ON GCO-MODULES AND M-SMALL MODULES

A.Ç. ÖZCAN

Hacettepe University, Department of Mathematics 06532 Beytepe, Ankara TURKEY e-mail: ozcan@hacettepe.edu.tr

(Received July 10, 2002; Accepted Nov. 7, 2002)

ABSTRACT

Let M be a right R-module. Define Z^* (N) (δ^*_M (N)) to be the set of elements $n \in N$ for any R-module N in $\sigma[M]$ such that nR is an M-small (respectively δ -M-small) module. In this note it is proved that M is a GCO-module if and only if every M-small module in $\sigma[M]$ is M-projective if and only if every M-small module in $\sigma[M]$ is M-projective. Also, if M/δ^*_M (M) is semisimple then M is a GCO-module if and only if M is an SI-module.

1991 Mathematics Subject Classification: 16D50, 16D60 Key words: V-module, SI-module, GCO-module, M-small module.

For a right R-module M, the submodule $Z^*(M)$ is defined to be the set of elements $m \in M$ such that mR is a small module (see [4]). Some further properties of $Z^*(.)$ were studied in [4, 8, 9, 10]. In this paper we think this submodule in the category $\sigma[M]$, and therefore the corresponding definition of $Z^*(.)$ in $\sigma[M]$ is defined by $Z_M^*(N)$ to be the set of elements $n \in N$ for a module $N \in \sigma[M]$ such that nR is M-small. In Section 1 we prove that M is a GCO-module if and only if every M-small module in $\sigma[M]$ is M-projective (Theorem 1.5). Also if $M/Z_M^*(M)$ is semisimple, then M is a GCO-module if and only if M is an SI-module if and only if $Z_M^*(M)$ is semisimple M-projective (Theorem 1.12). In Section 2, we define δ -M-small modules and $Z_M^*(N)$ as a generalization of M-small modules and $Z_M^*(N)$ in $\sigma[M]$ being inspired from [14]. Most of the results in Section 1 hold for δ -M-small modules and $Z_M^*(N)$ but the characterization of V-modules (Example 2.6).

Throughout this paper, R will be an associative ring with unit and all modules be unitary right R-modules.

Let M be an R-module. For a direct summand N of M we write $N \le_d M$ and for essential submodule N of M, $N \le_o M$.

An R-module N is *subgenerated* by M if N is isomorphic to a submodule of an M-generated module. $\sigma[M]$ is denoted by the full subcategory of Mod-R whose objects are all R-modules subgenerated by M [12].

Let N be the M-injective hull of N in $\sigma[M]$ and let E(M) be an R-injective hull of M.

A module N in $\sigma[M]$ is called *M-singular* (or *singular in* $\sigma[M]$) if $N \cong L/K$ for an $L \in \sigma[M]$ and $K \leq_e L$ (see [3]). In case M=R, instead of R-singular, we just say *singular*. Every module $N \in \sigma[M]$ contains a largest M-singular submodule which is denoted by Z_M (N).

Let G(M) be the singular torsion theory in $\sigma[M]$, that is, G(M) is the smallest torsion class in $\sigma[M]$ which contains all M-singular modules (see [11]). G(M) is closed under M-injective hulls by [11, 2.4(3)], and hence $G(M)=\{N\in\sigma[M]:Z_M(N)\leq_e N\}$.

Following Hirano a module M is called a *V-module* (or *co-semisimple*) if every simple module (in $\sigma[M]$) is M-injective. A module M is called a *GV-module* if every singular simple module is M-injective. M is a GV-module if and only if every simple module is projective or M-injective [5]. As a generalization of GV-modules a module M is called a *GCO-module* if every singular simple module is M-projective or M-injective [3]. M is a GCO-module if and only if every M-singular simple module is M-injective [3, 16.4]. Obviously any V-module is a GV-module and any GV-module is a GCO-module. M is called an *SI-module* if every M-singular module is M-injective [3]. Clearly SI-modules are GCO-modules. Note that a right GCO-ring coincides with a right GV-ring.

