps is closely related to the study of subgroups of certain triangle
groups A(2.m,n). Jones and Singerman, in [9). showed that there is a natural

correspondence between maps and Schreier coset graphs for the subgroups of the
triangle groups A(2,m.n) . furthermore every subgroup of a triangle group is a

map-subgroup for some map.

If maps™; (i=],2) are given by imbeddings of graphs G, with vertex sets v,, in
surfaces 5. then a morphism ¢: M, — M, is an orientation-preserving surface
covering (possibly branched ) ¢: S~ S, such that
(i) ¢7 (G)=Gjand ¢ (V2)=V,,

(11) all branched points have finite order.
We say that a topological map M, covers M, if there is a morphism ¢: M,-M,.
We can also define a morphism between algebraic maps: given algebraic maps
Ar =G Qux.v) (i=12),  a morphism between A and A; is a pair (o.7) of
functions o: GGy — G, , 7:Q - €, where o is a group homomorphism,
XT=x,. %7 =y, and the following diagram commutes (that is, ()t = (ar)(@¢)
forall ge G and & €Q),) (the horizontal arrows represent group actions).

Q, G, _ Q,

(z,0) l T

Q2 X (;2 _—9 QZ
We say that A, covers A, if there is a morphism A, - A,
A morphism ¢: M, — M, is an isomorphism if it is one-to-one.
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Theorem L. If A and B, are algebraic maps of type {m,n } then A covers By if
and onlv if we can find map-subgroups M,<A(2,m.n) for B (i=1,2),
respectively, with M <M, .

A map M is called regular if Aut Mis transitive on €.
Theorem 2. Let M be a map with map-subgroup M < A(2.m.n) and associated
algebraic map ((GG.Q),x,v). Then the following conditions are equivalent:
(/) Misregular.
(7i) (i is aregular permutation group on €, thatis, (7, =1 , for some a €< :
({i1) M is a normal subgroup of A.

When these conditions hold, then we have Aut M =G =A/M.

Suppose that M, is a covering map of M,. Then by Theorem 1 there is a triangle
group A and map-subgroups M, M, for M; M, respectively, with M <M, <A.
We call the cover finite if M, has finite index in M,. We call the cover regular if
M, a A with A, 2 M,

We sav M is finite if () is finite (or equivalently if ' is compact. connected,
orientable surface and without boundary) and M is said to be of finite type if mand
n are finite.

Essentially an algebraic map is a quadruple ((7,€2,x,y). where (7 is a group
generated by x.v with x*=1, acting transitively on a set (2. When we drop the

condition that x*=1. then the result in an algebraic (or topological) hypermap. that
is. an cdge is allowed to intersect any number of vertices. Thus a map is simply a
hypermap.

A topological hypermap H on a compact orientable surface S and without
boundary is a triple (S,R.A4)where R and 4 are closed subsets of S such that:

(i) B=R~ 4 isa non-empty finite set,
(it) R A is connected.
(iii) each of component of R is homeomorphic to a ciosed disc and each component
of A is homeomorphic to a closed disc,
(iv) each component of S\ (R w A)is homeomorphic to an open disc.

The components of R, 4 and S\(RUA) are called hyperedges,
hvpervertices. and hyperfaces, respectively. Finally, the elements of B are called
bits.

If / and m are the least common multiples of the number of bits in the
hyperedges and in the hypervertices, respectively, and nis the least common
multiple of the number of hyperedges incident with each hyperface then the
hypermap is said to be of type {I.m,n } The genus of H is the genus of §.
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We also define a topological hypermap by means af permutations: a hypermap H
consists of a set of objects B, which we have already called the bits of H, together
with two permutations x and yon B such that (7=<x,y> 1is a transitive

permutation group on B. The cycles of x and y correspond to hyperedges,
respectively. while the cycles of z=( xy™) correspond to hyperfaces.

An algebric hypermap is a quadruple A=(G,B.x,y) where B is a set and
x.y are two permutations of B such that G=<x,y > is transitive on B. If x,y
and xv have orders /,m and n , respectively, then we say that A has type {l, mn .

If £ bas type {/ .m.n} then there is an natural epimorphism &: A(l,m,n)—>G
givenby \'>x. Y >y and Z - (x)". If G, = {ge (?|ag =¢a for any a €B
then /7 =07'((; ) is called the hypermap-subgroup for H.

