SPECTRAL PROPERTIES OF NON-SELFADJOINT SYSTEM OF DIFFERENTIAL EQUATIONS

E. KIR

Department of Mathematics, Faculty of Arts and Sciences, Gazi University, Ankara, Turkey.
(Received March 7, 2000; Accepted Sep. 6, 2000)

ABSTRACT

In this paper we investigate discrete spectrum of the boundary value problem

$$
\begin{aligned}
& \mathrm{iy}_{1}^{\prime}+\mathrm{q}_{1}(\mathrm{x}) \mathrm{y}_{2}=\lambda \mathrm{y}_{1} \\
& -\mathrm{iy}_{2}^{\prime}+\mathrm{q}_{2}(\mathrm{x}) \mathrm{y}_{1}=\lambda \mathrm{y}_{2}, \quad \mathrm{x} \in \mathrm{R}_{+}=[0, \infty) \\
& \mathrm{y}_{2}(0)-\mathrm{hy}_{1}(0)=0
\end{aligned}
$$

in the space $L_{2}\left(R_{+}, C^{2}\right)$, where $q_{i}, i=1,2$ are complex valued functions and $h \in C$.

1. INTRODUCTION

Let L denote the operator generated in $L_{2}\left(R_{+}\right)$by the differential expression

$$
l(y)=-y^{\prime \prime}+q(x) y, x \in R_{+}=[0, \infty)
$$

and the boundary condition $y(0)=0$, where q is a complex valued function. The study of the spectral analysis of L was investigated by Naimark [9]. He proved that the spectrum of L consisted of the eigenvalues, the continuous spectrum and the spectral singularities. Pavlov[10] studied the dependence of the structure of the spectral singularities of L on the behaviour of q at infinity. The effect of the spectral singularities in the spectral expansion of L in terms of the principal functions have been investigated by Lyance[8]. The spectral singularities and the eigenfunction expansions of the quadratic pencil of the Schrödinger, Klein-Gordon and Dirac operators have been considered in [2]-[5].

Let us consider the boundary value problem (BVP)

$$
\begin{align*}
& \mathrm{iy}_{1}^{\prime}+\mathrm{q}_{1}(\mathrm{x}) \mathrm{y}_{2}=\lambda y_{1} \\
& -\mathrm{iy} \tag{1.1}\\
& 2 \tag{1.2}
\end{align*}
$$

in the space $L_{2}\left(R_{+}, C^{2}\right)$, where the functions $q_{i}, i=1,2$ are complex valued continuous functions in R_{+}and $h \in C$.

In this paper using the technique of the paper[3], we investigate the eigenvalues and the spectral singularities of the BVP (1.1)-(1.2), and prove that this BVP has a finite number of eigenvalues and spectral singularities and each of them is of a finite multiplicities.

Note that the properties of the principal functions corresponding to the eigenvalues and the spectral singularities of the BVP (1.1)-(1.2) have been investigated in [6].

2. Special Solutions of (1.1):

Let us suppose that
$\left|q_{i}(x)\right| \leq c(1+x)^{-(1+\varepsilon)}, i=1,2, x \in R_{+}, \varepsilon>0$
where $c>0$ is a constant.
We will denote the solutions of (1.1) satisfying the boundary conditions

$$
y(x, \lambda)=\binom{e^{-\mathrm{i} \lambda x}}{0}[1+o(1)] \quad \lambda \in \bar{C}=\{\lambda: \lambda \in \mathrm{C}, \operatorname{Im} \lambda \leq 0\}, x \rightarrow \infty
$$

and

$$
y(x, \lambda)=\binom{0}{e^{i \lambda x}}[1+o(1)] \quad \lambda \in \bar{C}_{+}=\{\lambda \cdots \lambda \in C, \operatorname{Im} \lambda \geq 0\}, x \rightarrow \infty
$$

