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ABSTRACT .

Let M be a right R-module. Define z M) ( S'M (N) ) to be the set of elements n € N for any R-
module N in ofM] such that nR is an M-small (respectively 8-M-small) module. In this note it is proved
that M is a GCO-module if and only if every M-small module in o[M] is M-projective if and only if every

*
8-M-small module in c[M] is M-projective. Also, if M/5 y M) is semisimple then M is a GCO-module
if and only if M is an SI-module.
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For a right R-module M, the submodule Z " (M) is defined to be the set of
clements m € M such that mR is a small module (see [4]). Some further properties

of Z° (.) were studied in [4, 8, 9, 10]. In this paper we think this submodule in the
category o[M], and therefore the corresponding definition of Z*(.) in 6[M] is
defined by Z:w (N) to be the set of elements neN for a module Nec[M] such that
1R is M-small. In Section 1 we prove that M is a GCO-module if and only if every
M-small module in o[M] is M-projective (Theorem 1.5). Also if M/ZL(M) is
semisimple, then M is a GCO-module if and only if M is an SI-module if and only if
Z;, (M) is semisimple M-projective (Theorem 1.12). In Section 2, we define 5-M-

small modules and 8;4 (N)asa generalization of M-small modules and Z;,, (N) in
o[M] being inspired from [14]. Most of the results in Section 1 hold for §-M-small
modules and 8 L (N) but the characterization of V-modules (Example 2.6).

Throughout this paper, R will be an associative ring with unit and all modules
be unitary right R-modules.
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- Let M be an R-module. For a direct summand N of M we write N< , M and for

essential submodule N of M, N< M.

An R-module N is subgenerated by M if N is isomorphic to a submodule of an
M-generated module. o[M] is denoted by the full subcategory of Mod-R whose
objects are all R-modules subgenerated by M [12].

Let N be the M-injective hull of N in 6[M] and let E(M) be an R-injective
hull of M.

A module N in o[M] is called M-singular (or singular in o[M] ) if N = L/K for
an Lec[M] and K<, L (see {3]). In case M=R, instead of R-singular, we just say
singular. Every module Neo[M] contains a largest M-singular submodule which is
denoted by Z ,, (N).

Let G(M) be the singular torsion theory in o[M], that is, G(M) is the smallest
torsion class in 6{M] which contains all M-singular modules (see [11]). G(M) is
closed under M-injective hulls by [11, 2.4(3)], and hence G(M)={ Nec[M] :
Z,N)s, N}

Following Hirano a module M is called a V-module (or co-semisimple) if
every simple module (in 6[M]) is M-injective. A module M is called a GV-module if
every singular simple module is M-injective. M is a GV-module if and only if every
simple module is projective or M-injective [5]. As a generalization of GV-modules a
module M is called a GCO-module if every singular simple module is M-projective
or M-injective [3]. M is a GCO-module if and only if every M-singular simple
module is M-injective [3, 16.4]. Obviously any V-module is a GV-module and any
GV-module is a GCO-module. M is called an SI-module if every M-singular module
is M-injective [3]. Clearly SI-modules are GCO-modules. Note that a right GCO-
ring coincides with a right GV-ring.

1. M-SMALL MODULES

Let K be a submodule of a module M. K is called small in M if K+L # M holds
for every proper submodule L of M and denoted by K<< M. We write Rad(M),
which is the sum of all small submodules in M, for the radical of M (see [1]).

An R-module N is called M-small (or small in o[M]) if N = K<< L for
K,Lea{M]. Note that M-small modules are dual notion to that of M-singular
modules. In case M=R, instead of R-small, we just say small. M-small modules are
small, since the class of small modules is closed under isomorphism. An R-module

N is M-small if and only if N<< N . Every simple R-module is M-injective or M-
small.The class of M-small modules is closed under submodules, homomorphic
images and finite direct sums. (see [6])

Let M be an R-module. Denote
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Z;W (N) ={ne N : nR is M-small }

for an R-module Neo[M]. In case M=R, we write z" (N) instead of Z; (N). Let
Neo[M]. Then it can be easily seen that

RadN)<Z,, N)<Z" (N).
If N is M-small, then Z:w (N)=N. Since o[N] < o[M], we also have Z;, X) < Z:w
(X) for any module Xeo[M].
Lemma 1.1. Let M be a module. Then

A
a) Z,, (N)=Rad N "N for any Nec[M].

b) Let Neo[M]. For any submodule K of N, Z;, (K)=K N Z ;, (N).