Let Hy and H. be two topological hypermaps with underlying surfaces .5| and 5,
and underlying graphs G, and G,. A fopological morphism ¢: Hy — H, is an
orientation-preserving surface covering (possibly branched ) ¢ 51— 55 such that

(1) ¢ (G)=6G,.
(i) ¢ (vy 2 Vi,
(ii1) ¢7I (Ex B )=Ey n
where VHI » Ey, are the sets of hypervertices and hyperedges of H, (i =1, 2).
Let A = (G, B,.x,.y,)and A; = (G,,B,,x,.y,) be two algebraic hypermaps. An
algebraic morphism form A, to A, is a pair (o, /) formed by a homomorphism
o (i, — (7, which satisfies x,=x,o and y,=y,o and a function J :B,— B, which

makes the following diagram commute, that is. (aQ) f = (of }(go) for all
geGandaebB,

B x @G > By

(s \L l ’

Bax Gy —> B,

Since (5 is transitive, ¢ is an epimorphism and f is onto. We also note that
(g.f) isan isomorphism if o is a group isomorphism and J isabijection.
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If B=B,=8B and G, =G,=G=<x,y> then (o.f) is called an automorphism
of A=((G.B.x.v). In this case o fixes the generators x.,y S0 that o is the
identity. and thus an automorphism is determined by the bijection f:B—B. The
commutativity of the diagram implies that f commutes with all g e(, so we see
that the automorphisms of an algebraic hypermap A form a group Aut A
Theorem 3. If A is a algebraic hypermap with hypermap-subgroup H <A then
Aut A =N (H)/H.

We say that H is regular if AutH is transitive on B, the set of bits of H.
Theorem 4. Let H=(G.B.x,v) be a hypermap with hypermap-subgroup
H <A(l.m.n). Then the following statements are equivalent: ‘

() H =((G.B.x.y) isregular;

(i) (7 acts semi-regularlyon B ie. G, =1, for any achB;
(i) Ha A;

(iv) AwtH =G=A/H ;

v |Gl=]B].

We say that Hy covers H, if thereisa morphism H, — Ha.

Theorem 5. Lef Hy, and Hy be two hypermaps of tvpe {I .m.n } Then H, covers By if
and onlv if there exist hypermap-subgroups H,<A(l,m.n) for H; (i =1,2) with
H < H,.

Theorem 6. Every subgroup H <A is a hypermap-subgroup for some topological
hvpermap.

When a hypermap H  is regular then Aut H =G =A/H . If H; is a covering
hypermap of Ha. then by Theorem 5 there is a triangle group A and hypermap-
subgroups  H, and H, for H, and Hy, respectively. with H <H,<A. Now if
Hya A with H, < H, then the cover is said to be regular.

The regular hypermaps on the sphere and torus have been determined by Corn
and Singerman in [3]: in each case there are infinitely many regular hypermaps. On
the other hand. it is known that the number of regular hypermaps of each genus
g=2 is finite [8]. Moreover, all regular hypermaps H of genus 2 are known. If H

is a map then the possibilities for its type {m,n} and automorphism group Aut H
are given by Coxeter and Moser in [4, p.140]. If H is not a map then the possibilities
for its type {1.m.n} and automorphism group Aut H are given by Corn and

Singerman |3]. In fact. Azevedo and Jones, in [1], have completed full results by
enumerating. describing and constructing all these hypermaps and specifying their
full automorphism groups Aut H including orientation-reversing automorphisms.
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3. ELEMENTARY ABELIAN COVERINGS

Now we will find elementary abelian coverings of regular hiypermaps of genus 2
corresponding to inclusion of triangle groups: A(4.4,4) < A(3,3.4)[14]. and hence

the automorphism groups O, 2 SL,(3).
These groups have the following relationships:

2 2 0 2
k=L k*=0I* kik=1I>. where k:[2 \ l:[ J

l)q 1 0
0 1 2 2
and / =ded. d = ,e=k= 3
2 2 2 1

(). SL,(3)=<d. e

Figure 1 shows the hypermaps corresponding to this inclusion: the regions

labelled 0. 1. and 2 represent hypervertices. hyperedges. and hyperfaces,
respectively.

@M. O, =<k.1

d'=e* =1, ed’e =ded > .

Aut Hy= ), Aut Hs =S5L, (3)

Figure 1: The regular hypermaps H;, Hs

(I). Let A= A4 =<x,y.2x* =)' = 7" = xyz=1> and

=0y =<k k" =1, k* =1, klk =1> . It was shown in [11] that the homology
representation and character of (7 are
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) 0 0 -1 0 0 -1 -1 -1
00 0 -1 } 11 1 0
Pk =K, I— =L,
1 0 0 O -1 -1 0 1
01 0 0 1 o0 -1 -1
and
V=20 6

where y, is the 2-dimensional irreducible complex character of degree 2 of G
givenby y.()=2. x. (k") =-2, x, (k)= x,() = x,(k) =0 (where Lk k1, kl are
the representatives of conjugacy classes of ().