by $\mathrm{E}^{-}(\mathrm{x}, \lambda)$ and $\mathrm{E}^{+}(\mathrm{x}, \lambda)$, respectively
Under the condition (2.1) the solutions $\mathrm{E}^{-}(\mathrm{x}, \lambda)$ and $\mathrm{E}^{+}(\mathrm{x}, \lambda)$ of (1.1) exist, are unique and have the representations

$$
\begin{align*}
& E^{-}(x, \lambda):=\binom{e_{1}^{-}(x, \lambda)}{e_{2}^{-}(x, \lambda)}=\binom{e^{-i \lambda x}+\int_{x}^{\infty} H_{11}(x, t) e^{-i \lambda t} d t}{\int_{x}^{\infty} H_{21}(x, t) e^{-i \lambda t} d t}, \lambda \in \overline{C_{2}} \tag{2,2}\\
& E^{+}(x, \lambda)=\binom{e_{1}^{+}(x, \lambda)}{e_{2}^{+}(x, \lambda)}=\binom{\int_{x}^{\infty} H_{12}(x, t) e^{i \lambda t} d t}{e^{i \lambda x}+\int_{x}^{\infty} H_{22}(x, t) e^{i \lambda t} d t}, \lambda \in \bar{C}_{+}, \tag{2.3}
\end{align*}
$$

where the functions $\mathrm{H}_{\mathrm{ij}}(\mathrm{x}, \mathrm{t}), \mathrm{i}, \mathrm{j}=1,2$ are solutions of the system of Volterra integral equations and

$$
\begin{equation*}
\left|H_{i j}(x, t)\right| \leq c \sum_{k=1}^{2}\left|q_{k}\left(\frac{x+t}{2}\right)\right|, i, j=1,2 \tag{2.4}
\end{equation*}
$$

where $c>0$ is a constant [1]. Moreover the functions $E(x, \lambda)$ and $E^{+}(x, \lambda)$ are analytic with respect to λ in $C_{+}=\{\lambda: \lambda \in C, \operatorname{lm} \lambda>0\}$ and $C_{-}=\{\lambda: \lambda \in C, \ln \lambda<0\}$, respectively and continuous up to the real axis.

3. Discrete Spectrum of BVP (1.1)-(1.2):

Let us consider the functions

$$
\begin{aligned}
& \mathrm{a}^{+}(\lambda)=\mathrm{e}_{2}^{+}(0, \lambda)-\mathrm{he}_{1}^{+}(0, \lambda) \\
& \mathrm{a}^{-}(\lambda)=\mathrm{e}_{2}^{-}(0, \lambda)-\mathrm{he}_{1}^{-}(0, \lambda)
\end{aligned}
$$

We will denote the set of all eigenvalues and spectral singularities of the BVP (1.1)(1.2) by σ_{d} and σ_{ss}, respectively.

We can easily prove that

$$
\begin{align*}
& \sigma_{\mathrm{d}}=\left\{\lambda: \lambda \in \mathrm{C}_{+}, \mathrm{a}^{+}(\lambda)=0\right\}\left\{\lambda: \lambda \in \mathrm{C}_{-}, \mathrm{a}^{-}(\lambda)=0\right\} \tag{3.1}\\
& \sigma_{\text {ss }}=\left\{\lambda: \lambda \in \mathrm{R}^{*}, \mathrm{a}^{+}(\lambda)=0\right\}\left\{\lambda: \lambda \in \mathrm{R}^{*}, \mathrm{a}^{-}(\lambda)=0\right\} \tag{3.2}
\end{align*}
$$

where $\mathrm{R}^{*}=\mathrm{R} \backslash\{0\}$ [2].
From (3.1) and (3.2) we see that in order to investigate the structure of the discrete spectrum of the BVP (1.1)-(1.2) we need to discuss the structure of zeros of a^{+}and a^{-}in $\overline{\mathrm{C}}_{+}$and $\overline{\mathrm{C}}_{-}$, respectively. For the sake of simplicity we will consider only the zeros of a^{+}in $\overline{\mathrm{C}}_{+}$

