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Abstract 

The importance of practical, as well as orthometric heights in engineering cannot be underestimated as it is required for the 

determination of proposed construction levels and to direct the flow of water. This study presents the determination of orthometric 

heights of points using gravimetric/GPS and geodetic levelling approaches and compares the resolution of the two approaches to 

determine which of the methods is better for orthometric height determination in the study area. A total of 59 stations were occupy 

for gravity observation using Lacoste and Romberg (G-512 series) gravimeter to obtain the absolute gravity values of the points. 

GNSS observation was carried out in static mode using South GNSS receivers to obtain the positions and ellipsoidal heights of the 

points. The modified Stokes’ integral was applied to obtain the geoid heights of the points. Similarly, levelling was carried out using 

the geodetic level to obtain the level heights of the points. The orthometric correction was applied to the geodetic levelling results to 

obtain precise level heights of the points. The RMSE index was applied to compute the accuracy of the geoid models. The computed 

result shows that orthometric heights can be obtained in the study area using the two models with an accuracy of 0.3536m. Z-test was 

carried out to determine if there is any significant difference between the two methods. The test results show that statistically, there is 

no significant difference between the two methods. Hence, the two methods can be applied for orthometric heights determination in 

the study area. 
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Introduction 

Height is one of the important components needed to 

determine the position of any required point on or below 

the earth's surface. Different height systems have been 

adapted depending on the reference surface and the 

method of its determination. Among these height 

systems, are dynamic heights, orthometric heights, 

normal heights, and geodetic heights. Orthometric 

heights, mostly used are been referred to mean sea level 

are very important practically because of their geocentric 

and physical significance in engineering construction. 

Orthometric heights are normally obtained from spirit 

levelling and gravity measurement (Moka, 2011; Tata 

and Ono, 2018). Orthometric height determination has a 

significant role in geodesy, and it has wide-ranging 

applications in various fields and activities. Orthometric 

height is the height above or below the geoid along the 

gravity plumb-line (Peprah and Kumi, 2017; Tata and 

Ono, 2018). It is the distance, measured positive 

outwards or negative inwards along the plumb-line, from 

the geoid (zero orthometric height) to a point of interest, 

usually on the topographic surface.  

The necessity for a refined geoid models has been driven 

mainly by the demands of users of the Global 

Positioning System (GPS), who must convert GPS-

derived ellipsoidal heights to orthometric heights 

(Opaluwa and Adejare 2011) to make them compatible 

with the existing orthometric heights on the vertical 

datum. GPS and orthometric height data are commonly 

used to verify gravimetric geoid models on land, and 

thus indirectly the data, techniques, and theories are 

utilized (Engelis et al., 1984; Sideris et al., 1992; 

Featherstone, 2014).  

Orthometric height (H) of a point P on the surface of the 

earth is its distance from the geoid, P0, measured along 

the plumb-line normal to the geoid as given in Figure 1. 

It is the vertical separation between the geopotential 

passing through the point, P on the earth’s surface and 

the geoid (the reference equipotential surface). Since 

equipotential surfaces are not parallel, this plumb-line is 

a bend line. Orthometric heights can be determined using 

geometric or trigonometric levelling (Odumosu et al., 

2018). This can be obtained as:   

g

c
H 

 (1) 

Mathematically, Orthometric height is the ratio of 

geopotential number (C) to mean gravity value (g̅) along 

the plumb-line between the geoid and the point, P on the 

earth surface given as (Heiskanen and Moritz 1967) 
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Where g (z) is the actual gravity at the variable point, P 

of the height Z as given in Fig. 1. 

Hgg 424.0
(3) 

Where gravity is observed at the surface point, P in gals 

and H is its height in kilometres. 

Fig.1: The Prey Reduction 

Applying equation (3) in equation (1) gives what it refers 

to as Helmert Orthometric height as given in equation 

(4). 

Hg

c
H
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In equations (2), (3) and (4), H is the Orthometric height 

of the point, P but because �̅� does not depend strongly 

on H, the uncorrected height of the point can be used in 

equations (3) and (4) for practical purposes. Following 

Heiskanen and Moritz (1967), 𝑔 can be computed to a 

sufficient accuracy as; 

)(
2

1 oggg    (5) 

Where g is the gravity measured at the surface point, g
o
 

is the gravity value computed at the corresponding point, 

P0 on the geoid by prey reduction as given in Figure 1. 