Since 7, =2y, it follows that H,(S:C)=W,®&W, with
W =, H,. where W, W, are 2-dimensional (i -subspaces [6]. Then we claim that
there are infinitely many G -isomorphic but different submodules. Indeed, let
O ¥ W, be a (G-isomorphism. Let us define the function
¢, > @i, (1€C) by

¢, u>u+Al(u) (uel).

Then. it is not difficult to see that @, is a (5 -homomorphism. On the other hand,
ueKerg, if and only if u+A0(u)=0if and only if u =0, since the sum W, +W¥, is
direct. Thus IV, = Img, . Moreover, if4 # uthen Img, #Img, . Thus we have
infinitelv many (7 -submodules Img, of the required form.

Furthermore. if ¥ is a non-zero G -module over a finite field
(;F(p) (p is a prime) and also is a direct sum of two G -isomorphic submodules,
that is. I'=(",@® U, with U,=,U,. then there exist p+1G -isomorphic. but
different (7 -submodules, namel

U ={u+Av|uel, v=0(u)el,}.
where A €GF (p) with U(0)=U,, and U (w0)=U,.

We will now find these ( -invariant submodules. Eigenvalues of

00 -1 0
oo o -1
100 0
o1 0 0)

are the roots of the characteristic polynomial (x*+1)* for K . so they are A =i and

A,=—i. where i*=1. Corresponding eigenvectors are
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1 0 1 70
0 0 1
w, = w, = and w, = w, =
—~ i 0
0 - 0 i

respectively.
Since L has the same characteristic polynomial as X, and the same
etgenvalues. it follows that corresponding eigenvectors are

i-1 -1 —(i+1) -1
1 1 0
v, = V. = , and v, = v, =
0 ’ 0 1
i i-1 —i ~(i+1)

respectively.

Then one can easily check that Uy=<u:=w,u,=v,> and U, =<w, v > are
2-dimensional & - and /-invariant, so (; -invariant submodules with H,($:C) =
C' =0, @0, . The matrices for & and / are

< i 0 L —i =0 .
= . = on /. ;
C-G+) - Lo J ‘

and

SO

K, 0 L 0
gk = .
0 K, 0 L

Now two (; -submodules ¥ and W are isomorphic if and only if there is a
basis 3, of 1" and a basis B, of W such that

[g], =[g].
for all ged. [6]. where [gL denotes the matrix of the endomorphism
ve>gvof I relative to the basis B. Thus we can find a new basis, say
{u; =XW W0, = aw, +bv3} (x.y,a.b eC) for U, so that K=K, and L =L,,
thatis. Ku, Ku,.Lu, and Lu, must be equal to
iu,, —(i+l)u3—iu4, —i113+(l—i)1,14 and iu,,
respectively. Then as K u,=iu, hatis,
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0 0 -1 0 (x—y@i+D —ix
3 00 0 -1 v iy
Ku, = . = .
’ 1 0 0 0 ix x—=y@i+1)
01 0 0 —iy v
=iu,
x—y(i+1)
, y
=7 :
ix
—iy

it follows that v = x(l - i). Similarly,

0 0 -1 0)\fa=b(i+]) —ia
i 00 0 -1 b ib
Ku, = = .
1 0 0 0 ia a-b@i+1)
01 0 0 —ib b

=—(+Du, ~iu,

x—y(@i+1) a-b(i+1)

b

=—a+n T |-
X 1aq
—iy —ib

This yields
—x(i+l)+2iy—ai+b(i—l) =-ai,
—yli+1)—bi =bi,
—x(i—l)+a = a—b(i+l).
yli-1)-b =b.
Then we obtain x=—bi and y=x(1-i). '
In the same way one can find from Lu,=-iu, + (t=i)u, (or Lu,=iu,) that
a=h(i +1). Thus we have
x=-bi,
y=x(1-i).
a=bh (i + l)‘
Choosing h=i gives x=1, y=1-i and a=i-1. Thus we obtain
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J

—(i+1) — 1

i 0 —i 1-i
and hence K, =KX, =[ j and L =L, =( 0’ ] ] as required.
i

-+ —i
Now we will reduce p, mod ¢ (g prime).
If ¢=1 (mod 4) then ~1 is a quadratic residue mod g [13], s0 U ,=<u, u, >
and [ =<u,_u, > are 2-dimensional G -invariant submodules of Z; with
H(S1Z,)= Z,=U ®U, andU, =, U, Now we define