Let us define

$$
\mathrm{P}_{1}^{\overline{+}}=\left\{\lambda: \lambda \in \mathrm{C}_{-}^{-}, \mathrm{a}^{+}(\lambda)=0\right\} \mathrm{P}_{2}^{\overline{+}}=\left\{\lambda: \lambda \in \mathrm{R}, \mathrm{a}^{+}(\lambda)=0\right\}
$$

It follows from (3.1) and (3.2) that

$$
\begin{equation*}
\sigma_{\mathrm{d}}=\mathrm{P}_{1}^{+} \cup \mathrm{P}_{1}^{-}, \sigma_{\mathrm{ss}}=\left\{\mathrm{P}_{1}^{+} \cup \mathrm{P}_{1}^{-}\right\} \backslash\{0\} \tag{3.3}
\end{equation*}
$$

Lemma 3.1. If (2.1) holds, then
(i) The set P_{1}^{+}is bounded and has at most a countable number of elements, and its limit points can lie only in a bounded subinterval of the real axis.
(ii) The set P_{2}^{+}is compact and its linear Lebesque measure is zero.

Proof. (2.3) yield that a^{+}is analytic in C_{+}, continuous in $\overline{\mathrm{C}}_{+}$and has the form

$$
\begin{equation*}
\mathrm{a}^{+}(\lambda)=1+\int_{0}^{\infty}\left[\mathrm{H}_{22}(0 . \mathrm{t})-\mathrm{hH}_{12}(0, \mathrm{t})\right]^{\mathrm{i} \lambda \mathrm{t}} \mathrm{dt} \tag{3.4}
\end{equation*}
$$

Hence (3.4) implies that

$$
\begin{equation*}
\mathrm{a}^{+}(\lambda)=1+0(1) \quad, \quad \lambda \in \overline{\mathrm{C}}_{+}, \quad|\lambda| \rightarrow \infty \tag{3.5}
\end{equation*}
$$

which shows the boundedness of the sets P_{1}^{+}and P_{2}^{+}. The proof of lemma is a direct consequence of (3.5) and uniqueness of analytic functions ([7]).

From Lemma 3.1 we get the following.
Theorem 3.2. Under the condition (2.1) we have
(i) The set of eigenvalues of the BVP (1.1)-(1.2) is bounded, is no more than countable and its limit point can lie only in a bounded subinterval of the real axis.
(ii) The set of spectral singularities of the BVP (1.1)-(1.2) is bounded and its linear Lebesgue measure is zero.
Definition 3.3. The multiplicity of zero a^{+}(or a^{-}) in $\overline{\mathrm{C}}_{+}$(or $\overline{\mathrm{C}}_{-}$) is defined as the multiplicity of the corresponding eigenvalue or spectral singularity of the BVP (1.1)(1.2).

Theorem 3.4. If

$$
\begin{equation*}
\left|\mathrm{a}_{\mathrm{i}}(\mathrm{x})\right| \leq \mathrm{ce} \mathrm{e}^{-\varepsilon x}, \mathrm{i}=1,2, \mathrm{x} \in \mathrm{R}_{+}, \varepsilon>0 \tag{3.6}
\end{equation*}
$$

holds; then the BVP (1.1)-(1.2) has a finite number of eigenvalues and spectral singularities and each of them is of finite multiplicity.
Proof. From (2.4) we find that

$$
\begin{equation*}
\left|H_{i j}(0, t)\right| \leq \mathrm{ce}^{-\frac{\varepsilon}{2} t} \tag{3.7}
\end{equation*}
$$

(3.4) and (3.7) shows that, the functions a^{+}has an analytic continuation from the real axis to the half plane $\operatorname{Im} \lambda>-\frac{\varepsilon}{2}$. So the limit points of the sets P_{1}^{+}and P_{2}^{+}can not lie in R, i.e., the bounded sets P_{1}^{+}and P_{2}^{+}have no limit points. Therefore, we have the finiteness of the zeros of a^{+}in $\overline{\mathrm{C}}_{+}$. Moreover all zeros of a^{+}in $\overline{\mathrm{C}}_{+}$has a finite multiplicity. Similarly we get that the function a^{-}has a finite number of zeros with finite multiplicity in $\overline{\mathrm{C}}_{-}$.

