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ABSTRACT 
 

Catalysis reactions under metal-free and ambient conditions have received great interest in terms of economic and 

environmental issues. Especially, the applications of Lewis acids for the processes are having special interest due to their unique 

roles in a huge number of organic reactions. In this sense, a recent compound PIII dication has played an important role in the 

catalytic hydrosilylation of carbonyls and olefins. Herein theoretical calculations were carried out to elucidate the mechanisms 

of the experimentally reported and unknown reactions. The proposed mechanisms show that the reactions of a-d can occur 

spontaneously, whereas the formation of pyridine has an endergonic nature. 
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1. INTRODUCTION 
 

Lewis acids have become an important class of inorganic chemistry since the exploration of their 

breakthrough properties in terms of intriguing behaviors as catalysts towards several chemical 

transformations [1]. The compounds of BF3, AlCl3, [CPh3]+, and [SiEt2]2+ are examples of neutral and 

cationic Lewis acids with considerable acidity from the vacant p orbitals on central atoms [2-9]. 

Additionally, PV cations are also commonly used Lewis acids as catalysts for several reactions such as 

hydrogenations, polymerizations, hydrosilylations, and hydro-defluorinations [10-13]. Alternatively, 

PIII compounds are known to behave as Lewis bases due to their electron-donating properties in 

coordination and catalysis chemistry [14]. Indeed, the right coordination of PIII compounds can also be 

described as phosphenium dications with impressive Lewis acid character [15-17]. Of broad interest 

have been devoted to understand the attractive reactivity of PIII dications. In recent studies a number of 

reactions exemplified by PIII acceptors. The reactivity of PIII dications toward activation of C-F bond 

and hydride abstraction from silanes were shown by the Vidovic group [18-19]. Stephan group reported 

several PIII dications with different properties in terms of reactivity depending on the ligand systems 

[20-21]. In this regard, C-F bond activations of fluoroalkenes and CF3 substituted species were reported 

by Stephan et al. Same group also systematically studied catalytic hydrosilylation reactions of carbonyls 

and olefins by PIII dication with terpyridine ligand [22]. The fluorophosphonium cation-promoted 

reaction mechanisms for catalytic reactions, including the hydrosilylation of olefins, have been 

investigated in detail in terms of experimental and theoretical aspects [23-25]. The reports pertaining to 

the studies conclude a key intermediate that stems from hydride abstraction or heterolytic cleavage of 

H2.  

 

Previous findings pertaining to the role of fluorophosphonium cations in hydrosilylation reactions 

suggest the formation of a fluoro–hydrido–phosphorane compound as a key intermediate [26]. This 

formation can be expressed in two manners; direct hydride abstraction of phosphorus cation from a 

silane or splitting of H2 in frustrated Lewis pair.  Although the key intermediate could not be determined 

experimentally, the detailed DFT calculations suggest its energetically plausible appearance. This 
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situation may stem from the strong hydridic nature of the key intermediate. To the best of our 

knowledge, however, there is no DFT study on the mechanism of catalytic cycle of PIII dications. 

Herein, we would like to address potential reaction mechanisms involving hydrosilylation of several 

organic compounds by a phosphorus PIII dication, [(terpy)PPh]2+.  

 

2. COMPUTATIONAL DETAILS 

 

Gaussian 16 package program was applied to all calculations in this study [27]. For optimizations of the 

dicationic structures in the gas phase, Becke’s three-hybrid method and the exchange functional of Lee, 

Yang, and Parr (B3LYP) theory was used with the split valence polarization basis set of def2-SVP 

[28,29]. The Becke-Jonson (BJ) damping with D3 dispersion correction function was included in all the 

calculations [30]. In order to characterize the optimized structures as minima or transition state, the 

frequency calculations were considered. The Gibbs free energies in kcal mol-1 are given in the entire 

text. Additionally, the intrinsic reaction coordinate (IRC) calculations were performed to confirm the 

relevant transition states by determining their routes to correct local minimas. For this, the second-order 

Gonzalez-Schlegel method was considered [31,32]. For the preparation of Figure 1 and visualization of 

the structures, the GaussView 5.0 program was used [33]. 

 

2. RESULTS and DISCUSSION 

 

In 2019, the Stephan group accomplished hydrosilylation of some organic molecules under mild 

conditions mediated by a PIII dication compound, [(terpy)PPh]2+ [22]. With this incentive, we have 

proposed reaction mechanisms for hydrosilylation of a-e by a PIII dication by following hydride 

abstraction from triethylsilane in Figure 1.  

 

In the case of a, the first step yields the intermediate 1a which consists of [Ph-P-H]+ and 3-methyl-3-

(triethylsilyl)butan-2-ylium subunits via TS1a by an energy barrier of ΔG≠ = 19.5 kcal mol-1 (Figure 1). 