UA)=<u, +Au,u, + Au, >

1-1 i1
A(1-i) 1+ Ai
=<5 = , 8= >
C=i=A) T = AG+))
~A(i+1) i+

where A€ GF(q).and U/(®)=U,. Thus we have U(3)=,0(1) with

=U()eu (4,) (=) (tis easy to check that {/(1) is a ( -isomorphic
submodule for all ﬂe(rF(q)u{oo} indeed Ks =is, Ks,= (1+l) ~is, and
Ls,=—is +(1-i)s,. Ls, =is,, s0 {/{A) has the same matrix for all A ). Thus there
arc ¢ +1 2-dimensional G -invariant submodules, giving g+1. ¢° -sheeted regular
unbranched coverings of type {4,4,4} with genus §=1+¢" and automorphism
groups ( E =AM = . =A/M = Z; x (), where x denotes the semidirect
product.

Moreover. it was shown in [11] that the matrix a, of the orientation-reversing
automorphism is equal to

-1 0 00
0 0 0 1
o, = .
0 010
0 1 00
Now  suppose that alU(A)=a,(<s,,s,>)=U(u) =< si,sy >  for  some

A pte GF(g)w {oo} Then there exist some x, y € GF (q) such that
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-1 0 0 0 1-4 A-1
0 0 0 1| Alt-i) | |-4G+1)
a s = =
0 01 0| i(a-1) i(a-1)
0 1 0 0j){-aG+1)) L A(-3)
1-u i-1
o . l—i) 1+ i
=xs| +ys;=x (/1—1) —u(i+1)
—/l(l-i—l) pu+1
This yields
x(1-p)+y(i-1)=2-1, M
xp(l-i)+ y(+ p)=— 20 +1), )
xi{p-1)-yu(i+1)=i(2-1), (3)
—xu(i + 1)+ ylu+ i)=/1(1 -i). “)
Multiplying the equation (2) by i and adding it to (4) gives
y=-A(i+1), ©)
and multiplying the equation (1) by i and adding it to (3) gives
2i(1-A4)
—— -1 6
) p#-l (6)

Then equating (5) and (6) gives u=—%, A#0. More calculations show that

a,U(0)=U(x) and o, U(1)=U(-1).
Now suppose that A=pu=-1/2, that is, A2=-1, so this has solutions if and
only if g=1(mod 4). Thus there are two reflexible hypermaps corresponding to

-1
U(1),U(=A) with A’ =-1 (these are the only reflexible hypermaps) and _q_2_

chiral pairs corresponding to the pairs (W (A),W(—jll-)) with A1 #0, o,

and (W(0), W()).
Let g=3(mod 8). We will show that Z has only g+1 different proper G -
isomorphic 2-dimensional G -invariant submodules. Firstly, we will find two G -
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isomorphic 2-dimensional G -submodules U . We claim that there exist two pairs
u,u,€Z, of the following form

1 Y
U = (y) » Uy =—Ku, = _ﬁl (v, eGF(q))
Yij 0

spanning these G -submodules. Because Lu, and Lu, mustbe in U (Ku, and Ku,
are already in U ), it follows that there exist x,y € GF(q) such that

0 -1 -1 -1)(1 -(y+pB)
Lu,:l 1 1 0 O | 1+y
-1 -1 0 1|y -1+ 8
1 0 -1 -1\B) U-(p+p)
xX+y
=Xu, + yu, = A .
w—y
Bx
It follows that
x+yy==(y+p),
By=y+1,
rx-y=p-1,
Bx=1-(y +B),

and solving these equations gives
_r+l1 x=1~(y+ﬂ)
B B

(B#0)
with

Yty B+p-p+1=0. (M
If we choose ¥ =1 we obtain f°+2=0. Since -2 is a quadratic residue mod ¢ [13],

there exists such SeGF(g) with B*=-2. Hence we have two 2-dimensional G -
invariant submodules, namely

1 1
0

U=<uy= : , U, = 'Bl >
B 0

and
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1 1

0 _
U,=<u;= ) , U, = _/13 >

-B 0

with Z} =U, ®U, . The matrix representations of k and / on these submodules are
0 -1 -1 -
Kl = N Ll = ﬂ
1 0 -p 1

0 -1 -1
Kz = N L2 = ﬂ ’
1 0 g1
respectively.