It is seen that the condition (3.6) guaranties of the analytic continuation of a^{+} and a^{-}from the real axis to lower and upper half-planes, respectively. So the finiteness of eigenvalues and spectral singularities of the BVP (1.1)-(1.2) are obtained as a result of this analytic continuations.

Now let us suppose that

$$
\begin{equation*}
\left|q_{i}(x)\right| \leq c e^{-\varepsilon x^{\alpha}}, i=1,2, x \in R_{+}, \varepsilon>0, \frac{1}{2} \leq \alpha<1 \tag{3.8}
\end{equation*}
$$

hold, which is weaker than (3.6). It is evident under the condition (3.8) that the function a^{+}does not have an analytic continuation from the real axis to lower halfplane. Similarly a does not have an analytic continuation from the real axis to upper half-plane. Therefore under the condition (3.8) the finiteness of eigenvalues and spectral singularities of the BVP (1.1)-(1.2) cannot be proved by the same technique used in Theorem 3.4. Let us denote the set of all limit points of P_{1}^{+}and P_{2}^{+}by
P_{3}^{+}and P_{4}^{+}, respectively, and the set of all zeros of a^{+}with infinite multiplicity in $\overline{\mathrm{C}}_{+}$by P_{5}^{+}.

It is clear that

$$
\mathrm{P}_{1}^{+} \cap \mathrm{P}_{5}^{+}=\varnothing, \mathrm{P}_{3}^{+} \subset \mathrm{P}_{2}^{+}, \mathrm{P}_{4}^{+} \subset \mathrm{P}_{2}^{+}, \mathrm{P}_{5}^{+} \subset \mathrm{P}_{2}^{+}
$$

and the linear Lebesgue measures of $\mathrm{P}_{3}^{+}, \mathrm{P}_{4}^{+}$and P_{5}^{+}are zero. Using the continuity of all derivatives of a^{+}on the real axis we obtain

$$
\begin{equation*}
\mathrm{P}_{3}^{+} \subset \mathrm{P}_{5}^{+}, \mathrm{P}_{4}^{+} \subset \mathrm{P}_{5}^{+} \tag{3.9}
\end{equation*}
$$

Lemma 3.5. If (3.8) holds, then $\mathrm{P}_{5}^{+}=\varnothing$.
Proof. There exist a $\mathrm{T}>0$ such that

$$
\left|\frac{d^{n}}{d \lambda^{n}} a^{+}(\lambda)\right| \leq c_{n}^{+}, n=0,1, \ldots, \lambda \in \bar{C}_{+},|\lambda|<T
$$

hold, where, $\mathrm{c}_{\mathrm{n}}^{+}, \mathrm{n}=0,1, \ldots$ are constants. By Pavlov's theorem, we get

$$
\begin{equation*}
\int_{0}^{\mathrm{h}} \ln \mathrm{~F}(\mathrm{~s}) \mathrm{d} \mu\left(\mathrm{P}_{5, \mathrm{~s}}^{+}\right)>-\infty \tag{3.10}
\end{equation*}
$$

where $F(s)=\inf _{\mathbf{n}} \frac{c_{n}^{+} s^{n}}{n!}, \mu\left(P_{5, s}^{+}\right)$is the linear Lebesque measure of s-neighbourhood of P_{5}^{+}and $\mathrm{h}>0$ is a constant ([3],[10]).

