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ABSTRACT

In this paper we investigate discrete spectnım of the boundary value problem

«Yi + qı(x)y2 = ^Yı

-iy2 + q2(’^)yı 
y2(0)-hyı(0) = 0

xe R4. = [0,°o)

inthespace L2(R+,C^) , wha'eqi, i=l,2 are complex valued functions andh G C.

1. INTRODUCTION

Let L denote the operatör generated in L2(R+) by the differential expression 
l(y) = -y + q(x)y , X e R. = [0,co)

and the boundaıy condition y(0)=0, where q is a complex valued function. The study 
of the spectral analysis of L was investigated by Naimark [9], He proved that the 
spectrum of L consisted of the cigenvalues, the continuous spectnım and the spectral 
singularities. Pavlov[10] studied the dependence of the stnıcture of the spectral 
singularities of L on the behaviour of q at infmity. The effect of the spectral 
singularities in the spectral expansion of L in terms of the principal functions have 
been investigated by Lyance[8]. The spectral singularities and the eigenfunction 
expansions of the quadratic pencil of the Schrödinger, Klein-Gordon and Dirac 
operators have been considered in [2]-[5].

Let us consider the boundary value problem (BVP)
»

iYı + qı(x)y2 = Î^Yı

-İy2=^^2 ’ xeR+=[o,oo) 

y2(0)-hyı(0) = 0

(1.1)

(1.2)
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in the space L2(R+,c2)> where the functions g; , i=l,2 are complex valued 

continuous functions in R+ and he C.
İn this paper using the technigue of the paper[3], we investigate the 

eigenvalues and the spectral singularities of the BVP (1.1)-(1.2), and prove that this 
BVP has a fînite number of eigenvalues and spectral singularities and each of them 
is of a fînite multiplicities.

Note that the properties of the principal functions corresponding to the 
eigenvalues and the spectral singularities of the BVP (1.1)-(1.2) have been 
investigated in [6].

2. Special Solutions of (1.1):

Let us suppose that

|qi(x)|< c(l + X) -(l + s) ,e > 0 (2.1), i = 1,2, X e R

where c>0 is a constant.
We will denote the Solutions of (1.1) satisfying the boundary conditions

e
y(x,X) =

y(xA) =

O
[1+0(1)] A.sC--={X:XeC,ImZ<0},x->oo

and
O

V
[1 + 0(1)] A. € C+ = {V: A € C,lmA â 0},x -> oo

by E (x,A,)andE^(x,A,)’ ’^spe^^tively
Under the condition (2.1) the Solutions E“(x,X)andE^(x,Â,) of ı^st, are 

unique and have the representationş 

-iXx

E"(x,X):=
Cj (x,X) j_ 
©2(x,X)J

00
+ jHu(x,t)e 

X
co

j’H2i(x,t)e

X

co

-iXt

,“İXtdt

dt

E^(x,A.).= (x,X) |_ 
e2('>c,'k') j

jHi2(x,t)e’

00 

jH22(x,t)e'
X

(2.3)

e

X

(2^

^^dt

7

,?^eC+ ,

wlıere the functions Hy(x,t), ij=l,2 are Solutions of the şystem of Volterıa integral 
equations and
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2

k=l
(2.4)

where c>0 is a constant [1]. Moreover the functions Er(x,A.) and are analytic
with respect to in C+ = {Z:XeC,lmZ>0} and C_={X:XeC,ImX<0},

respectively and continuous up to the real axis.

3. Discrete Spectrum of BVP (1.1)-(1.2):

Let us consider the functions
a* (X) = ej (0,X) - hej*^ (O, X)

a“ (X) = e2 (0,X) - hef (0,X)
We will denote the set of ali eigenvalues and spectral singularities of the BVP (1.1)-
(1.2) by and ct.SS ’ respectively.

We can easily prove that
<^3 =

^SS “

{x:ZGC+,a+(Z) = ojo|x:XeC_,a’(X) = o| 

: : X e R* ,3-" (X) = O ju {z: A. e R* ,a-(X) = o}
(3.1)

(3.2)
where R*=R\ [2].

From (3.1) and (3.2) we see that in order to investigate the structure of the 
discrete spectrum of the BVP (1.1)-(1.2) we need to discuss the structure of zeros of 
a^ and a" in C+ and C-, respectively. For the sake of simplicity we will consider 
only the zeros of a' in C+

Let us define
=|Z:XeC-,a*(X) = 0| P2’" = |X;ZeR,a’"(X) = 0

It follows from (3.1) and (3.2) that
=lt '-'Pl = (3.3)

Lemma 3.1. If (2.1) holds, then
(i) The set Pf is bounded and has at most a countable number of elements, and its 

limit points can lie only in a bounded subintetval of the real axis.
(ii) The set Pj is compact and its linear Lebesque measure is zero.