Now we can choose a new basis for U, , say {”;’ u‘,}, so that K, =K, and
L=L, Let

and

x+y a+b
- -pb

u,=xuy+ yu,= x’f; and u,=au,+bu,= a’—B-b ,
-Bx - pPa

where x,y,a,be GF(q). Then Ku,, Ku,, Lu, and Lu, mustbe equal to

—UHUHTU; ﬂuA and - ﬂus +u,,
respectively. Thus from Ku,=-u,, that s,

0 0 -1 0Yx+y —-x+y ~(a+b)
00 0 -1)-p - fx pb
Ku, = = =-u,= >
10 0 O0ifx-y x+y —a+b
01 0 O0j\—-/f -y Pa
it follows that x=b, y=—a with S#0. Similarly,
0 -1 -1 -1\x+y —x+yfx+py
Lu = 1 1 1 0 -p _ 2x—fy
STl -1 0 1 || x-y| |mx-y-px+py
1 0 -1 —-1){-p 2y + fx
-x—-y-pBla+b)
oy~ fu, = by—2b
-x-y-pla-b)

Prx—2a
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gives y=—a, x=-fa-b. Thus we have y=—a, x=b and x=-fa-b,so
y=-a, x=b, a=pfb.
Choosing b=1 gives x=1, y=-p and a=p. Thus we obtain

1-4 £ +1
_| =2y | -8
3 » U=

1+ F-1

-8 2

Now let us define
UA)y =<u, + Auy,u, + Au, >

(1“1(1—/3) 1+ A(1+ B)
=V, = 24 , V= B-5 >,
1+ A(1+ B) -1+ A(B-1)
L B-Ap 24

where  AeGF(q), and U()=U,. Then we have U(4)=,U(4,) and
H =Z,=U ( A, )@U (/Ij.) (i # ). Thus there are g +1 isomorphic 2-dimensional
G -invariant submodules, so g +1 g’ -sheeted regular unbranched coverings of type
{4,4,4} with genus §=1+4" and G=A/M, = Z}xQ, forall AeGF(q)u {0}
Now suppose that there exist A, £#€GF (q) such that
a,U(A )=al (<vI WV, >)=U(/¢ )=<vl’,v; > .
Then it follows that

=10 0 0)(1+A(1-p) ~1-A(1-5)
o 0 0 01 -2 p-AB8
y, = =
1001 0fj1+40+p) 1+ A1+ B)
0 1 .00 B-Ap -22
1+ u(1- p) 1+ u(1+ B)
. -2 -
B N ry B-up ’
1+#(1+/3)J =1+ u(B-1)
B-up 2u
for some x, ye GF (q) . This leads to the following equations:
A B E
fr——— ——N—— P ———
W+ pt= P+ {4 w4 By ="1- 2+ 48, (8)

Coule+ (5= )y =5-25, ©
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W+ wli+ B Q- u(B -1y =1+2+28, (10)
B 2uy="2u. (11)

Multiplying the equation (8) by B and (10) by —A and then adding these two
equations, we obtain

y(4? + B*)= BE - 4G. (12)
Similarly, multiplying the equation (9) by D and the equation (11) by —C and then
adding them gives
y(¢*+D*)=DF -CH. (13)
Now we claim that 4>+ B*#0 and C” +D?# 0. Assume that A*+B*=0,ie.
A+ B =(1+p(1- p ) +(+ u(1+ B
=-2u +4u+2
=0.
Then the discriminant of this equation is
D =32=2-16.
Since 2 is a quadratic non-residue mod ¢ {13}, Disa quadratic non-residue mod ¢,
(we note that the product of a quadratic residue and a quadratic non-residue is a
quadratic non-residue [13]), that is, the equation has no root in GF (q), so
A* + B*#0 . Similarly, if
C*+D*=(-2u) +(B-u By =244 +4p-2=0,
then we obtain
D=32=2-16.
Thus C? + D* #0 . Therefore from the equations (12) and (13) we obtain
_BE-AG _DF-CH

= , (14)
A+B C+D’
and putting the values of 4, B, C, D, E,F,G and H in(14) gives
-2-21-2u—-6Au _ 2424 +2u~6Au
22Ut Au+2 2t +4u-2
Then it follows that
~6ﬂ.,u’—6,u2+2/1,u+2=(y+%] (3242 +4)=0,
and so
1 2
[sz (-3u2 +1)=0  (420). (15)

Now the same calculations for v,eU (1) give
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A+t =gt (pA+1)=0. (16)

Then it follows from (15) and (16) that u=-— (1%0) with x=AB,

Qs |

y=-4,x'=-1 and y' =-p2 Moreover, one can easily find that if 1=0 then
p=c.
Now suppose that
A=p==1/4 < P=-1,

Since -1 is a quadratic non-residue mod q, then A’ +1=0 has no solution in

GF(q). This gives _qz;l chiral pairs corresponding to the pairs
(W L, w (,u)) of G -invariant submodules.

