TRI-ADDITIVE MAPS AND PERMUTING TRI-DERIVATIONS

HASRET YAZARLI MEHMET ALI OZTÜRK AND YOUNG BAE JUN

ABSTRACT. In [7],Öztürk has proved some results concerning permuting triderivations on prime and semi-prime rings. We study permuting tri-additive maps with trace which is skew-commuting or skew-centralizing on s-unital rings and also we obtain a few results on trace of permuting tri-derivations in prime rings.

1. Introduction

The concept of a symmetric bi-derivation has been introduced by Maksa in [4] (see also [5]). In recent years, many mathematicans studied on commutativity of prime and semi-prime rings admitting suitably-constrained symmetric bi-derivations.

In [7] ,Öztürk introduced the notion of a permuting tri-derivations in rings and proved some results. The aim of this paper is to study some properties of a permuting tri-derivations of a s-unital rings and a prime rings.

2. Preliminaries

Throughout this paper all rings R will be associative and the center (resp. extended centroid) of a ring will be denoted by Z (resp. C).

A mapping $f: R \to R$ is called commuting if [x, f(x)] = 0, for all $x \in R$. Similarly f is called skew-commuting (resp. skew-centralizing) on R if xf(x) + f(x) x = 0 (resp. $xf(x) + f(x) x \in Z$) for all $x \in R$.

A mapping $D(.,.): R \times R \to R$ is called symmetric if D(x,y) = D(y,x) for all $x,y \in R$. In follows, denote by D(.,.) a symmetric mapping from $R \times R$ to R without otherwise specified. A mapping $d: R \to R$ is called the trace of D(.,.) if d(x) = D(x,x) for all $x \in R$. It is obvious that if D(.,.) is bi-additive (i.e. additive in both arguments), then the trace d of D(.,.) satisfies the identity d(x+y) = d(x) + d(y) + 2D(x,y) for all $x,y \in R$. If D(.,.) is bi-additive and satisfies the identity D(xy,z) = D(x,z)y + zD(y,z) for all $x,y,z \in R$, we say that D(.,.) is a symmetric bi-derivation.

A mapping $D(.,.,.): R \times R \times R \to R$ is called tri-additive if

$$D(x+w,y,z) = D(x,y,z) + D(w,y,z)$$

$$D(x, y + w, z) = D(x, y, z) + D(x, w, z)$$

 $D(x,y,z{+}w)=D(x,y,z){+}D(x,y,w)$

for all $x, y, z, w \in R$. A tri-additive mapping $D(.,.,.) : R \times R \times R \rightarrow R$ is

Received by the editors May 14, 2004, Revised: Feb. 25, 2005 Accepted: March 14, 2005. 1991 Mathematics Subject Classification. 16N60, 16W25, 16Y30, 16Y99. Key words and phrases. s-unital ring, prime ring, permuting tri-derivation.

called permuting tri-additive if D(x,y,z) = D(x,z,y) = D(z,x,y) = D(z,y,x) = D(y,z,x) = D(y,x,z) holds for all $x,y,z,w \in R$. A mapping $d:R\times R\to R$ defined by d(x) = D(x,x,x) is called trace of D(.,.,.), where $D(.,.,.):R\times R\times R\to R$ is a permuting tri-additive mapping. It is obvious that, if $D(.,.,.):R\times R\times R\to R$ is a permuting tri-additive mapping then the trace of D(.,.,.) satisfies the relation d(x+y) = d(x) + d(y) + 3D(x,x,y) + 3D(x,y,y) for all $x,y \in R$.

A permuting tri-additive mapping $D(.,.,.): R \times R \times R \to R$ is called permuting tri-derivation if D(xw,y,z) = D(x,y,z)w + zD(x,y,w) are fulfilled for all $x,y,w,z \in R$. Then relation D(x,yw,z) = D(x,y,z)w + yD(x,w,z) and D(x,y,zw) = D(x,y,z)w + zD(x,y,w) are fulfilled for all $x,y,z,w \in R$. The mapping $d: R \to R$ defined by d(x) = D(x,x,x) is an odd-function.

R is called a left s-unital (resp. s-unital) ring if for each $x \in R$ there holds $x \in Rx$ (resp. $x \in Rx \cap xR$). If R is a left s-unital (resp.s-unital) ring then for any finite subset F of R there exists an element e in R such that ex = x (resp. ex = xe = x) for all $x \in F$ (see [9], Theorem 1 and [6], Lemma 1). Such an element e will be called a left pseudo-identity (resp. pseudo-identity) of F.

