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ABSTRACT

In this paper we investigate discrete spectrum of the boundary value problem
iyl +q; (X)Y2 = lyl

iy +ay()y; =Ay,, xeRy =[0,0)
¥2(©) ~hy;©)=0

in the space Ly(R,, Cz) , where g;, i=1,2 are complex valued functions and h € C.

1. INTRODUCTION

Let L denote the operator generated in 1L,(R, ) by the differential expression

0=~y +q®)y , xeR, =[0,0)
and the boundary condition y(0)=0, where ( is a complex valued function. The study
of the spectral analysis of L was investigated by Naimark [9]. He proved that the
spectrum of L consisted of the eigenvalues, the continuous spectrum and the spectral
singularities. Pavlov[10] studied the dependence of the structure of the spectral
singularities of L on the behaviour of q at infinity. The effect of the spectral
singularities in the spectral expansion of L in terms of the principal functions have
been investigated by Lyance[8]. The spectral singularities and the eigenfunction
expansions of the quadratic pencil of the Schridinger, Klein-Gordon and Dirac
operators have been considered in [2]-[5].
Let us consider the boundary value problem (BVP)

y; + q1(X)y, =24y,
—1yy +q5(x)y; =hy,y , xeR+=[0,oo) a.n
Y, (0)-hy;(0)=0 1.2)
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in the space 7, »®R +,C2), where the functions ¢; , i=1,2 are complex valued

continuous functions in R, and he C .

In this paper using the technique of the paper[3], we investigate the
eigenvalues and the spectral singularities of the BVP (1.1)-(1.2), and prove that this
BVP has a finite number of eigenvalues and spectral singularities and each of them
is of a finite multiplicities.

Note that the properties of the principal functions corresponding to the
eigenvalues and the spectral smgulaxmes of the BVP (1.1)-(1.2) have been
investigated in [6].

2. Special Solutions of (1.1):

Let us suppose that
[ ()< +x) ™ [i=12,xeR,,e>0 (2.1

where c>0 is a constant.
We will denote the solutions of (1.1) satisfying the boundary conditions

—iAx _
y(x,l)=(eo }[1+0(1)] reC.=f:reC,InA<0},x >0
and
0 —
y(x,k)=( m)[Ho(l)] reCh ={)u:mkeC,Im120},x—>oo
[ ' ;

by E™(x,A)andE" (x,A), respectively
Under the condition (2.1) the solutions E~(x, x)andE+ (x, x) of. (1 1) emsg are
unique and have the representations :

~ e +IH11(X e~ Mgy
. {e,_ x, x))= % el (22)
©2 (x’ X) . IHzl (X t)e—iltdt ' '

[4]

Ile(X,t)Cmdt

ot el (x,A) —

ET(x,A)= * e = * . ,AeCy | 23)
e206b)) | ginx [Hn(x De™at

X

where the functions H;(x,t) , i,j=1,2 are solutions of the system of Volterra integral
equations and
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[H,.j (x,1)

qk<"T“> ij=12 @4

<c3

k=1
where ¢>0 is a constant [1]. Moreover the functions E{x}) and E'(x}) are analytic
with respect to A inc, ={r:reC,mAr>0} and C_ ={r:2eC,Imr <0},
respectively and continuous up to the real axis.

3. Discrete Spectrum of BVP (1.1)-(1.2):

Let us consider the functions
a* (L) =€} (0,A)—he;y (0,A)
a~ (A)=e;(0,A)~he; (O,1)

We will denote the set of all eigenvalues and spectral singularities of the BVP (1.1)-
(1.2) by o4 and o, respectively.

We can easily prove that
cd={l:leC+,a+(X)=0}\){?\.:Z.eC_,a’(A.):O} 3G
= {k:),e R*a* () =0}u {x:xeR‘,a—(x)=o} (32)

where R™=R\ {0} [2].

From (3.1) and (3.2) we sce that in order to investigate the structure of the
discrete spectrum of the BVP (1.1)~(1.2) we need to discuss the structure of zeros of

a" and a’ in C, and C_, respectively. For the sake of simplicity we will consider
only the zeros of a' in C.

Let us define

P = {x;xec;,a+(x)=o} P," = {x:xeR,a+(x)=o}
It follows from (3.1) and (3.2) that
o4 =B UF , o, =P VR ]\ B} (3.3)

Lemma 3.1. If (2.1) holds, then
(i) Theset P is bounded and has at most a countable number of elements, and its

limit points can lie only in a bounded subinterval of the real axis.
(ii) The set P, is compact and its linear Lebesque measure is zero.