Troo€ (2.3) yield that a^ is analytiç i^ C+, continuous in C+ and has the form
00

Hence (3.4) implies thdt
a+(X)=fl+'0(l) ,

a+(X) = l+j{H22(0.t)-hHi2(0,t)>»"dt 
o

(3.4)

X G C+ jxj —00 (3.5)
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which shows the boundedness of the sets Pf and P2 . The proof of lemma is a 
direct consequcnce of (3.5) and uniqueness of analytic functions ([7]).

From Lemma 3.1 we get the following.

Theorem 3.2. Under the condition (2.1) we have
(i) The set of eigenvalues of the BVP (1.1)-(1.2) is bounded, is no more than 

countable and its limit point can he only in a bounded subinterval of the real axis.
(ii) The set of spectral singularities of the BVP (1. l)-( 1.2) is bounded and its 

linear Lebesgue measure is zero.
Defînition 3.3. The multiplicity of zero a' (or a") in C+ (or ) is defined as the 
multiplicity of the corresponding eigenvalue or spectral singularity of the BVP (1.1)- 
(1.2).
Theorem 3.4. If

jq.(x)|<ce'.-ex xeR+, e>0 (3.6)

holds; then the BVP (1.1)-(1.2) has a finite number of eigenvalues and spectral 
singularities and each of them is of finite multiphcity.
Proof. From (2.4) we find that

|Hij(O,t)|<ce5' (3.7)

(3.4) and (3.7) shows that, the functions a* has an analytic continuation from the real 

axis to the half plane imZ > ~ . So the limit points of the sets P,^ and P^ can not 

lie in R, i.e., the bounded sets Pj* and P^ have no ümit points. Therefore, we have 

the firüteness of the zeros of a^ in C+ . Moreover ali zeros of a^ in C+ has a finite 
multiplicity. Similarly we get that the function a' has a finite number of zeros with 
finite multiphcity in C-.

İt is seen that the condition (3.6) guarantics of the analytic continuation of a^ 
and a’ from the real axis to lower and upper half-planes, respectively. So the 
finiteness of eigenvalues and spectral singularities of the BVP (Ll)-(1.2) are 
obtained as a result of this analytic continuations.

Now let us suppose that 
1|qi(x)|<ce' EX.a ,i = 1,2, XeR+,e>0, — Sa<l (3.8)

’ 1
hold, which is weaker than (3.6). It is evident under the condition (3.8) that the 
function does not have an analytic continuation from the real axis to lower half- 
plane. Similarly a' does not have an analytic continuation from the real axis to upper 
half-plane. Therefore under the condition (3.8) the fmiteness of eigenvalues and 
spectral singularities of the BVP (1.1)-(1.2) cannot be proved by the same technique 
used in Theorem 3.4. Let us denote the set of ali limit points of and Pj by 
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P^ and P4 , respectively, and the set of ali zeros of a* with infînite multiplicity in 

C+ by P^.

It is clear that

Pf P5+ =0 , <= P2 , P4 <= P2 ,P? <= P2

and the linear Lebesgue measures of P3 ,P4 and P^ are zero. Using the continuity 
of ali derivatives of a* on the real axis we obtain

,+
P3 ^P:5 4 (3.9)

Lemma 3.5. If (3.8) holds, then P^ =0.
Proof. There exist a T>0 such that

^a+(A,)<c+ , u-O.L... ,XeC+,|A,|<T

hold, where, c„, n=0,l,... are constants. By Pavlov's theorem, we get

flnF(s)dM(pjJ (3.10)

where F(s)=irf
n!

(x(P^ ) i® Öte linear Lebesgue measure of s-neighbourhood

of P^ and h>0 is a constant ([3],[10]).
Using (2.4) and (3.8) we obtain

Cn
00

= 2“cJ dx<Bb“n!n
ni=a 

a (3.11)
0

where B and b are constants depending e,a andc. Substituting (3.11) in the 
defînition of F(s) we arrive at

F(s)=inf B exp
n n!

1-a - ------ e
a

1 
1-a

a
1-a

a 
1-ab S

or h a
Js »-« dg(P^,)<QO 
o (3.12)

by (310). So—^>1 hence(3.12)holdsforarbitrarysifandonlyif p.(P^s) = O 
1-a

or P^ =0.
Theorem 3.6: Under the condition (3.8) the BVP (1.1)-(1.2) has a fînite number of 
eigenvalues and spectral singularities, and each of them is of fînite multiplicity.
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Proof. To be able to prove the theorem we have to show that the functions a^ and a' 
has a finite number of zeros with finite multiplicities in C+ and C-, respectively. 
We will prove it only for a*.

From (3.9) and Lemma 3.5 we find that Pj = P4 = 0. So the bounded sets 

andPj have no ümit points, te., the fimction a^ has only a finite number of zeros 

in C+ . Since P^ =0 these zeros are of finite multiplicity.
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