Throughout this paper e will be a left pseudo-identity of

$$E := \{x, d(x), d(e), D(x, e, e), D(x, x, e)\} \subset R$$

where x is an arbitrary element of R.

Remark 2.1. Let R be a ring and D(.,.,.) be a permuting tri-derivation of R. In this case, for any fixed $a \in R$ and for all $x, y \in R$, a mapping $D_1(.,.): R \times R \to R$ defined by $D_1(x,y) = D(a,x,y)$ and a mapping $d_2: R \to R$ defined by $d_2(x) = D(a,a,x)$ is a symmetric bi-derivation (in this meaning, permuting 2-derivation is a symmetric bi-derivation) and is a derivation, respectively.

3. TRI-ADDITIVE MAPS WITH SKEW-COMMUTING AND SKEW-CENTRALIZING TRACE

Theorem 3.1. Let R be a 2,3-torsion free left s-unital ring. Let D(.,.,.) be a permuting tri-additive mapping of R with the trace d. If d is skew-commuting on R, then D=0.

Proof. Let e be pseudo-identity of $E \subset R$ and x be an arbitrary element of R. Using the fact that d is skew-commuting on R, we get

$$xd(x) + d(x)x = 0, \quad x \in R$$
(3.1)

Writing e for x in (3.1)

$$ed(e) + d(e)e = d(e) + d(e)e = 0$$
 (3.2)

and right multiplying by e gives 2d(e)e = 0 = d(e)e. Therefore by (3.2), d(e) = 0. Now writing x for x + e in (3.1) and using the fact that D is permuting tri-additive, we get,

$$3xD(x,x,e) + 3xD(x,e,e) + d(x) + 3D(x,x,e) + 3D(x,e,e) + d(x)e$$

$$+3D(x, x, e)x + 3D(x, x, e)e + 3D(x, e, e)x + 3D(x, e, e)e = 0, \quad x \in \mathbb{R}$$
 (3.3)

Replacing -x for x in (3.3) and subtracting (3.3) with the results and using the fact that R is 2, 3-torsion free and d is an odd function, we get,

$$xD(x,e,e) + D(x,x,e) + D(x,x,e)e + D(x,e,e)e = 0, x \in \mathbb{R}$$
 (3.4)

Now writing x for x + e in (3.4). Using the fact that D is permuting tri-additive, we get,

$$xD(x,e,e) + 3D(x,e,e) + 2D(x,x,e)e + 3D(x,e,e)e = 0, \quad x \in R$$
 (3.5)

Replacing -x by x in (3.5) and subtracting (3.5) with the result and using the fact that R is 2, 3 - torsion free, we get,

$$D(x, e, e) + D(x, e, e)e = 0, x \in R$$
 (3.6)

Right multiplication of (3.6) by e gives 2D(x, e, e) = D(x, e, e), and so, by (3.6), we get D(x, e, e) = 0, $x \in R$. Hence, we get

$$d(x+e)=d(x)+d(e)+3D(x,x,e)+3D(x,e,e) = d(x)+3D(x,x,e) \;,\; x\in R$$
 Using the fact that d is skeww-commuting on R , we have $(x+e)d(x+e)+d(x+e)=0$. The last relation now becomes

$$d(x) + 3xD(x, x, e) + 3D(x, x, e) + d(x)e + 3D(x, x, e)x + 3D(x, x, e)e = 0, \quad x \in R$$
(3.7)

Replacing -x for x in (3.7) and subtracting (3.7) with the results and using the fact that R is 2, 3-torsion free, we get,

$$D(x, x, e) + D(x, x, e)e = 0, x \in R$$
(3.8)

Right multiplication of (3.8) by e gives 2D(x, x, e)e = 0 = D(x, x, e) and so, by (3.8), we get, D(x, x, e) = 0, $x \in R$. Therefore, by (3.7)

$$d(x) + d(x)e = 0, \quad x \in R$$
 (3.9)

Right multiplication of (3.9) by e gives 2d(x)e = 0 = d(x) and hence the relation (3.9) implies d(x) = 0, $x \in R$. Thus D = 0.

Theorem 3.2. Let R be a 2,3-torsion free left s-unital ring. Let D(.,.,.) be a permuting tri-additive mapping of R with the trace d. If d is skew-centralizing on R, then d is commuting on R.