1. M-SMALL MODULES

Let K be a submodule of a module M. K is called *small* in M if $K+L \neq M$ holds for every proper submodule L of M and denoted by K << M. We write Rad(M), which is the sum of all small submodules in M, for the radical of M (see [1]).

An R-module N is called *M-small* (or *small in* $\sigma[M]$) if $N \cong K \ll L$ for $K,L \in \sigma[M]$. Note that M-small modules are dual notion to that of M-singular modules. In case M=R, instead of R-small, we just say *small*. M-small modules are small, since the class of small modules is closed under isomorphism. An R-module

N is M-small if and only if N << N. Every simple R-module is M-injective or M-small. The class of M-small modules is closed under submodules, homomorphic images and finite direct sums. (see [6])

Let M be an R-module. Denote

$$Z_M^*(N) = \{ n \in N : nR \text{ is M-small } \}$$

for an R-module $N \in \sigma[M]$. In case M=R, we write $Z^*(N)$ instead of $Z_R^*(N)$. Let $N \in \sigma[M]$. Then it can be easily seen that

$$Rad(N) \le Z_M^*(N) \le Z^*(N).$$

If N is M-small, then $Z_M^*(N)=N$. Since $\sigma[N]\subseteq \sigma[M]$, we also have $Z_N^*(X)\leq Z_M^*(X)$ for any module $X\in\sigma[M]$.

Lemma 1.1. Let M be a module. Then

- a) $Z_M^*(N) = \text{Rad } \hat{N} \cap N \text{ for any } N \in \sigma[M].$
- b) Let $N \in \sigma[M]$. For any submodule K of N, $Z_M^*(K) = K \cap Z_M^*(N)$.
- c) Let $f: N \to K$ be a homomorphism of modules N, K where N, $K \in \sigma[M]$. Then $f(Z_M^*(N)) \le Z_M^*(K)$.
- d) Let N_i ($i \in I$) be any collection of modules in $\sigma[M]$ and let $N = \bigoplus_{i \in I} N_i$.

Then
$$Z_M^*(N) = \bigoplus_{i \in I} Z_M^*(N_i)$$
.

Proof. (a) and (b) are clear. (c) and (d) can be obtained by the similar techniques of [10, Lemma 2.1 and 2.3].

Now we give a lemma showing some properties of $Z_{M}^{*}(.)$ in case it is zero.

Lemma 1.2. Let $N \in \sigma[M]$. Then

- a) Z_M^* (N)=0 if and only if Rad(\hat{N})=0.
- b) Z_M^* (N)=0 if and only if Z_K^* (N)=0 for every $K \in \sigma[M]$ with $N \in \sigma[K]$.

Proof. a) By Lemma 1.1 and, since $N \le_e \hat{N}$.

b) Suppose that Z_M^* (N)=0, and let $K \in \sigma[M]$ with $N \in \sigma[K]$ and $x \in Z_K^*$ (N). Then xR is K-small, i.e. $xR \cong L << T$ for some L, $T \in \sigma[K]$. Since $K \in \sigma[M]$, L, $T \in \sigma[M]$. This implies that xR is M-small. Thus $x \in Z_M^*$ (N)=0. Converse is open.

Since Z_M^* (.) is related with the radical of a module then one may think whether the results hold for radicals of modules are true for Z_M^* (.). Therefore here

we consider V-modules and GCO-modules by being encouraged from [12, 23.1] and [3, 16.4].

Theorem 1.3. The following are equivalent for a module M.

- a) M is a V-module,
- b) Z_M^* (N)=0 for every module N $\in \sigma[M]$,
- c) Z_M^* (N)=0 for every factor module N of M.

Proof. Since $Z_M^*(N) = \text{Rad}(\hat{N}) \cap N$ for $N \in \sigma[M]$, it is clear from [12, 23.1]. \square

Let $N \in \sigma[M]$. N is called *cogenerator* in $\sigma[M]$ if there exists a monomorphism $N \to \prod_{\Lambda} M_{\Lambda}$ with modules $M_{\Lambda} \in \sigma[M]$ [12]. A module M is called *locally noetherian* if every finitely generated submodule of M is noetherian.

Theorem 1.4. Let M be a locally noetherian module. The following are equivalent.