Prey reduction is performed according to the remove-

compute-restore (R-C-R) procedure (Moka, 2011). 

Gravity at P0 (geoid) is thus given by 𝑔° = 𝑔 +
0.0848𝐻𝜌. Practically, the orthometric height difference

is obtained from measured height difference by adding 

Orthometric correction to it. For two points A and B 

connected by levelling, we have 

ABABAB OCnH 

(6) 

Where, ∆𝐻AB is Orthometric height difference between 

points A and B, ∆nAB is levelled height difference 

between the two points, A and B and OCAB is 

Orthometric correction between the points and it is 

computed as 
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Where g is the gravity values of each section, �̅�𝐴 is the

mean value of gravity along the plumb-line of A, �̅�𝐵 is 

the mean value of gravity along the plumb-line of B, 𝐻𝐴

is the height of A, 𝐻𝐵 is the height of B, 𝛾o is an

arbitrary constant normal gravity, say 45° Latitude, and 

𝛿n is levelling increment for each set-up.  

The optimal combination of geometric heights obtained 

from Global Positioning System (GPS) measurements 

with geoidal undulations derived from a gravimetric 

geoid model, to determine orthometric heights relative 

to a vertical geodetic datum, is well suited for many 

practical applications as given in (Fig. 2) and equations 

(8) and (9a). This process, referred to as GPS/levelling 

geoid is based on a simple geometrical relationship that 

exists between the geodetic surfaces given by 

Heiskanen and Moritz, (1967). 

NhH   (8) 

Fig. 2. Relationship between Ellipsoidal, Geoid and 

Orthometric Heights (Fotopoulos 2003, Herbert and 

Olatunji 2021) 

Gravimetric Approach 

The word 'gravimetric' originates from gravity, which 

can be defined as the resultant effect of gravitation and 

centrifugal forces of rotating Earth (Heiskanen and 

Moritz, 1967; Fubara, 2007). The gravimetric geoid is 

the oldest method of geoid determination (Fubara, 2007). 

The principle of this method requires that the entire 

earth’s surface be sufficiently and densely covered with 

gravity observations. Practically, a dense gravity net 

around the computation n point and reasonably uniform 

distribution of gravity measurement outside are 

sufficient. Then, gravity approximation is inevitable; to 

fill the gap with extrapolated values (Featherstone et al. 

1998). Depending on the area of coverage, gravimetric 

geoid may be global, regional, or local. Regional 

gravimetric geoid models are the best because they are 

of high resolution, local gravity and terrain data are often 

added to the global geopotential model and optimized for 

the area of interest (Featherstone et al. 1998). However, 

the application of this technique is mainly dependent on 

the availability of high-resolution gravity data (Tata and 

Ono, 2018). The original technique is based on Stoke’s- 
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Integral equation (9) and the use of accurately obtained 

absolute gravity data (Heiskanen and Moritz, 1967). 

The Geoidal Undulation (N) at any point P (φ, λ) on the 

Earth’s surface can be computed using the evaluation of 

the Stokes’ Integral, given by Bernhard and Moritz 

(2005) as; 
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4

gs
R

N (9) 

Where N is the geoidal undulation obtained from a 

gravimetric geoid, 𝛾 is gravity anomaly, 



  an integral 

extended over the whole Earth, R is the mean radius of 

the Earth,  ∆g is the gravity anomaly known everywhere 

on the Earth, S(ψ) is Stokes’ function between the 

computation and integration points, given as: 
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While the surface spherical radius, o is computed as 

given by Oduyebo et al. (2019) as  

)cos(coscossinsincos    

(10b) 

Where 𝜑 the mean latitude of the points is, 𝜑′ is the

latitude of individual point, 𝜆 is the mean longitude of 

the points,  𝜆′ is the longitude of individual point and

(dσ) is the differential area on the geoid. Using the 

integration of the modified Stokes' integral given in 

equation (11), the geoidal undulations of points can be 

computed if their gravity anomalies, the normal gravity, 

and geographical positions are known.   
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Where N is the geoidal height of individual point, 𝜓0 is

the surface spherical radius as computed using equation 

(10b), 𝛾 is the theoretical or normal gravity, ∆𝑔 is the 

gravity anomaly, and 𝑟 = 𝑅 is the mean radius of the 

earth. 