Proof. Let e be pseudo-identity of $E \subset R$ and x be an arbitrary element of R. Using the fact that d is skew-centralizing on R, we get,

$$xd(x) + d(x)x \in Z, \ x \in R \tag{3.10}$$

Writing e for x in (3.10), we get,

$$ed(e) + d(e)e = d(e) + d(e)e \in Z$$
 (3.11)

Commuting with e gives d(e) = d(e)e; and by (3.11) $2d(e) \in \mathbb{Z}$, thus $d(e) \in \mathbb{Z}$. Writing x for x + e in (3.10) and using the fact that D is permuting tri-addittive, we get,

$$2xd(e) + 3xD(x, x, e) + 3xD(x, e, e) + d(x) + 3D(x, x, e) + 3D(x, e, e) +$$

 $d(x)e + 3D(x, x, e)x + 3D(x, x, e)e + 3D(x, e, e)x + 3D(x, e, e)e \in \mathbb{Z}$ $x \in \mathbb{R}$ (3.12) Again writing x for x + e in (3.12), since D is permuting tri-additive, we get,

$$15xd(e) + 3xD(x, x, e) + 9xD(x, e, e) + 9D(x, x, e) + 21D(x, e, e) + d(x)$$

$$+d(x)e + 9D(x,x,e)e + 21D(x,e,e)e + 3D(x,x,e)x + 9D(x,e,e)x \in \mathbb{Z}, \ x \in \mathbb{R}$$
 (3.13)

Replacing -x by x in (3.13) and subtracting (3.13) with results and using the fact that d is an odd function and R is 2, 3 - torsion free, we get,

$$xD(x, e, e) + D(x, x, e) + D(x, e, e)x \in Z, x \in R$$
 (3.14)

We use (3.14) in (3.12)

$$2xd(e) + 3xD(x, x, e) + d(x) + 3D(x, x, e) + 3D(x, e, e) + d(x)e +$$

$$3D(x, x, e)x + 3D(x, e, e)e \in \mathbb{Z}, \ x \in \mathbb{R}$$
(3.15)

Replacing -x by x in (3.15) and subtracting (3.15) with results, and using the fact that R is 2, 3-torsion free and d is an odd function, we get $D(x,x,e) \in Z$, $x \in R$. We use (3.14) in (3.13)

$$15xd(e) + 3xD(x, x, e) + 21D(x, e, e) + d(x) + d(x)e + 21D(x, e, e)e$$
$$+3D(x, x, e)x \in Z, x \in R$$
 (3.16)

Commuting with e gives;

$$21[D(x,x,e),e] + [d(x),e] = 0, x \in R$$
 (3.17)

Writing x for x + e in (3.17). Using the fact that D is permuting tri-additive and R is 3 - torsion free, we get,

$$[D(x, x, e), e] = 0, \ x \in R \tag{3.18}$$

We use last relation in (3.17), [d(x), e] = 0 and so, by (3.17), we get d(x) = d(x)e, $x \in R$. By (3.15), we get,

$$2xd(e) + 6xD(x, x, e) + 2d(x) + 6D(x, e, e) \in Z, \ x \in R$$
 (3.19)

Writing x for x + e in (3.19) and using the fact that D is permuting tri-additive and R is 3 - torsion free, we get,

$$2xD(x, e, e) + xd(e) + 3D(x, e, e) \in Z, x \in R$$
 (3.20)

Replacing -x by x in (3.20) and subtracting (3.20) with result and using the fact that d is an odd function and R is 2-torsion free, we get,

$$xd(x) + 3D(x, e, e) \in Z, \ x \in R$$
 (3.21)

We use last relation in (3.19)

$$6xD(x, x, e) + 2d(x) \in Z, \ x \in R$$
 (3.22)

Commuting with e gives [d(x), x] = 0, $x \in R$, since R is 2 - torsion free. Thus d is commuting on R

For $n \geq 2$, a mapping $f: R \to R$ is called *n*-skew commuting (resp. *n*-skew centralizing) on R if $x^n f(x) + f(x) x^n = 0$ (resp. $x^n f(x) + f(x) x^n \in Z$) for all $x \in R$.

Now we extend the result n-skew-commuting mappings ($Theorem\ 1$) to n-skew commuting ones.

Theorem 3.3. Let $n \geq 2$, let R be an n! – torsion free left s-unital ring with char $R \neq 3$. Let D(.,.,.) be a permuting tri-additive mapping of R with the trace d. If d is n-skew commuting on R., then D = 0.