¢) Let f: N—>K be a homomorphism of modules N, K where N, Kec[M]. Then
£(Z,, N)= 2, (K). _

d) Let N (i€ I) be any collection of modules in 6[M] and let N =@, , N ;.

ThenZ,, (N)=®,, Z, (N,).

Proof. (a) and (b) are clear. (c) and (d) can be obtained by the similar techniques of
[10, Lemma 2.1 and 2.3].

3 . . * . . 13
Now we give a lemma showing some properties of Z , () in case it is zero.

Lemma 1.2. Let Neos[M]. Then
A
a) Z,, (N)=0 if and only if Rad( N )=0.
b) Z',, (N)=0 if and only if Z , (N)=0 for every Keo[M] with Ne o[K].

A
Proof. a) By Lemma 1.1 and, sinceN<, V.

b) Suppose that Z;u (N)=0, and let Kecs[M] with Nec{K] and er;( (N). Then xR
is K-small, i.e. xR= L<< T for some L, Tec[K]. Since Keo{M], L, Tec[M].This
implies that xR is M-small. Thus xe Z;u {N)=0. Converse is open.

Since Z;u(-) is related with the radical of a module then one may think

whether the results hold for radicals of modules are true for Z;l (.). Therefore here
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we consider V-modules and GCO-modules by being encouraged from [i2, 23.1] and
{3, 16.4].

Theorem 1.3. The following are equivalent for a module M.
a) M is a V-module,
b) Z:” (N)=0 for every module Nec[M],

c)Z ;u (N)=0 for every factor module N of M.

A
Proof. Since Z ,, (N)=Rad( N ) " N for Neo[M], it is clear from [12, 23.1]. O

Let Neco[M]. N is called cogenerator in o[M] if there exists a monomorphism
N— [1,M; with modules M, ec[M] [12]. A module M is called locally
noetherian if every finitely generated submodule of M is noetherian.

Theorem 1.4, Let M be a locally noetherian module. The following are equivalent.
a) M is a V-module,

b) 6[M] has a semisimple M-injective cogenerator,
¢) o[M] has a cogenerator Q with Z , (Q)=0.

Proof. It is clear from [12, 23.1].

Theorem 1.5. The following are equivalent for a module M.
a) M is a GCO-module,

b) For every module Neo[M)], Z;W (N) is M-projective,
¢) Every M-small module in 6[M] is M-projective,
d) For every module Neo[M]}, Z,, (N) ZL (N)=0,

e) For every simple module Eco[M], Z ,, (E) N Z;,, (E)=0,
f) M/Soc(M) is a V-module and Z ,, (M) N Z ,, (M)=0,
g) Z ,, (M/K)=0 for every K< ,M and Z ,, (M) N Z ,, (M)=0,

h) Every non-zero module N with Z;” (N)=N contains a non-zero M-projective
submodule,

i) For every module Neo[M] with Z ,, (N) <, N (i.e. Ne G(M)), ij {N)=0.

Proof. (a) = (b) Since simple modules in o[M] splits into four disjoint classes by
combining the exclusive choices [M-projective or M-singular] and [M-injective or
M-small], one deduces that M is a GCO-module if and only if every M-small simple
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module is M-projective. So, let neZR, (N) for Neo[M] and K be a maximal
submodule of nR. Then nR/K is simple and M-projective. This implies that K< 40R.

Hence nR and then Z;u (N) is semisimple. By [7, Proposition 4.32], Z:w (N) is M-
projective.

(b) = (c) = (d) = (¢) It is clear.

(e) = (a) It follows from [3, 16.4 (d) = (a)].

(d) = (g) Let K<, M. Then M/K is M-singular. This implies that Z M =M/K.

By hypothesis, Z ,, (M/K)=0.

(8) & (f) It follows from [3, 16.1 (a) < (d)].

(£ = (a) It follows from [3, 16.4 () = (a)].

(b) = (h) It is clear.