Stokes’ formula, equation (9), often described as a 

conventional solution of the geodetic boundary value 

problem. It computes absolute geoid and requires that 

gravity values are all over the Earth to compute geoidal 

undulations. This makes its application to be expensive, 

tedious, and time-consuming. Hence, there is a need to 

develop a computational tool that will be user friendly, 

economical, and fast in computation. 

Gravity Anomaly and Normal Gravity 

The gravity anomaly (Δg) which is the major input in 

geoid computation is the difference between the 

magnitudes of the reduced absolute gravity (g) at a point 

on the geoid, and the normal gravity (γ) on the reference 

ellipsoid (Δg = g- γ). The normal gravity is the 

theoretical gravity value of a point computed on a 

specified ellipsoid. It is latitude dependent component. 

The Somigliana’s formula for the computation of the 

normal, as well as the theoretical gravity of points on a 

specified ellipsoid, is:  
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Where a, and b are respectively the semi-major and 

semi-minor axes of the ellipsoid, and 𝛾a, and γb, are 

normal gravity at the equator and the pole of the 

ellipsoid, respectively. The gravity anomaly has 

traditionally been adopted as the boundary value to 

model the disturbing potential, and ultimately the geoid 

undulation, which is Stokes’ integral. 

Geometric Approach (GPS/Geodetic Levelling) 

The method of GPS/geodetic levelling for obtaining 

geoidal heights cannot be assumed as a new theory. In 

fact, as a result of case studies that have been conducted 

by different researches, (Essam 2014; Aleem, 2014; 

Eteje et al., 2018) it is evidenced that the GPS/geodetic 

levelling can provide a possible alternative to traditional 

techniques of levelling measurement, which is tedious, 

time-consuming and prone to errors over a long distance.  

Orthometric heights determination from a general 

perspective is directly dependent on the gravity field. 

Geometric levelling is the conventional approach used in 

the determination of orthometric height which is known 

to be time-consuming, prone to human error, and 

cumbersome, especially in large areas, very rough 

terrain, and over a long distance. Apart from the 

difficulty faced during field measurement, a lot of time 

and energy is spent during data reduction and adjustment 

thereby making it highly capital exhaustive to establish a 

countrywide high-resolution levelling network. 

Furthermore, the availability of this data in the study 

area is inadequate. The absence of gravity data to 
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determine geoidal heights has made it difficult, among 

other problems, to determine orthometric heights which 

have necessitated the adoption of different height 

systems that are unharmonious to one another.  Thus, 

most geodetic and engineering applications are either 

referenced to the ellipsoid or other arbitrary height 

systems and all of these do not represent the definite 

form (geoid) of the earth over the study area. Hence the 

need for the determination of orthometric heights of 

points using geometric and gravimetric approaches to 

compare the resolution of the two approaches for the 

best fitting orthometric height for the study area. 

Z-Test Statistics 

A Z-test is carried out to dictate if two samples means 

are statistically different from each other. This is done by 

comparing the means and variances of both samples. The 

two hypothesis tests that are normally carried out are the 

null hypothesis (Ho) and the alternative hypothesis (Hi).  

For Ho: μ1 = μ2: there is no significant difference 

between the means of populations 1 and 2. 

For Hi: μ1 ≠ μ2: there is a significant difference between 

the means of populations 1 and 2.The model for Z-test 

computation is given as:  
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Where   is the population mean, X is the sample 

mean, n is the sample size, and σ is the sample standard 

deviation. 