- a) M is a V-module,
- b) σ[M] has a semisimple M-injective cogenerator,
- c) $\sigma[M]$ has a cogenerator Q with $Z_M^*(Q)=0$.

Proof. It is clear from [12, 23.1].

Theorem 1.5. The following are equivalent for a module M.

- a) M is a GCO-module,
- b) For every module $N \in \sigma[M]$, $Z_M^*(N)$ is M-projective,
- c) Every M-small module in $\sigma[M]$ is M-projective,
- d) For every module $N \in \sigma[M]$, $Z_M(N) \cap Z_M^*(N)=0$,
- e) For every simple module $E \in \sigma[M]$, $Z_M(\hat{E}) \cap Z_M^*(\hat{E}) = 0$,
- f) M/Soc(M) is a V-module and $Z_M(M) \cap Z_M^*(M)=0$,
- g) Z_M^* (M/K)=0 for every $K \le_e M$ and Z_M^* (M) $\cap Z_M^*$ (M)=0,
- h) Every non-zero module N with Z_M^* (N)=N contains a non-zero M-projective submodule,
- i) For every module $N \in \sigma[M]$ with $Z_M(N) \leq_e N$ (i.e. $N \in G(M)$), $Z_M^*(N) = 0$.

Proof. (a) \Rightarrow (b) Since simple modules in $\sigma[M]$ splits into four disjoint classes by combining the exclusive choices [M-projective or M-singular] and [M-injective or M-small], one deduces that M is a GCO-module if and only if every M-small simple

module is M-projective. So, let $n \in \mathbb{Z}_M^*(N)$ for $N \in \sigma[M]$ and K be a maximal submodule of nR. Then nR/K is simple and M-projective. This implies that $K \leq_d nR$.

Hence nR and then Z_M^* (N) is semisimple. By [7, Proposition 4.32], Z_M^* (N) is M-projective.

- (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) It is clear.
- (e) \Rightarrow (a) It follows from [3, 16.4 (d) \Rightarrow (a)].
- (d) \Rightarrow (g) Let $K \le_e M$. Then M/K is M-singular. This implies that $Z_M (M/K) = M/K$. By hypothesis, $Z_M^* (M/K) = 0$.
- $(g) \Leftrightarrow (f)$ It follows from [3, 16.1 (a) \Leftrightarrow (d)].
- (f) \Rightarrow (a) It follows from [3, 16.4 (e) \Rightarrow (a)].
- (b) \Rightarrow (h) It is clear.
- (h) \Rightarrow (a) Let N be an M-singular simple module in $\sigma[M]$. If N is M-small then N contains a non-zero M-projective module P in $\sigma[M]$. Since N is simple N=P and then N is projective and M-singular in $\sigma[M]$, a contradiction. Hence N is M-injective.
- $(d) \Rightarrow (i)$ It is clear.
- (i) \Rightarrow (d) Let $0 \neq n \in Z_M(N) \cap Z_M^*(N)$. Then nR is M-singular and M-small. Since $nR = Z_M(nR) \leq_e nR$, $Z_M^*(nR) = 0$ by hypothesis, a contradiction. \square

If we consider the GCO-modules with ascending (descending) chain condition on essential submodules we have the following corollaries. First one is a generalization of [3, 16.13 (1)].

Corollary 1.6. The following are equivalent for a module M.

- a) M is a GCO-module with ascending chain condition on essential submodules,
- b) M/SocM is a V-module and Noetherian, $Z_M(M) \cap Z_M^*(M)=0$.

Proof. By Theorem 1.5 and [3, 5.15].

Corollary 1.7. For a module M with M/SocM finitely generated, the following are equivalent.

- a) M is a GCO-module with descending chain condition on essential submodules,
- b) M/SocM is semisimple, $Z_M(M) \cap Z_M^*(M)=0$.

Proof. By Theorem 1.5, [3, 5.15] and [1, Proposition 10.15].

GV-modules can be characterized by replacing $Z_M(N)$ by the singular submodule Z(N) and M-projectivity by projectivity in Theorem 1.5.

Theorem 1.8. The following are equivalent for a module M.