If g=7 (mod 8) then we have the same equation as in the previous case, i.e.
equation (7)
Y+y B+ B - B+1=0
l-y-p r+1

with x=—2o" 22 "yl "~ ap4 B#0. Then the discriminant of this quadratic

B
equation is
D=-38"+45-4.
Now we claim that there exist &, B eGF(q) such that
0'=D =-38"+45-4.

Indeed, let
M={5'|5eGF(q) },
so M cGF(q) with lMl=—qu1. Let
N={-387+4p-4|peGF(g)}.
Since

—3ﬂ2+4ﬂ—4=—3(ﬂ2—§ﬂ+§—>=—3[<ﬂ—§)2+§),

and (ﬂ—%)2 takes qTH different values, so |N|= QTH Thus M, NcGF(q)
with

IM|+|N|=q+1>|GF(g)| = ¢ ,
s0 M NN=¢. Hence there exist 5, B such that 5§ =—3 * +43 -4, as required.
Thus equation (7) has two roots, namely
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_Zpxs , __BS
1 2 > 7/ 2 2 *
Then we obtain the following two 2-dimensional G -submodules U, and U, :
1 EI)
2
0
U ,=<u = , U= F >
_ﬁ+§ . 1
2
B 0
and
1 LA
2
: | P
U2=<u3=_ﬂ,u— 1 >
2
Y4 0

with H, =U,® U, and U, =, U, . The matrix representations of k and / on these

submodules are
(0 _1) _p-542 —prs+2
K = , L =\ _ iﬂ+ 3ﬂ_
1 1 0 1 ﬂz; 2 %3

(0 _1] (~ﬁ+b‘+2 —p—5+2]
K, = s L=l A, B

2 1 0 2 /)2; 2 ,92(;2
respectively.

Now suppose that {u3 = Xu,+yu, , U,

and

au;+bu;} is a new basis for U, so
that k and / induce the matrices K, =K, and L, =L, on U, and U, , i.e

Ku,=-u,,Ku,=u,
and

Lu

3=—,B~5+2u3+—ﬂ+5+2u“ Lu4=—ﬂ+5+2u3+ﬁ+5—2u4.
28 23 23 23

Then Ku, = —u, leads to the following equations:

1 1
E(ﬂ+5)x+y——a+5(,3+5)b,

Pr=pb,
x—%(ﬂ+5)y=—;—(ﬁ+5)a+b,
:By=—ﬂa’

and from these equations we obtain x=b,y=~a. Similarly,
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=—,b’—5+2u +—,B+5+2u

Lu 3 4
2B 2B

3

yields the following equations:
—ﬂ;5+2(x—’H+§y)+—'8+5+2(a—ﬁ+5b)=(2_2'B)y+(5_’3)x,
B 2 28 2 2
-f-8+2 “B+5+2 . (2+B-8)y+(2-p-86)x
28 P+ 28 po= 2 ’
’B+5—2(ﬁ+5x+y)——'B+5+2('B+5a+b)=(5_'B)y+(2ﬂ_2)x,
28 2 28 2 2
-f-5+2 “B+5+2 . (2-B-8)y+(2-B+6)x
28 At 28 pa= 2 ’

and then putting x=b and y=-a gives
p=-L2
)

a.

Now if we choose a =9, then we get b=-(f-2),x=~(f-2) and y=-0.
Thus we obtain

ﬁ 2+6-38 -2+8+4

7 7
| -ps |-pB-2)
U, = caprs |0 WS 25438 |
T il
-p(B-2) pé

Now defining
UAy=<v,=u+Au, ,v, =u,+Au, >
forany fixed AeGF(q) and U(w)= U, give g +1 different G -isomorphic 2-
dimensional G -submodules.
For reflexibility, suppose that there exist A, u € GF (g) such that
a,U(A) = a,(<v,,v,>) =U(u) = <V/,v.>.
Then we have

—100 0 0) 1448252 ) (1448250
0 00 1 ~ips | | p-app-2)

M 001 0 By Jpen |7 ey gp e
0 1 0 o)l p-48(8-2) _ 185
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1+,Uﬂ 2+6-38 -p+6 +/Jﬂ -2+6+8
=XV 4+ v, =x ﬂs—,uﬁ5 + p- ﬂﬂ({sf) ,
=B+ +ﬂﬂ—2+6+ﬂ _1+,uﬂ +5+3 8
B-up(B-2) upo
for some x,y € GF(q). This leads to the following equations:
A B E
2+85-38. —B+6 245+ 2+5 3
e up 2203 (B2D p 2202 L YEETETN
r——’%
(~uB&)x+(B - #ﬂ(ﬂ 2))y B- lﬂ(ﬂ 2),
- f+6 A—2+5+ 2 5-3 +5 2+8+8
L gm0y, s g O30, B0 20,