Methodology 

In this section, the gravimetric method of geoid 

determination was adopted using the Stokes' integral, 

which is the basis of the gravimetric method of geoid 

determination, as well as orthometric height 

computation. Geodetic levelling observation was carried 

out in loops and reduced using the height of instrument 

method. The obtained heights were corrected for 

orthometric correction using equation (7) since gravity 

values were observed in this study. A total of fifty-nine 

(59) existing GPS stations within the study area were 

used as common points for the two approaches during 

the observation. The gravity measurements were carried 

out by professionals from the National Geological 

Survey Agency (NGSA), Nigeria. A Lacoste and 

Romberg (G-512 series) gravimeter, was used to 

measure the gravity values of all the stations. South 

GNSS receivers were used in static mode for the 

determination of the positions and the ellipsoidal heights 

of each of the points while a geodetic level was used to 

determine the level heights of the points. The normal 

gravity values of the points were computed using 

equation (12). The gravity anomalies of the points were 

computed by finding the differences between the 

observed absolute gravity values of the points and their 

respective normal gravity values, as detailed in section 

1.2.1. The common corrections needed in a gravity 

survey such as corrections for latitude, drift, tide, free 

air, and Bouguer were all applied accordingly for a better 

result. The gravimetric geoid heights were computed 

using the modified Stokes’ integral, as well as equation 

(9). In the computation of the gravimetric geoid heights, 

the entire study area was subdivided into different 

compartments of grid lines of 1’x1’ (1800 x 1800) m
2
. 

The subdivision was achieved by grid lines of a fixed 

coordinate system (φ, λ) forming square blocks. Hence 

the computed, as well as the gravimetric orthometric 

heights of the fifty-nine (59) stations were obtained by 

computing the differences between the ellipsoidal 

heights (h) and the computed gravimetric geoidal heights 

(N). A Z-test, as well as hypothesis testing, was carried 

out to determine whether there was a significant 

difference between the means of the gravimetric 

orthometric heights and the geodetic orthometric heights. 

The Z-test computation was carried out using equation 

(13), as well as a Microsoft Excel 2013 program. The 

accuracy of the two methods geoid models was 

computed using the RMSE index. The computation 

method is detailed in Eteje and Oduyebo (2018) and 

Eteje et al. (2019). Fig. 3 shows the schematic 

methodology adopted in this study. 

Fig. 3. Research Methodology Flow Chart 



56

Table 1. Ellipsoidal Heights, Gravimetric Geoidal Heights, Gravimetric Orthometric Heights, and Geodetic Orthometric 

Stations LAT. [o] 

LONG. 

[o] 

Ellipsoidal 

Height (h) [m] 

Gravimetric 

Geoid Height (N) 

[m] 

Gravimetric 

Orthometric Height 

(H) [m] 

Geodetic Levelling 

Orthometric Height 

(H)[m] 