Furthermore, the generation of 1a is found to be slightly endergonic by 4.4 kcal mol-1. The energy barrier 

and slight endergonicity can be acceptable for a reaction that occurs at 50 ºC. It is also noteworthy that 

the formation of the potential intermediate 1a manifests the highest energy barrier and only endergonic 

first step. Subsequently, the hydride abstraction from [Ph-P-H]+ moiety by butan-2-ylium to yield 2a 

possess a relatively lower energy barrier of ΔG≠ = 13.6  kcal mol-1 for TS2a compared to that of first 

step. The calculated total energy of the reaction is ΔG = -6.3 kcal mol-1. 

 
Table. Relative energies of the proposed reaction mechanisms of a-e at the B3LYP-D3(BJ)/def2-SVP level of 

theory. Energies are in kcal mol-1. 

 

 a b c d e 

a-e→TS1(a-e) 19,6 9,0 11,5 5,8 6,1 

TS1(a-e) →1(a-e) 14,9 17,1 16.4 29.5 28.1 

1(a-e) →TS2(a-e) 13.6 12.7 19.8 20.4 26.0 

TS2(a-e)→2(a-e) 25.6 28.4 61.4 13.7 9.2 

Overall Energy -6.3 -17.5 -51.5 -13.5 8.3 

 

In the second part, we have investigated the energy profile of the stepwise hydrosilylation of acetone 

(b). In a similar manner, the first step is associated with the hydride abstraction by PIII dication via 

TS1b. The required energy (ΔG≠ = 9.0 kcal mol-1) to arrive at TS1b is calculated to be strongly lower 

than that for TS1a. The second step estimates the hydride abstraction via TS2b by an energy barrier of 

ΔG≠ = 12.7 kcal mol-1 and the overall energy for 2b is dedicatedly exergonic (ΔG = -17.5 kcal mol-1). 
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Figure 1. General representation of the proposed reaction mechanism for the formation of 2a-2e at the B3LYP-

D3(BJ)/def2-SVP level of theory. The relative energies and structures are given considering formation 

of 2a. (PDC = Phosphorus dication) 
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Alternatively, we have also considered hydrosilylation of the simplest epoxide (c), ethylene oxide, as 

another oxygen-containing system for comparison with acetone. In a similar fashion, the nucleophilic 

attack from the oxygen center to the silicon center of triethylsilane to form oxiranium intermediate 1c 

proceeds via TS1c. This step needs to overcome a slightly higher energy barrier of ΔG≠ = 11.5 kcal mol-

1 as compared to that of acetone analogue (TS1b). The subsequent ring-opening of the resulting 

oxiranium 1c to give ethoxytriethylsilane 2c product has the strongest exergonic nature (ΔG≠= -51.5 

kcal mol-1), albeit with a substantial barrier of ΔG≠ = 19.8 kcal mol-1. 

 

As for the hydrosilylations of nitrogen containing systems imine (d) and pyridine (e), the calculations 

depict that the lowest energy barriers are determined to form intermediates 1d and 1e via TS1d and 

TS1e with ΔG≠ = 5.8 kcal mol-1 and ΔG≠ = 6.1 kcal mol-1, respectively. Furthermore, the strongest 

exergonic characters are appeared for 1d and 1e in comparison with other studied molecules by ΔG≠ = 

29.5 kcal mol-1 and ΔG≠ = 28.1 kcal mol-1, respectively. In stark contrast to the initial energy barriers of 

TS1d and TS1e, the second steps to yield target compounds 2d and 2e via TS2d and TS2e have the 

highest energy barriers by ΔG≠ = 20.4 kcal mol-1 and ΔG≠ = 26.0 kcal mol-1. For the sake of comparison, 

the yielding of the hydrosilylated compounds 2d and 2e exhibits different thermochemical properties.  

Taking account of the endergonic nature of hydrosilylation of pyridine, the structure 2e is not able to be 

furnished spontaneously. Otherwise, the higher backward energy barrier to TS2d makes the formation 

of 2d more facile than TS2e. 

 

2. CONCLUSION 

 

Collectively, we have described possible reaction mechanisms for the hydrosilylation of a-e. In all cases, 

the key intermediates of 1a-1e, similar to the fluoro–hydrido–phosphorane observed from 

fluorophosphonium, are tracked and play an important for determining the nature of the reactions. All 

the proposed reaction mechanisms of PDC with a-e proceed in stepwise manners to afford the 

hydrosilylated products 2a-2e. The only endergonic character is observed for hydrosilylation of pyridine 

e. Depending on the thermochemical data, conversely, we suggest that another nitrogen-containing 

system, imine, is found to be the most reactive toward silane due to the lowest initial energy barrier. 

 

 

 

Figure 2. Graphical visualization of the energy barriers to arrive at TS1a-TS1e and TS2a-TS2e and overall 

energies for 2a-2e. 
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