- a) M is a GV-module,
- b) For every module $N \in \sigma[M]$, Z_M^* (N) is projective,
- c) Every M-small module in $\sigma[M]$ is projective,
- d) For every module $N \in \sigma[M]$, $Z(N) \cap Z_M^*(N) = 0$,
- e) For every simple module $E \in \sigma[M]$, $Z(\hat{E}) \cap Z_M^*(\hat{E}) = 0$,
- f) M/ Soc(M) is a V-module and $Z(M) \cap Z_M^*(M)=0$,
- g) $Z_M^*(M/K)=0$ for every $K \le_e M$ and $Z(M) \cap Z_M^*(M)=0$,
- h) Every non-zero module N with $Z_M^*(N)=N$ contains a non-zero projective submodule,
- i) For every module $N \in \sigma[M]$ with $Z(N) \leq_e N$, $Z_M^*(N) = 0$.

Example 1.9. If M is a GV-module, $Z(M) \cap Rad(M)=0$ but $Z(M) \cap Z^*(M)$ need not be zero in general.

Proof. Let $M=\mathbb{Z}/2\mathbb{Z}$. M is simple and hence a GV-module. Also $Z(M) \cap Rad(M)=0$. But $Z(M) \cap Z^*(M)=M$ since M is singular and small \mathbb{Z} -module.

Applying Theorem 1.8 to M=R, we immediately have the following corollary which is a generalization of [8, Theorem 10].

Corollary 1.10. The following are equivalent for a ring R.

- a) R is a right GV-ring,
- b) For every R-module M, $Z^*(M)$ is projective,
- c) Every small module is projective,
- d) For every R-module M, $Z(M) \cap Z^*(M)=0$,
- e) For every simple module S, $Z(E(S)) \cap Z^*(E(S))=0$.
- f) R/Soc(R) is a V-module and $Z(R_R) \cap Z^*(R_R)=0$,
- g) $Z^*(R/K)=0$ for every essential right ideal K of R and $Z(R_R) \cap Z^*(R_R)=0$,
- h) Every non-zero R-module M with $Z^*(M)=M$ contains a non-zero projective submodule,

i) For every R-module M with $Z(M) \le M$, $Z^*(M)=0$.

Theorem 1.11. Let M be a module with M/ Z_M^* (M) a V-module. Then the following are equivalent.

- a) M is a GCO-module,
- b) Z_M^* (M) is semisimple M-projective.

Proof. (a) \Rightarrow (b) By Theorem 1.5.

(b) \Rightarrow (a) Since Z_M^* (M) is semisimple, Z_M^* (M) \leq Soc(M). Then by hypothesis, M/ Soc(M) is a V-module. Z_M (M) \cap Rad(M) is a direct summand of Z_M^* (M). Since Z_M^* (M) is M-projective, we have Z_M (M) \cap Rad(M)=0. By [3, 16.4], M is a GCO-module.

In [3, 17.5], we do not need the condition that M is self-projective.

Theorem 1.12. Let M be a module with M/Z_M^* (M) semisimple. Then the following are equivalent.

- a) M is a GCO-module,
- b) M is an SI-module,
- c) Z_M^* (M) is semisimple M-projective.

Proof. (a) \Leftrightarrow (c) By Theorem 1.11.

- (b) ⇒ (a) Clear.
- (c) \Rightarrow (b) Since $Z_M^*(M) \leq \operatorname{Soc}(M)$, M/ SocM is semisimple. Let $K \leq_e M$. Then $\operatorname{SocM} \leq K$. This implies that M/K is semisimple. On the other hand, since finitely generated M-singular modules can not be M-projective, we have $Z_M(M) \cap \operatorname{Rad}(M) = 0$. Thus M is an SI-module by [3, 17.2].

2. δ-M-SMALL MODULES

In this section, we define δ -M-small modules and use them to characterize GCO-modules.

Zhou [14] introduced the concept " δ -small submodule" as a generalization of small submodule. Let N be a submodule of a module M. N is called δ -small in M if whenever M=N+K and M/K is singular for any K \leq M we have M=K, denoted by N \leq M. Here we consider this definition in the category σ [M] for a module M.