GPSA72S 7.270799 5.167048 359.9130 13.4430 346.4700 346.4700 

GPSA73S 7.270721 5.165108 358.6052 13.6513 344.9539 345.1465 

GPSA75S 7.271863 5.162073 352.0484 13.9463 338.1021 338.3880 

GPSA76S 7.272547 5.159758 350.3126 13.7726 336.5400 336.6660 

GPSA77S 7.273701 5.156847 348.2843 14.1975 334.0868 334.6510 

GPSA78S 7.273667 5.155197 351.0061 14.0918 336.9143 337.3650 

GPSA79S 7.274355 5.152743 356.3205 13.5685 342.7520 342.5380 

GPSA80S 7.275406 5.150703 359.4789 14.1616 345.3173 345.8310 

FG28 7.275991 5.148142 359.5066 13.2755 346.2311 345.8170 

FG29 7.276984 5.146602 353.7181 13.4880 340.2301 340.1150 

GPSA81S 7.272334 5.160786 351.9264 13.8976 338.0288 338.2150 

GPSA82S 7.270241 5.160641 347.8124 13.2327 334.5797 334.1020 

GPSA83S 7.261542 5.162506 363.9258 14.1605 349.7653 349.7650 

GPSA84S 7.258587 5.162796 360.0313 13.7050 346.3263 345.8400 

GPSA85S 7.256818 5.163624 353.4029 13.5549 339.8480 339.1970 

GPSA45S 7.244252 5.191632 347.4330 14.5513 332.8817 332.6211 

GPSA46S 7.247510 5.192651 346.7350 14.2326 332.5024 331.9146 

GPSA25S 7.240000 5.196047 346.6750 13.7013 332.9737 332.4130 

GPSA27S 7.234097 5.198924 355.3490 12.6683 342.6807 341.1599 

GPSA29S 7.234391 5.198202 356.0379 12.6145 343.4234 342.6439 

GPSA30S 7.232633 5.198040 358.8226 12.6078 346.2148 345.0194 

GPSA31S 7.230726 5.198220 363.7909 13.2375 350.5534 350.0856 

GPSA33S 7.224348 5.198436 361.8296 13.3533 348.4763 347.6230 

GPSA35S 7.218419 5.197596 354.2590 13.5397 340.7193 340.0960 

MEAN 348.1680 13.2471 334.9209 334.7821 

STDV 10.5637 0.6653418 10.204114 10.218727 

Results and Analysis 

The results presented in Table 1 are the geographical 

coordinates of the existing GPS control points within the 

study area, ellipsoidal heights obtained from GNSS 

observation, gravimetric geoid heights determined via 

Stokes’ integral, gravimetric orthometric heights 

computed from the differences between the gravimetric 

geoidal heights and the ellipsoidal heights, and 

orthometric heights obtained via geodetic levelling. Fig. 

3 to 5 are respectively the contour and 3D plots of the 

ellipsoidal heights, gravimetric and orthometric height. 

Fig. 3a is the contour plot of the ellipsoidal heights 

obtained from the data set in Table 1. The plotting was 

done with Surfer software using the kriging gridding 

method at 1.5m grid interval to present graphically, the 

shape of the obtained ellipsoidal heights. From (Fig. 3a), 

it can be seen that the minimum and the maximum 

contour values are respectively 300m and 365m which 

implies that ellipsoidal heights can be obtained in the 

study area within the range of 300m to 365m. (Fig. 3b) is 

the surface plot of the ellipsoidal heights. It was also 

done to present graphically, the shape of the ellipsoidal 

heights of the study area. It can be seen from (Fig. 3b) 

that the lowest and the highest values of the ellipsoidal 

heights are respectively 305m and 360m as indicated by 

the colour scale bar. This also implies that ellipsoidal 

heights can be obtained in the study area within the 

range of 305m to 360m using the 3D surface. 

Fig. 4a and 4b are respectively contour and 3D surface 

plots of the orthometric heights obtained via the 

gravimetric approach given in Table 1. These were done 

to present graphically, the shape of the gravimetric 

orthometric heights. It can be seen from Figure 4a that 

the minimum and the maximum contour values at 1.5m 

grid interval are respectively 290m and 350m. This 

implies that, with the gravimetric geoid, orthometric 

heights can be interpolated in the study area within the 

range of 290m to 350m using the contour map. Also 

from (Fig. 4b), it can be seen as indicated by the colour 

scale bar that the lowest and the highest orthometric 

heights are respectively 290m and 350m. This implies 

that the gravimetric orthometric heights of the study area 

range from 290m to 350m. 

Tata and S. Okiemute / IJEGEO 9(1):052-059 (2022)



57

Fig. 3. Contour and 3D Surface plots of Ellipsoidal Heights Obtained from GNSS 

Fig.4. Contour and 3D Surface Plots of Orthometric Height via Gravimetric Geoid 

Fig. 5. Contour and 3D Surface Plots of Orthometric Height via Geodetic Levelling 

Fig. 5a and 5b are respectively contour and 3D surface 

plots of the orthometric heights obtained from the 

geodetic levelling given in Table 1. These were also 

done to present graphically, the shape of the geodetic 

levelling orthometric heights.  It can also be seen from 

(Fig. 5a and 5b) (as indicated by the colour scale bar) 

that the minimum and the maximum contour values at 

1.5m grid interval are respectively 300m and 356m. This 

shows that orthometric heights can be obtained in the 

study area within the range of 300m to 356m with the 

geodetic levelling method. 

Table 2 presents the Z-test results. This was done to 

determine if there was statistically, a significant 

difference between the means of the gravimetric and the 

geodetic orthometric heights. The hypothesis testing was 

performed by comparing the means of the gravimetric 

and the geodetic levelling orthometric heights. This is a 

Tata and S. Okiemute / IJEGEO 9(1):052-059 (2022)
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two-tail test where the null hypothesis is accepted if the 

calculated Z value is smaller than the Z critical. Also, the 

null hypothesis is accepted if the P-value is greater than 

the significant level of α at 0.05 statistics, is more than 

the upper limit and less than the lower limit of the table 

statistic. It can be seen from Table 2 that the computed 

P-value is 0.95 which is greater than the significance 

level of α at 0.05 and the computed Z is 0.056 which is 

smaller than the z critical at 1.96. Since P ˃ 0.05 and Z-

calculated < Z-critical, the null hypothesis (Ho) was 

accepted. This shows that there is no statistically 

significant difference between the mean of gravimetric 

orthometric heights and that of the geodetic levelling 

orthometric heights. This, in turn, implies that there is no 

statistically significant difference between the results of 

the two methods. Hence the two methods can be applied 

interchangeably in the study area. 