Proof. Let e be pseudo-idendity of $E\subset R$ and x be an arbitrary element of R.. Suppose that

$$x^n d(x) + d(x)x^n = 0, x \in R$$
 (3.23)

Using similar approach as in the proof of Theorem 1, we get d(e) = 0. Replacing x + e by x in (3.23), we get

$$(x+e)^n d(x+e) + d(x+e)(x+e)^n = 0, \quad x \in R$$
 (3.24)

This can be written in the from $\sum_{i=1}^{n} s_i(x,e)d(x+e)+d(x+e)s_i(x,e)=0$, where $s_i(x,e)$ is the sum of terms involving i factors of e in the exponsion of $(x+e)^n$. Replacing e by 2e, 3e,..., ne in turn, and expressing the resulting system of n homogeneous equations, we see that the coefficient matrix of the system is a van der M onde matrix

Since the determinant of the matrix is equal to a product of positive integers, each of which is less than n, and since R is n!-torsion free, it follows immediately that $s_i(x,e)d(x+e)+d(x+e)s_i(x,e)=0$ for all i=1,2,...,n

In particular,

 $s_n(x,e)d(x+e)+d(x+e)s_n(x,e)=ed(x+e)+d(x+e)e=d(x+e)+d(x+e)e,$ $x\in R$ and as in the proof of Theorem 1 we get $d(x+e)=0, x\in R$. On the other hand, d(x+e)=d(x)+d(e)+3D(x,x,e)+3D(x,e,e) and d(e)=0 and hence we get

$$d(x) + 3D(x, x, e) + 3D(x, e, e) = 0, x \in R$$
(3.25)

Replacing -x by x in (3.25) and subtracting (3.25) with the result, we get D(x, x, e) = 0, $x \in \mathbb{R}$. By (3.25),

$$d(x) + 3D(x, e, e) = 0, x \in R$$
(3.26)

Writing x for x + e in (2.26), and using the fact that D is permuting tri-additive and R is 3-torsion free, we get D(x,e,e)=0, $x \in R$. By (3.25), d(x)=0, $x \in R$. Thus D=0.

4. PERMUTING TRI-DERIVATIONS IN PRIME RINGS

Lemma 4.1. Let R be prime ring with char $R \neq 2,3$. Let D(.,.,.) be permuting tri-derivation of R with the trace d. If

$$ad(x) = 0, x \in R \tag{4.1}$$

where a is a fixed element of R, then a = 0 or D = 0.

Proof. Let $x, y \in R$. Writing x for x + y in (4.1), we get

$$aD(x, x, y) + aD(x, y, y) = 0$$
 (4.2)

Replacing -x by x in (4.2) and subtracting with result, we get,

$$aD(x, y, y) = 0 (4.3)$$

Writing x for xy in (4.3). Since D is permuting tri-derivation, we get, axd(y) = 0 for all $x \in R$. Since R is a prime ring, we get, a = 0 or d(y) = 0 for all $x \in R$. Thus a = 0 or D = 0.

Lemma 4.2. Let R be a prime ring with charR $\neq 2,3$ and let d_1 and d_2 be traces of permuting tri-derivations $D_1(.,.,.)$ and $D_2(.,.,.)$, respectively. If the identity

$$d_1(x)d_2(y) = d_2(x)d_1(y)$$
 for all $x, y \in R$ (4.4)

holds and $d_1 \neq 0$, then there exist

 $\lambda \in C$ such that $d_2(x) = \lambda d_1(x)$.

Proof. Let $x, y, z \in R$. Writing y for y + z in (4.4), we get

 $d_1(x)D_2(y,y,z) + d_1(x)D_2(y,z,z) = d_2(x)D_1(y,y,z) + d_2(x)D_1(y,z,z)$ (4.5) since D_1 and D_2 are permuting tri-derivations and $char R \neq 3$.

Again writing y for y + z in (4.5), we get,

$$d_1(x)D_2(y,z,z) = d_2(x)D_1(y,z,z)$$
(4.6)

since D_1 and D_2 are permuting tri-derivations and $char R \neq 2$.