Definition 2.1. Let $N \le K \in \sigma[M]$. N is called a δ -M-small submodule of K in $\sigma[M]$ if whenever K=N+X and K/X is M-singular for $X \le K$ we have K=X, we denoted by $N <<_{\delta_M} K$.

For modules N, $K \in \sigma[M]$, $N <<_{\delta} K \Rightarrow N <<_{\delta_M} K$. The properties of δ -small submodules that are listed in Lemma 1.3 in [14] also hold in $\sigma[M]$. We write them for convenience. Note that the class of M-singular modules is closed under submodules, homomorphic images and direct sums [3].

Lemma 2.2. Let $N \in \sigma[M]$.

- a) For modules K, $L \in \sigma[M]$ with $K \le L \le N$ we have $L <<_{\delta_M} N$ if and only if $K <<_{\delta_M} N$ and $L/K <<_{\delta_M} N/K$.
- b) For K, $L \in \sigma[M]$, $K+L <<_{\delta_M} N$ if and only if $K <<_{\delta_M} N$ and $L <<_{\delta_M} N$.
- c) If K<< $_{\delta_M}$ N and f: N \rightarrow L is a homomorphism, then f(K)<< $_{\delta_M}$ L.

 In particular, if K<< $_{\delta_M}$ N \leq L, then K<< $_{\delta_M}$ L.
- d) If $K \le L \le_d N \in \sigma[M]$ and $K <<_{\delta_M} N$, then $K <<_{\delta_M} L$.

As a generalization of M-small module we define δ -M-small module.

Definition 2.3. Let $N \in \sigma[M]$. N is called a δ -M-small module in $\sigma[M]$ if $N \cong K <<_{\delta_M} L \in \sigma[M]$.

The following equivalence can be seen similarly as it is for M-small modules. For M-small modules it is proved in [6].

Lemma 2.4. N is a δ -M-small module in $\sigma[M]$ if and only if $N << \delta$.

Proof. It is enough to show that if N is δ -M-small then $N <<_{\delta_M} \hat{N}$. Let K, $L \in \sigma[M]$ be such that $N \cong K <<_{\delta_M} L$. Since \hat{K} is injective in $\sigma[M]$, there exists a homomorphism $f: L \to \hat{K}$ such that $f \circ i = g$ where $i: K \to L$ and $g: K \to \hat{K}$ are inclusion maps. Since $K <<_{\delta_M} L$, $K = f(K) <<_{\delta_M} \hat{K}$. This implies that $N <<_{\delta_M} \hat{N}$.

If N is an M-small module then it is δ -M-small. The class of δ -M-small modules is closed under submodules, homomorphic images and finite direct sums.

Definition 2.5. Let $N \in \sigma[M]$. We define

$$\delta_{M}(N) := \{n \in N : nR << \delta_{M} N \}$$

$$\delta_{M}^{*}(N) := \{ n \in \mathbb{N} : nR << \int_{\delta_{M}} nR \} = \{ n \in \mathbb{N} : nR << \int_{\delta_{M}} nR \} = \delta_{M}(nR) \cap \mathbb{N}.$$
In case M=R, we write $\delta_{R}(N) = \delta(N)$ and $\delta_{R}^{*}(N) = \delta^{*}(N)$. Then

Rad(N)
$$\leq \delta_M(N) \leq \delta_M^*(N)$$

Rad(N) $\leq Z_M^*(N) \leq \delta_M^*(N)$.

If N is a δ -M-small module then $\delta_M^*(N)=N$. Also by definition for $N \le K \in \sigma[M]$, $\delta_M^*(N)=N \cap \delta_M^*(K)$. In particular, $\delta_M^*(\delta_M^*(N))=\delta_M^*(N)$. $\delta(N)$ is defined by [14]. Note that for any ring R, $Soc(R_R) \le \delta(R_R)$ by [14, Theorem 1.6].