Table 2. Z- Test Analysis 
Z-Test: Two-Sample for Means 

Gravimetric Orthometric Height (H) [m] geodetic Levelling Orthometric Height (H)  

Mean 334.5032742 334.3930126 

Known Variance 112.619 111.554 

Observations 59 59 

Hypothesized Mean Difference 0 

z 0.056566457 

P(Z<=z) one-tail 0.477445278 

z Critical one-tail 1.644853627 

P(Z<=z) two-tail 0.954890555 

z Critical two-tail 1.959963985 

Table 3: Computation of RMSE/Accuracy of the Two Methods Models 
Stations Gravimetric Orthometric 

Height (H) [m] 

Geodetic Levelling 

Orthometric 

Height (H)[m] 

Diff. b/w Gravimetric & Geodetic 

Orthometric Heights 

Square of the Diff. b/w 

Gravimetric & Geodetic 

Orthometric Heights 

GPSA72S 346.4700 346.4700 0.0000 0.0000 

GPSA73S 344.9539 345.1465 -0.1926 0.0371 

GPSA75S 338.1021 338.3880 -0.2859 0.0817 

GPSA76S 336.5400 336.6660 -0.1260 0.0159 

GPSA77S 334.0868 334.6510 -0.5642 0.3183 

GPSA78S 336.9143 337.3650 -0.4507 0.2031 

GPSA79S 342.7520 342.5380 0.2140 0.0458 

GPSA80S 345.3173 345.8310 -0.5137 0.2639 

FG28 346.2311 345.8170 0.4141 0.1715 

FG29 340.2301 340.1150 0.1151 0.0132 

GPSA81S 338.0288 338.2150 -0.1862 0.0347 

GPSA82S 334.5797 334.1020 0.4777 0.2282 

GPSA83S 349.7653 349.7650 0.0003 0.0000 

GPSA84S 346.3263 345.8400 0.4863 0.2365 

GPSA85S 339.8480 339.1970 0.6510 0.4238 

GPSA45S 332.8817 332.6211 0.2606 0.0679 

GPSA46S 332.5024 331.9146 0.5878 0.3455 

GPSA25S 332.9737 332.4130 0.5607 0.3144 

GPSA27S 342.6807 341.1599 1.5208 2.3128 

GPSA29S 343.4234 342.6439 0.7795 0.6076 

GPSA30S 346.2148 345.0194 1.1954 1.4290 

GPSA31S 350.5534 350.0856 0.4678 0.2188 

GPSA33S 348.4763 347.6230 0.8533 0.7281 

GPSA35S 340.7193 340.0960 0.6233 0.3885 

Sum of Square of the Diff. b/w Gravimetric & Geodetic Orthometric Heights (A) 0.3536 

Square Root of (A) = RMSE/Accuracy 0.5946 
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Table 3 shows the computed Root Mean Square Error 

(RMSE) of the two methods models of the study area. It 

was done to present the accuracy of the two models of 

the study area. The accuracy, as well as the RMSE of the 

models, was computed as shown in Table 3. It can be 

seen in Table 3 that the RMSE of the two orthometric 

height models of the study area is 0.3536m. It means that 

orthometric heights can be obtained in the study area 

with an accuracy of 0.3536m with the two models. 

Conclusion 

The study has shown the potentials on the use of ellipsoidal 

heights, geoidal heights, and geodetic levelling data for 

precise orthometric heights determination. It has also 

demonstrated the possibility of using gravimetric 

observations combined with GNSS data or geometric 

approach for orthometric height computation to ascertain 

the best fitting approach for the study area. The results 

obtained from this study, as well as the two approaches, 

show that there is no difference between the two methods as 

indicated by the Z-test results. The RMSE computation 

results also show that orthometric heights can be obtained 

in the study area using any of the two approaches with an 

accuracy of 0.3536m. Thus, the two methods can be applied 

interchangeably in the study area for orthometric heights 

determination. 
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