(h) = (a) Let N be an M-singular simple module in o[M]. If N is M-small then N
contains a non-zero M-projective module P in 6[M]. Since N is simple N=P and
then N is projective and M-singular in o[M], a contradiction. Hence N is M-
injective.

(d) = (i) It is clear.

(i) = (d) Let O#n € Z ,, (N) N Z,, (N). Then nR is M-singular and M-small. Since

nR=Z, (nR)s,nR, Z ;1 (nR)=0 by hypothesis, a contradiction. O

If we consider the GCO-modules with ascending (descending) chain condition
on essential submodules we have the following corollaries. First one is a
generalization of {3, 16.13 (1)]. »

Corollary 1.6. The following are equivalent for a module M.
a) M is a GCO-module with ascending chain condition on essential submodules,

b) M/SocM is a V-module and Noetherian, Z ,, (M) n Z ;, (M)=0.

Proof. By Theorem 1.5 and [3, 5.15].

Corollary 1.7. For a module M with M/SocM finitely generated, the following are
equivalent.
a) M is a GCO-module with descending chain condition on essential submodules,

b) M/SocM is semisimple, Z ,, (M) N Z ;, (M)=0.

Proof. By Theorem 1.5, [3, 5.15] and [1, Proposition 10.15].
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GV-modules can be characterized by replacing Z, (N) by the singular
submodule Z(N) and M-projectivity by projectivity in Theorem 1.5.

Theorem 1.8. The following are equivalent for a module M.
a) M is a GV-module,

b) For every module Neo[M], Z :w (N) is projective,

¢) Every M-small module in 6[M] is projective,

d) For every module Neo[M], Z(N) nZ :” MN)=0,

¢) For every simple module Eeo[M], Z( l/:: e Z}, ( E‘ )=0,

f) M/ Soc(M) is a V-module and Z(M) N Z ;, (M)=0,

2) Z;,, (M/K)=0 for every K< , M and Z(M) N Z:w (M)=0,

h) Every non-zero module N with Z ;w (N)=N contains a non-zero projective

submodule,
i) For every module Neo[M] with ZN) <, N, Z ,, (N)=0.

Example 1.9. If M is a GV-module, Z(M) n Rad(M)=0 but Z(M) m z" (M) need
not be zero in general.

Proof. Let M=Z/2&. M is simple and hence a GV-module. Also Z(M) N Rad(M)=0.
But ZM) N Z~ (M)=M since M is singular and small Z-module.

Applying Theorem 1.8 to M=R, we immediately have the following corollary
which is a generalization of {8, Theorem 10].

Corollary 1.10. The following are equivalent for a ring R.
a) R is a right GV-ring,

b) For every R-module M, Z ’ {M) is projective,
. ¢) Every small module is projective,

d) For every R-module M, Z(M) N Z ! (M)=0,

¢) For every simple module S, Z(E(S)) ~ Z ) (E(S))=0.

f) R/ Soc(R) is a V-module and Z(R ;) N Z" (R 5 )=0,

g) Z" (R/K)=0 for every essential right ideal K of R and Z(R ;) " Z~ (R ; )=0,

h) Every non-zero R-module M with Z*(M)=M contains a non-zero projective
submodule,
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i) For every R-module M with ZM) <, M, Z ’ (M)=0.

Theorem 1.11. Let M be a module with M/ Z;,(M) a V-module. Then the
following are equivalent.
a) M is a GCO-module,

b) Z;” (M) is semisimple M-projective.

Proof. (a) = (b) By Theorem 1.5.
(b) = (a) Since Z:w (M) is semisimple, Z:w (M) £ Soc(M). Then by hypothesis,
M/ Soc(M) is a V-module. Z ,, (M) N Rad(M) is a direct summand of Z:w M).

*

Since Z ,, (M) is M-projective, we have Z ,, (M) N Rad(M)=0. By [3, 164], M is a
GCO-module.

In [3, 17.5], we do not need the condition that M is self-projective.

Theorem 1.12. Let M be a module with M/Z ;,, (M) semisimple. Then the following
are equivalent.

a) M is a GCO-module,

b) M is an SI-module,

»*

¢) Z ,, (M) is semisimple M-projective.

Proof. (a) < (c) By Theorem 1.11.