,_.____\ f—J;a ,—M
(B—1B(B ~2)x~(-ppd)y =~ 5.
Multiplying the first equation by B and the third by —4 and then adding them
gives
y(A*+B*)=BE-AG, 17
and multiplying the second equation by D and the fourth equation by —C and then
adding them gives
y(C*+D*)=DF-CH. (18)
Now we claim that
A*+B*#0and C'+D* #0.
Indeed, the equations

— A r—L r——}‘——\
(2B -4 =26 i + (-4 + (2= f-8) =0
and
P Q R

——N——
@pHw +(2B-4)+-1=0
corresponding to 4’ + B =0 and C’+D’ =0, respectively, have discriminants
D,=0"-4PR
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=168 —4(~ f-5+2)(2° —4B -25°5)
=24 -328’ -85 B +32°

=8 (-3B’ +4-4)-85"

=-8p'5" -85

=-1655"
=-1(1645"),
and similarly
D,= -1.(457).

Then D, and D, are quadratic non-residues mod g, (since —1 is a quadratic non-
residue mod ¢ ). Then equations (17) and (18) give

u= 2-p+5-245 with 4#-— 1
2B A4 26 B —2/) 2-f-6

It is not difficult to see thatif A = ———1—- then u = w, that is,

2-8-6
1
aU(o)=a(<w, w, >)=U(‘m)=<tl,t2 >,
with
2 2 2
a,w,=-ﬂ +4 t,—(ﬂ+5—2) ‘)
1) 25
and
_ 2 2 2
alwz=—('6+5 2) t1+5 B .
26 )
If =0 then y:#.
2p
Now suppose that
2
A=y 2-B+85-2A8

T A (4B =287
then

—_—— L T S
2B°2-6-PYX +4f° A+ f-56-2=0,
o we get a quadratic equation PA’ + RA+S =0. The discriminant of this equation
is
D=R’-4PS
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=168*-887(2-6-B)(f-6-2)
24B-32p° -85 B +32p°

-8B (-3p*+4p-4)-85p’

-8p%5*-8pB%"

~16p°6*

—-1-(168%6%).

Since 16835 is a quadratic residue mod ¢ and ~1 is a quadratic non-residue

i

il

mod ¢, then D is a quadratic non-residue mod ¢ . Thus there are g +1 g’ -sheeted

unbranched regular coverings with genus § =1+ g’ and automorphism group

G=A/M,=2x 0,
. . . qg+1 . .
and none is reflexible, i.e. there are 5 chiral pairs.

Finally, let g =2. Then Z; is reducible but indecomposable with three 1-

dimensional, one 2-dimensional and three 3-dimensional G -invariant submodules,
namely

1 0 1 1) (0
0 1 1 o1
S, =< >, S, =< > S, =<|_|> §,=< , >,
1 0 1 1{10
0 1 1 0/ \1
1Y(0) (0O 1Y (0) (1
o{j1jl{o 0101
S, =< AL Se=<| _Li. |
1|11 01 0
0101 0/,10) {1
0Y(0Y) (1
111010
S'] =< 2> > >7
o101
0)l1)\1
respectively.

These submodules correspond to three 8-sheeted regular coverings of genus
§=1+¢’> =9 with automorphism group G=72x Q,; one 4-sheeted regular

covering of genus  §=1+4¢" =5 with automorphism group G= Z: x Q,; and three
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2-sheeted regular coverings of genus §=1+¢° =3 with automorphism group
G=7 %Gy they are all reflexible hypermaps.

{In). Let A=AQG34)=<x,yz| ¥ =)y =z'=xyz=1> and
G=S8L,(3y=<d,e

and character are

d’=e'=1, ed’e =ded >. Then the homology representation

0 1 0 o0 00 -1 0
i d s -1 -1 0 0 “D. e 0 0 0 -1 - E
I 0 -1 -1 1 0 0 O
0 1 1 o0 01 0 0
and
T, =2y,