Using (2.4) and (3.8) we obtain

$$
\begin{equation*}
c_{n}^{+}=2^{n} c \int_{0}^{\infty} x^{n} e^{-\varepsilon x^{\alpha}} d x \leq B b^{n} n!n^{n \frac{1-\alpha}{\alpha}} \tag{3.11}
\end{equation*}
$$

where B and b are constants depending ε, α and c. Substituting (3.11) in the definition of $\mathrm{F}(\mathrm{s})$ we arrive at

$$
F(s)=\inf _{n} \frac{c_{n}^{+} s^{n}}{n!} \leq \operatorname{Bexp}\left\{-\frac{1-\alpha}{\alpha} e^{-\frac{1}{1-\alpha}} b^{-\frac{\alpha}{1-\alpha}} s^{-\frac{\alpha}{1-\alpha}}\right\}
$$

or

$$
\begin{equation*}
\int_{0}^{h} \mathrm{~s}^{-\frac{\alpha}{1-\alpha}} \mathrm{d} \mu\left(\mathrm{P}_{5, \mathrm{~s}}^{+}\right)<\infty \tag{3.12}
\end{equation*}
$$

by (310). So $\frac{\alpha}{1-\alpha} \geq 1$ hence (3.12) holds for arbitrary s if and only if $\mu\left(P_{5, s}^{+}\right)=0$ or $\mathrm{P}_{5}^{+}=\varnothing$.
Theorem 3.6: Under the condition (3.8) the BVP (1.1)-(1.2) has a finite number of eigenvalues and spectral singularities, and each of them is of finite multiplicity.

Proof. To be able to prove the theorem we have to show that the functions a^{+}and a^{-} has a finite number of zeros with finite multiplicities in $\overline{\mathrm{C}}_{+}$and $\overline{\mathrm{C}}_{-}$, respectively. We will prove it only for a^{+}.

From (3.9) and Lemma 3.5 we find that $P_{3}^{+}=P_{4}^{+}=\varnothing$. So the bounded sets P_{1}^{+}and P_{2}^{+}have no limit points, i.e., the function a^{+}has only a finite number of zeros in $\overline{\mathbf{C}}_{+}$. Since $P_{5}^{+}=\varnothing$ these zeros are of finite multiplicity.

REFERENCES

[1] Ö.Akin and E.Bairamov, On the Structure of Discrete Spectrum of the Nonselfadjoint System of Differential Equations in the First Order, J. Korean Math. Soc. Vol. 32 (1995), 401-413.
[2] E.Bairamov, Ö.Çakar and A.O.Çelebi, Quadratic Pencil of Schrödinger Operators with Spectral Singularities: Discrete Spectrum and Principal Functions, Jour. Math.Anal. Appl. 216 (1997), 303-320.
[3] E.Bairamov, Ö. Çakar and A.M.Krall, Spectrum and Spectral Singularities of a Quadratic Pencil of a Schrödinger Operators with a General Boundary Conditions, J. Differential Equations, 151 (1999), 252-267.
[4] E.Bairamov, Ö.Çakar and A.M.Krall, An Eigenfunction Expansion for a Quadratic Pencil of a Schrödinger Operator with Spectral Singularities, J. Differential Equations 151 (1999), 268-289.
[5] E.Bairamov and A.O.Çelebi, Spectrum and Spectral Expansion for the Non-selfadjoint Dirac Operators, Quart.Jour.Math. Oxford (2) 50, (1999), 371-384.
[6] E.Bairamov and E.Kur, Principal Functions of the Non-selfadjoint Operator Generated by System of Differential Equations, Mathematica Balkanica, 13.Fasc.1-2 (1999), 85-98.
[7] E.P.Dolzhenko, Boundary Value Uniqueness Theorems for Analytic Functions, Math.Notes. 25. No 6 (1979), 437-442.
[8] V.E.Lyance, A Differential Operator with Spectral Singularities, I,II, AMS Translations Soc.2. Vel. 60 (1967), 185-225,227-283.
[9] Naimatle M.A., Investigation of the Spectrum and the Expansion in Eigenfunctions of a Nor-seffadjoint Operator of Second Order on a Semi-axis, AMS Translations, Ser.2, Vol.16, (1960),103-193.
[10]B.S.Pawlev, The Non-selfadjoint Schrödinger Operator, Topics in Math. Phys. 1(1967), 87-锡最.