(b) = (a) Clear.

(c) = (b) Since Z;{(M) < Soc(M), M/ SocM is semisimple. Let K< M. Then
SocM < K. This implies that M/K is semisimple. On the other hand, since finitely
generated M-singular modules can not be M-projective, we have
Z ., M)nRad(M)=0. Thus M is an SI-module by [3, 17.2].

2. >M-SMALL MODULES

In this section, we define 5-M-small modules and use them to characterize
GCO-modules.

Zhou [14] introduced the concept "8-small submodule” as a generalization
of small submodule. Let N be a submodule of a module M. N is called &-small in M
if whenever M=N+K and M/K is singular for any K< M we have M=K, denoted by

N<< 5 M. Here we consider this definition in the category c[M] for a module M.
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Definition 2.1. Let N <Keo[M]. N is called a & -M-small submodule of K in ofM]
if whenever K=N+X and K/X is M-singular for X<K we have K=X, we denoted by

N<< 5y K
For modules N, Keo[M], N<< K = N<< 5, K- The properties of 3-small

submodules that are listed in Lemma 1.3 in [14] also hold in o[M]. We write them
for convenience. Note that the class of M-singular modules is closed under
submodules, homomorphic images and direct sums [3].

Lemma 2.2, Let Nec[M].
a) Formodules K, Leo[M] with K< L< N we have

L<<, Nifand only if K<<, Nand /K<<, N/K.
M M M
b) ForK, Leo[M], K+L<< s, N if and only if K<< s, NandL<<, N.
c) If K<< s, Nand f: N — L is a homomorphism, then flK)<< 5, L
In particular, if K<< 5y N< L, then K<< 5y L.
d) If K <L<,Neo[M] and K<< sy N then K<< s, Lr

As a generalization of M-small module we define 5-M-small module.

Definition 2.3. Let Neo[M]. Nis called a §-M-small module in ofM] if
N=K<<, L ec[M].
The following equivalence can be seen similarly as it is for M-small modules.
For M-small modules it is proved in [6].

A

Lemma 2.4. N is a 5-M-small module in 6[M] if and only if N<< s, V-

A
Proof. It is enough to show that if N is 8-M-small then N<< oy N. Let K,

A

Leo[M] be such that N= K<<, L. Since K is injective in o[M], there exists a

A A
homomorphism f: L— K such that foi=g where i: K—L and g: K— K are
A

A
inclusion maps. Since K<< 8, L K= fK)<< 5y K . This implies that N<< Sy N.

If N is an M-small module then it is 5-M-small. The class of §-M-small modules
is closed under submodules, homomorphic images and finite direct sums.
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Definition 2.5. Let Nec[M]. We define
0, (N) ={neN: nR<< sy N }

8 (N) ={neN:nR<<; nR}={neN: nR<<; N}=8,(N)nN.
In case M=R, we write § , (N)=8(N) and 8 ; (N)=5" (N). Then

Rad(N) <8, (N) <8, (N)
Rad(N)<Z,, (N) <8, (N).

If N is a 6-M-small module then 6;4 (N)=N. Also by definition for N< K
eoM], §,, (N)=N N 8, (K). In particular, § }, (5, (N))= &, (N). 8(N) is defined
by [14]. Note that for any ring R, Soc(R j )< 8(R ) by [14, Theorem 1.6].

If for every Neo[M], § *M (N)=0, then M is a V-module. But the converse is not
true in general;

Example 2.6. Let F be any field and R be the direct product of any infinite number
of copies of F. Then R is a commutative V-ring and Soc(R) is the ideal of R
consisting of all elements which have at most a finite number of non-zero

components. Then by [14, Theorem 1.6], Soc(R) < 8(R) < 5" (R) implies that
8" (R)#0. Hence R is a V-ring but § ) (R)20. Actually, by Corollary 2.9 Soc(R)=
8" (R).

But Theorem 1.5 still holds when Z ;,, (.) is replaced by & ;1 Q).