where y, is an irredicuble complex character of G givenby y,(1) =2,
x€)=-2, x(e)=0, y,(d)=-], xs(d*)=~1, y,(d’¢*) =1, y,(de’) =1 (where
Le’,e,d,d’,d*e*,de’ are the representatives of conjugacy classes of G') [1 1].
Since Q, < SL,(3), all SL, (3) -invariant submodules must be Q, -invariant as
well, so it is enough to check which Q, -invariant submodules are also SL,(3)-
invariant (where O, =<e,ded > as in (I)).
If ¢g=1,5 (mod 8) then all Q,-invariant  submodules are also SL,(3)-
invariant, so there are g+1 g¢’-sheeted regular unbranched coverings of type
{3,3,4} with genus 1+¢* and automorphism group (A?=A/M,1 = Z: x SL,(3)

forall 1€ GF(q)u {oo}. On the other hand, it was shown in [ 11 ] that the matrix of

the orientation—reversing automorphism corresponding to the chosen reflection line
and the homology basis is the same as in (@), that is,

0 -1 00
-1 0 00
“lo o 01
0 0 10

Now suppose that there exist 1, u € GF(g) U {oo} such that
aUA)=U)=<Vv,v. >

1772

then it follows that
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0 -1 00 1-2 AGE-1)
-1 0 0 0 Al-i) A-1
av, = . = .
0 0 0 1) i(A-D —A@+Y)
0 0 1 O)\-A(G+1) {A-1)
1-u i-1
1-i 1+
I TSET R I EN
i(pu-1 —u(i+D
—p@E+1) Mt
for some x,y € GF(q) . This yield the following equations:
x(1= )+ y(-1) =23 -1), (19)
xp(l-i)+y(1+ )= A-1, ‘ (20)
xi(u=1) = yp(i +1) = -A(i +1), 21
—xp(i + D)+ y(u+1)=i(A-1). (22)
Multiplying equation (20) by i and adding it to equation (22) gives
y=Ai-L
Similarly, multiplying equation (19) by i and adding it to equation (21) gives
22
y=—".
u+l

Then equating these two values of y gives u = -j:_ill , A#1

For A =1 weseethat u =00, thatis, aW (1) =W (®).
Now suppose that there is a proper reflexible hypermap, that is,
A+1
A=u = /1_-{:_1 then this gives

’ AP=24-1=0.
This equation has solutions A, =1+¢ (where £=2) if and only if

g =1 (mod 8). Thus there are two reflexible hypermap corresponding to the
submodules U(1+¢&) and U(1-¢) and _q_2—_1 chiral pairs corresponding to the
pairs of submodules (U(4), U (-ii%)) (where A #1).

If g=5 (mod 8) then 2 is a quadratic non-residue mod ¢, so there are no

proper reflexible hypermap, i.e. there are -1-;—{ chiral pairs.



44 M. KAZAZ

If g=3 (mod8), then one can easily see that all (), -invariant submodules
are also  SL,(3)-invariant submodules, so there are g+1 2 -dimensional G-

invariant submodules. It can be shown that -q—z_l of them are chiral pairs

corresponding to  (U/(A), U(%)) with 1 #0,%1 and (U(0), U(x)); and two of

them are reflexible hypermaps corresponding to U (1) and U(-1).

Now let ¢ =7 (mod 8) . Then all @, -invariant submodules are also SL,(3)-
invariant, so there are ¢ +1 ¢*-sheeted unbranched regular coverings. They are all
chiral. Indeed, forany A, e GF (9),

2-6-38-2(4)
4B+ M-68°+45% +266°)’

aU(A)=U(u) if and only if U=

with
2
At———— = and §'=_382+45-4.
3 128408 © prap
For

2
_38+28+38

one can see that =0 .

Now suppose that 1 = 4, then we obtain a quadratic equation
P

—_— A
2,6’2(—2—5+3,B)/12+—8ﬂl+(2—5—3ﬂ)=0,
ie. PA*+RA+S =0. Then the discriminant of this equation is
D= R*-4PS
=644 +88°(-2+5+36)(-2-5+38)
=644 +8B (987 ~12+4-67)
= 6487 +84°[3(p*-48+4)-8-5")]
=648’ +8B° (<35’ -5 -8)
= 643" -328°6" -64*
=-328%5"
=-2-(168°5").
Now 164°5 is a quadratic residue mod g, but -2 is a quadratic non-residue

mod ¢, s0 —2-(168°5*) is a quadratic non-residue mod g . Thus there are no
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g+1

proper reflexible hypermaps, so there are chiral pairs corresponding to the

pairs of submodules (U(4),U(u)).

If g =2, then there is only one (), - invariant submodule,

1 0
0 1
S, =< R >,
1 0
0 1

which is also an  SL, (3) - invariant submodule. Therefore, there is only one

4 — sheeted unbranched covering with genus 5 and G= Zix SL,(3).
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