Writing y for yz in (4.6), we get,

$$d_1(x)yd_2(z) = d_2(x)yd_1(z)$$
(4.7)

Replacing z by x in (4.7), we get,

$$d_1(x)yd_2(x) = d_2(x)yd_1(x) (4.8)$$

Thus if $d_1(x) \neq 0$, then by (4.8) and [1, Corollary to Lemma 1.3.2] we have $d_2(x) = \lambda(x)d_1(x)$ for some $\lambda(x) \in C$. Hence if $d_1(x) \neq 0$ and $d_1(z) \neq 0$, then $(\lambda(z) - \lambda(x))d_1(x)yd_1(z) = 0$ by (4.7). Since R is prime, it follows from Lemma 4 that $\lambda(x) = \lambda(z)$. This shows that there exist $\lambda \in C$ such that $d_2(x) = \lambda d_1(x)$ under the condition $d_1(x) \neq 0$. On the other hand, assume that $d_1(x) = 0$. Since $d_1 \neq 0$ and R is prime, it follows from (4.7) that $d_2(x) = 0$ as well. Thus $d_2(x) = \lambda d_1(x)$. This completes the proof.

Theorem 4.3. Let R a prime ring with char $R \neq 2,3$ and let $d_1(\neq 0)$, d_2 , d_3 and $d_4(\neq 0)$ be trace of permuting tri-derivations $D_1(.,.,.)$, $D_2(.,.,.)$, $D_3(.,.,.)$ and $D_4(.,.,.)$ respectively. If the identity

$$d_1(x)d_2(y) = d_3(x)d_4(y) (4.9)$$

holds for all $x, y \in R$, then there exists $\lambda \in C$ such that $d_2(x) = \lambda d_4(x)$ and $d_3(x) = \lambda d_1(x)$.

Proof. Let $x, y, z \in R$. Writing y for y + z in (4.9), we get, $d_1(x)D_2(y, y, z) + d_1(x)D_2(y, z, z) = d_3(x)D_4(y, y, z) + d_3(x)D_4(y, z, z)$, since D_2 and D_4 are permuting tri-derivations and $charR \neq 3$.

Again writing y for y + z in last relation, we get,

$$d_1(x)D_2(y,z,z) = d_3(x)D_4(y,z,z)$$
(4.10)

since D_2 and D_4 are permuting tri-derivations and $char R \neq 2$.

Writing y for yz in (4.10), we get,

$$d_1(x)yd_2(z) = d_3(x)yd_4(z) (4.11)$$

Replacing y by $yd_4(w)$ in (4.11), we get, $d_1(x)yd_4(w)d_2(z) = d_3(x)yd_4(w)d_4(z) = d_1(x)yd_2(w)d_4(z)$, so that $d_1(x)y(d_4(w)d_2(z) - d_2(w)d_4(z) = 0$. Since $d_1 \neq 0$ and R is prime, it follows that $d_4(w)d_2(z) = d_2(w)d_4(z)$. Applying Lemma 4, there exist $\lambda \in C$ such that $d_2(z) = \lambda d_4(z)$, which implies (4.11) that $(\lambda d_1(x) - d_3(x))yd_4(z) = 0$ so that $d_3(x) = \lambda d_1(x)$. This completes the proof.

ACKNOWLEDGEMENT: The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

ÖZET: Öztürk [7] de asal ve yarı-asal halkalar üzerinde permuting tritürevlerle ilgili bazı sonuçlar ispatladı. Biz s-unital halkalar üzerinde çarpık-kommuting veya çarpık-merkezleyen izli tri-toplamsal dönüşümleri çalıştık ve ayrıca asal halkalarda permuting tri-türevlerin izleriyle ilgili bazı sonuçlar elde ettik.

REFERENCES

- [1] Herstain, I. N.; Rings with involution, Univ. of Chicago, 1969
- Hirano, Y., Hongan, M. and Tominaga, H.; Commutativitiy theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65-72
- [3] Jung Y.-S.; Bi-additive maps and commutativity in rings, Kyungpook Math J. 42 (2002), 381-389
- [4] Maksa, Gy.; A remark on symmetric bi-additive functions having nonnegative diagonalization, Glasnik Math. 15 (35) (1980), 279-282
- [5] Maksa Gy.; On the trace of symmetric bi-derivations, C. R. Math. Rep. Sci. Canada 9 (1987), 303-307
- [6] Mogami, I. and Hongan, M.; Note on commutativity of rings Math. J. Okyama Univ. 20 (1978), 21-24
- [7] Öztürk, M. A.; Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J. 15 (1999)
- [8] Sapanci, M., Öztürk, M. A. and Jun, Y. B.; Symmetric bi-derivations on prime rings, East Asian Mathematical Journal, June 1999
- [9] Tominaga, H.; On s-unital rings, Math. J. Okyama Univ. 18 (1976), 117-134

Current address: Hasret Yazarli. Department of Mathematics, Faculty of Art and Sciences-Cumhuriyet University 58140 Sivas-TURKEY

E-mail address: h.yazarli@mynet.com.