Theorem 2.7. The following are equivalent for a module M.
a) M is a GCO-module,

b) For every module Nec[M], 8 ;{ (N) is M-projective,
¢) Every 3-M-small module in 6{M] is M-projective,
d) For every module Neo[M], Z ,, (N) 1 8 ;, (N)=0,

¢) For every simple module Eea[M], Z ,, (E) 18", (E)=0,
f) M/Soc(M) is a V-module and Z ,, (M) 1 8 ;, (M)=0,
£) 85, (M/K)=0 for every K< ,Mand Z ,, (M) N & 3, (M)=0,
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h)Every non-zero module N with 8;4(N)=N contains a non-zero M-projective
submodule,

i) For every module Neo[M] with Z ,, (N) <, N, &, (N)=0.

Proof. (a) implies (b), since M-singular M-injective and 8-M-small modules are

zero. Then 5;{ (N) is semisimple and then M-projective. The others can be seen by
definitions and Theorem 1.5.

Replacing Z ,, (N) by the singular submodule Z(N) and M-projectivity by
projectivity in Theorem 2.7 we have the following.

Theorem 2.8. The following are equivalent for a module M.
a) M is a GV-module,

b) For every module Nec[M], § ) (N) is projective,
¢) Every 8-M-small module in 6[M] is projective,
d) For every module Neo[M], Z(N) ~ § ’ (N)=0,

e) For every simple module Eco[M], Z( lA~7) NS’ (ﬁ: )=0,

f) M/ Soc(M) is a V-module and Z(M) 1 & (M)=0,

£) 8" (M/K)=0 for every K< M and Z(M) 1 3" (M)=0,

h) Every non-zero module N with § ) (N)=N contains a non-zero projective
submodule,

i) For every module Neo[M] with Z(N) <N, & ' (N)=0.

Applying the above theorem to a ring we have the following corollary.

Corollary 2.9. The following are equivalent for a ring R.
a) R is a right GV-ring,

b) For every R-module M, & : (M) is projective,
¢) Every 8-small module is projective,

d) For every R-module M, Z(M) N 5" (M)=0,

¢) For every simple module S, Z(E(S)) n § ’ (E(S))=0.

f) R/Soc(R) is a V-module and Z(R , ) N 8 : Rz )0,

g) 8" (R/K)=0 for every essential right ideal K of R and Z(R 5 ) " 8" (R z )=0,

h) Every non-zero R-module M with 8*(M)=M contains a non-zero projective
submodule,
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i) For every R-module M with Z(M) <, M, 8" (M)=0.
In this case Soc(R ; )=6(R , )= 8 i Rz)
Proof. The last part is because of that § ' (R ;) is semisimple.

If M/Z:w (M) is a V-module (semisimple) then M/SL (M) is a V-module
(respectively semisimple). Then Theorem 1.11 and 1.12 still hold for 8;4 ).

Theorem 2.10. Let M be a module with M/ES;, (M) a V-module. Then the following

are equivalent.
‘a) M is a GCO-module,

b) 8, (M) is semisimple M-projective.

Theorem 2.11. Let M be a module with M/§ :w (M) semisimple. Then the following

are equivalent.
a) M is a GCO-module,
b) M is an SI-module,

c)d L (M) is semisimple M-projective.
Also under the assumption "M/Z:w(M) is V-module (semisimple)” the
conditions of Theorem 1.11 (respectively 1.12) are equivalent to "8;4 M) is

semisimple M-projective".
Consider some examples.

Examples 2.12. 1) Let R be the 2x2 upper triangular matrix over a field F. Risa
right GV-ring but not a right V-ring by [2]. Then

* * OF
Soc(Rz)=8(Rz)=8 (RR)=Z R,)= [OF}

8, Example 11]), J(R)= oF
(I8, Example 11]), J(R) 00 |

2) Let R=Z/4Z. Then Soc(R)=Z(R)=2R. Since R/Soc(R) = Z12Z,
Soc(R)=8(R). £ is a small module. This implies that for every R-module M,

z" (M)=M [8, Lemma 8] and hence for every R-module M, & ’ (M)=M. On the other
hand R is not an SI-ring but every singular R-module is semisimple by {13, Example
8].
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If R is a right Sl-ring, then Soc(R , )=8* (R ;) is projective. But the second
example above says that if every singular right R-module is semisimple and
8" (R z) is projective then R need not be a right SI-ring, compare with [3, 17.4
(a)=(9)]-
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