If for every $N \in \sigma[M]$, $\delta_M^*(N)=0$, then M is a V-module. But the converse is not true in general:

Example 2.6. Let F be any field and R be the direct product of any infinite number of copies of F. Then R is a commutative V-ring and Soc(R) is the ideal of R consisting of all elements which have at most a finite number of non-zero components. Then by [14, Theorem 1.6], Soc(R) $\leq \delta(R) \leq \delta^*(R)$ implies that $\delta^*(R)\neq 0$. Hence R is a V-ring but $\delta^*(R)\neq 0$. Actually, by Corollary 2.9 Soc(R)= $\delta^*(R)$.

But Theorem 1.5 still holds when Z_M^* (.) is replaced by δ_M^* (.).

Theorem 2.7. The following are equivalent for a module M.

- a) M is a GCO-module,
- b) For every module $N \in \sigma[M]$, $\delta_M^*(N)$ is M-projective,
- c) Every $\delta\text{-}M\text{-}small$ module in $\sigma[M]$ is M-projective,
- d) For every module $N \in \sigma[M]$, $Z_M(N) \cap \delta_M^*(N) = 0$,
- e) For every simple module $E \in \sigma[M]$, $Z_M(\hat{E}) \cap \delta_M^*(\hat{E}) = 0$,
- f) M/Soc(M) is a V-module and $Z_M(M) \cap \delta_M^*(M)=0$,
- g) δ_M^* (M/K)=0 for every K \leq_e M and Z_M (M) $\cap \delta_M^*$ (M)=0,

34 A.Ç. ÖZCAN

- h)Every non-zero module N with δ_M^* (N)=N contains a non-zero M-projective submodule,
- i) For every module $N \in \sigma[M]$ with $Z_M(N) \leq N, \delta_M^*(N) = 0$.

Proof. (a) implies (b), since M-singular M-injective and δ -M-small modules are zero. Then δ_M^* (N) is semisimple and then M-projective. The others can be seen by definitions and Theorem 1.5.

Replacing $Z_M(N)$ by the singular submodule Z(N) and M-projectivity by projectivity in Theorem 2.7 we have the following.

Theorem 2.8. The following are equivalent for a module M.

- a) M is a GV-module,
- b) For every module $N \in \sigma[M]$, $\delta^*(N)$ is projective,
- c) Every δ -M-small module in $\sigma[M]$ is projective,
- d) For every module $N \in \sigma[M]$, $Z(N) \cap \delta^*(N) = 0$,
- e) For every simple module $E \in \sigma[M]$, $Z(\hat{E}) \cap \delta^*(\hat{E}) = 0$,
- f) M/ Soc(M) is a V-module and Z(M) $\cap \delta^*$ (M)=0,
- g) $\delta^*(M/K)=0$ for every $K \le_e M$ and $Z(M) \cap \delta^*(M)=0$,
- h) Every non-zero module N with $\delta^*(N)=N$ contains a non-zero projective submodule,
- i) For every module $N \in \sigma[M]$ with $Z(N) \leq_e N$, $\delta^*(N) = 0$.

Applying the above theorem to a ring we have the following corollary.

Corollary 2.9. The following are equivalent for a ring R.

- a) R is a right GV-ring,
- b) For every R-module M, $\delta^{\, \star}(M)$ is projective,
- c) Every $\delta\mbox{-small}$ module is projective,
- d) For every R-module M, $Z(M) \cap \delta^*(M)=0$,
- e) For every simple module S, $Z(E(S)) \cap \delta^*(E(S))=0$.
- f) R/Soc(R) is a V-module and $Z(R_R) \cap \delta^*(R_R)=0$,
- g) $\delta^*(R/K)=0$ for every essential right ideal K of R and $Z(R_R) \cap \delta^*(R_R)=0$,
- h) Every non-zero R-module M with $\delta^*(M)=M$ contains a non-zero projective submodule,

i) For every R-module M with $Z(M) \leq M, \delta^*(M)=0$.

In this case $Soc(R_R) = \delta(R_R) = \delta^*(R_R)$.

Proof. The last part is because of that $\delta^*(R_R)$ is semisimple.

If $M/Z_M^*(M)$ is a V-module (semisimple) then $M/\delta_M^*(M)$ is a V-module (respectively semisimple). Then Theorem 1.11 and 1.12 still hold for δ_M^* (.).