?raof 23) yleld thata® is analytic i ip C,, continuous in C. and has the form

at(h)= 1+]’ [H(0.) —hH,, (0,t)pMat (3.4)
0
Hence (3.4) implies that

atWy=l+o() , AeCi, pow (3.5
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which shows the boundedness of the sets P and P; . The proof of lemma is a

direct consequence of (3.5) and uniqueness of analytic functions ([7)]).
From Lemma 3.1 we get the following.

Theorem 3.2. Under the condition (2.1) we have

(1) The set of eigenvalues of the BVP (1.1)~(1.2) is bounded, is no more than
countable and its limit point can lie only in a bounded subinterval of the real axis.

(i) The set of spectral singularities of the BVP (1.1)-(1.2) is bounded and its
linear Lebesgue measure is zero.
Definition 3.3. The multiplicity of zero a* (ora)in C, (or C.) is defined as the
multiplicity of the corresponding eigenvalue or spectral singularity of the BVP (1.1)-
(1.2).
Theorem 3.4. If

‘qi(x){SCe"ex ,i=12,xeR,,e>0 (3.6)

holds; then the BVP (1.1)-(1.2) has a finite number of eigenvalues and spectral
singularities and each of them is of finite multiplicity.
Proof. From (2.4) we find that

-£4
lHij (o,t)l <ce 2 . 3.7
(3.4) and (3.7) shows that, the functions a* has an analytic continuation from the real
axis to the half plane Imk>—% . So the limit points of the sets P” and P; can not

lie in R, i.e., the bounded sets P]+ and P; have no limit points. Therefore, we have

the finiteness of the zeros of a* in C, . Moreover all zeros of a" in C, has a finite
multiplicity. Similarly we get that the function a” has a finite number of zeros with
finite multiplicity in C_.

It is seen that the condition (3.6) guaranties of the analytic continuation of a"
and a from the real axis to lower and upper half-planes, respectively. So the
finiteness of cigenvalues and spectral singularities of the BVP (1.1)-(1.2) are
obtained as a result of this analytic continuations.

Now let us suppose that

g (x| <ce™** ,i=12,xeRy, e >0,%s(x <1 (3

hold, which is weaker than (3.6). It is evident under the condition (3.8) that the
function a does not have an analytic continuation from the real axis to lower half-
plane. Similarly a” does not have an analytic continuation from the real axis to upper
half-plane. Therefore under the condition (3.8) the finiteness of eigenvalues and
spectral singularities of the BVP (1.1)-(1.2) cannot be proved by the same technique

used in Theorem 3.4. Let us denote the set of all limit points of B and P by,
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P; and Py, respectively, and the set of all zeros of a* with infinite multiplicity in
C. by Pf.
It is clear that
Pt NPf=0 ,Pf cP;,Pf cPf,P§ Py
and the linear Lebesgue measures of Py ,P§ and P§ are zero. Usinig the continuity
of all derivatives of a* on the real axis we obtain

Pf cP{ P} P} (3.9
Lemma 3.5. If (3.8) holds, then P{ =@.
Proof. There exist a T>0 such that

n _—
:xn a+(x>\sc;; ,0=0]... ,AeC+ <T

hold, where, ¢, n=0,1,... are constants. By Pavlov's theorem, we got

n >

h
InF(s)dy PE_ |>—0 (3.10)
InF@)dy(Py;

where F(s) =h],1f

+¢N
Cnnf; ) ”(P;s) is the linear Lebesque measure of s-neighbourhood

of P{ and h>0 is a constant ([3],[10]).

'Using (2.4) and (3.8) we obtain

© o
ot =2c [ xMe % gx < BbMnin" & G.11)

where B and b are constants depending ¢, and ¢. Substituting (3.11) in the
definition of F(s) we arrive at

1 (o4 o
+0 e
Fs)=inf D5 _<Bexpl-1"% ¢ 1-a 1, 1-0 ¢ 1-a
o n o
or
h __ o .
o i G.12)
0
by (310). S0 1 hence (3.12) holds for arbitrary s if and only if u(Pfs) =0
-
or P =J.

Theorem 3.6: Under the condition (3.8) the BVP (1.1)~(1.2) has a finite number of
cigenvalues and spectral singularities, and each of them is of finite multiplicity.
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Proof. To be able to prove the theorem we have to show that the functions a” and a”
has a finite number of zeros with finite multiplicitics in C4 andC— , respectively.
We will prove it only for a* .

From (3.9) and Lemma 3.5 we find that Py =P{= . So the bounded scts

P1+ andP§ have no limit points, i.e., the function a™ has only a finite number of zeros
in C4 . Since P§ =0 these zeros are of finite multiplicity.
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