Theorem 2.10. Let M be a module with $M/\delta_M^*(M)$ a V-module. Then the following are equivalent.

- a) M is a GCO-module,
- b) δ_M^* (M) is semisimple M-projective.

Theorem 2.11. Let M be a module with M/δ_M^* (M) semisimple. Then the following are equivalent.

- a) M is a GCO-module,
- b) M is an SI-module,
- c) δ_M^* (M) is semisimple M-projective.

Also under the assumption "M/Z $_M^*$ (M) is V-module (semisimple)" the conditions of Theorem 1.11 (respectively 1.12) are equivalent to " δ_M^* (M) is semisimple M-projective".

Consider some examples.

Examples 2.12. 1) Let R be the 2×2 upper triangular matrix over a field F. R is a right GV-ring but not a right V-ring by [2]. Then

$$\operatorname{Soc}(\mathbf{R}_{R}) = \delta(\mathbf{R}_{R}) = \delta^{*}(\mathbf{R}_{R}) = \mathbf{Z}^{*}(\mathbf{R}_{R}) = \begin{bmatrix} 0F\\0F \end{bmatrix}$$

([8, Example 11]),
$$J(R) = \begin{bmatrix} 0F \\ 00 \end{bmatrix}$$
.

2) Let $R=\mathbb{Z}/4\mathbb{Z}$. Then Soc(R)=Z(R)=2R. Since $R/Soc(R)\cong\mathbb{Z}/2\mathbb{Z}$, $Soc(R)=\delta(R)$. \mathbb{Z} is a small module. This implies that for every R-module M, $\mathbb{Z}^*(M)=M$ [8, Lemma 8] and hence for every R-module M, $\delta^*(M)=M$. On the other hand R is not an SI-ring but every singular R-module is semisimple by [13, Example 8].

If R is a right SI-ring, then $Soc(R_R) = \delta^*(R_R)$ is projective. But the second example above says that if every singular right R-module is semisimple and $\delta^*(R_R)$ is projective then R need not be a right SI-ring, compare with [3, 17.4 (a) \Leftrightarrow (c)].

REFERENCES

- Anderson, F.W. and Fuller, K.R., Ring and Categories of Modules, Springer-Verlag, NewYork, 1974.
- [2] Bacella, G., Generalized V-rings and von Neumann regular rings, Rend.Sem.Mat. Padova, 72, (1984), 117-133.
- [3] Dung, N.V., D.V., Huynh, P.F., Smith, R., Wisbauer, Extending Modules, Pitman RN Mathematics 313, Longman, Harlow, 1994.
- [4] Harada, M., Non-small modules and non-cosmall modules, In Ring Theory: Proc. Of the 1978 Antwerp Conf., F.Van Oystaeyen, ed.NewYork: Marcel Dekker, 669-690.
- [5] Hirano, Y., Regular modules and V-modules, Hiroshima Math.J., 11 (1981), 125-142.
- [6] Lomp, C., On Dual Goldie Dimensions, MS. Thesis, Glasgow Univ., 1996.
- [7] Mohamed S.H. and B.J., Müller, Continuous and Discrete Modules, London Math.Soc. LN.147, Cambridge University Press, NewYork Sydney, 1990.
- [8] Özcan, A.Ç., Some characterizations of V-modules and rings, Vietnam J.Math., 26(3) (1998), 253-258.
- [9] Özcan, A.Ç., Modules with a zero radical of their injective hull, Hacettepe Bull. of Natural Sci. and Eng., Series B, 27 (1998), 45-49.
- [10] Özcan, A.Ç., Modules with small cyclic submodules in their injective hulls, Comm. Alg., 30(4) (2002) 1575-1589.
- [11] Wisbauer, R., Localization of modules and central closure of rings, Comm. Alg., 9 (1981) 1455-1493.
- [12] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- [13] Zhou, Y., Modules arising from some relative injectives, Bull. Austral.Math.Soc., 53 (1996) 249-260.
- [14] Zhou, Y., Generalizations of perfect, semiperfect and semiregular rings, Alg. Coll., 7 (3) (2000), 305-318.