Current address: Mehmet Ali Oztürk. Department of Mathematics Faculty of Art and Sciences Cumhuriyet University 58140 Sivas-TURKEY

E-mail address: trmaozturk@cumhuriyet.edu.tr

Current address: Young Bae Jun. Department of Mathematics Education Gyeongsang National University Chinju 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS WITH ALTERNATING COEFFICIENTS

M. K. AOUF, F. M. AL-OBOUDI AND M. M. HADAIN

ABSTRACT. Coefficient inequalities and distortion theorems are obtained for certain subclass of meromorphically close -to- convex functions with alternating coefficients. Further class preserving integral operators are obtained.

1. Introduction

Let \sum denotes the class of functions of the form:

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$$
 (1.1)

which are regular in the punctured disc $U^* = \{z : 0 < |z| < 1\}$. Define

$$D^{0} f(z) = f(z);$$

$$D^{1} f(z) = \frac{1}{z} + 3a_{1}z + 4a_{2}z^{2} + \cdots$$

$$= \frac{(z^{2} f(z))'}{z},$$

$$D^{2} f(z) = D(D^{1} f(z));$$

and for n = 1, 2, 3, ...

$$D^{n} f(z) = D\left(D^{n-1} f(z)\right)$$

$$= \frac{1}{z} + \sum_{k=1}^{\infty} (k+2)^{n} a_{k} z^{k}$$

$$= \frac{\left(z^{2} D^{n-1} f(z)\right)'}{z}.$$

Let $K_n(\alpha, \beta, \gamma)$ denote the class of functions f(z) in \sum satisfying the condition

$$\left| \frac{z^2 \left(D^n f(z) \right)' + 1}{\left(2\gamma - 1 \right) z^2 \left(D^n f(z) \right)' + \left(2\alpha \gamma - 1 \right)} \right| < \beta \qquad n \in N_o = \{0, 1, 2, \dots\}$$
 (1.2)

for some α $(0 \le \alpha < 1)$, β $(0 < \beta \le 1)$, γ $(\frac{1}{2} \le \gamma \le 1)$, and for all $z \in U^*$. We note that $K_0(\alpha, \beta, \gamma) = \sum (\alpha, \beta, \gamma)$ (Cho, Lee and Owa [3]). Let σ_A be the subclass of

Received by the editors Jan 05, 2005, Accepted: March 24, 2005.

2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.

\sum which consisting of functions of the form

$$f(z) = \frac{1}{z} + a_1 z - a_2 z^2 + a_3 z^3 - \dots, \qquad a_k \ge 0$$

$$= \frac{1}{z} + \sum_{k=1}^{\infty} (-1)^{k-1} a_k z^k, \qquad a_k \ge 0$$
(1.3)

and let $\sigma_{A,n}^*(\alpha,\beta,\gamma) = K_n(\alpha,\beta,\gamma) \cap \sigma_A$.

In this paper, coefficient inequalities and distortion theorems for the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$ are determine. Techniques used are similar to these of Silverman [4], Uralegaddi and Ganigi [5], Aouf and Darwish [1] and Aouf and Hossen [2]. Finally, the class preserving integral operators of the form

$$F(z) = \frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) dt \qquad (c > 0)$$
 (1.4)

is considered.

2. COEFFICIENT INEQUALITIES

Theorem 2.1. Let $f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$. If

$$\sum_{k=1}^{\infty} (k+2)^n k (1+2\beta\gamma-\beta) |a_k| \le 2\beta\gamma (1-\alpha), \qquad (2.1)$$

then $f(z) \in \sigma_{A,n}^*(\alpha,\beta,\gamma)$.

Proof Suppose (2.1) holds for all and missible values of α , β , γ and n. It suffices to show that

$$\left| \frac{z^2 \left(D^n f(z) \right)' + 1}{(2\gamma - 1) z^2 \left(D^n f(z) \right)' + (2\alpha \gamma - 1)} \right| < \beta \tag{2.2}$$

for |z| < 1. We have

$$= \frac{\left| \frac{z^2 (D^n f(z))' + 1}{(2\gamma - 1) z^2 (D^n f(z))' + (2\alpha\gamma - 1)} \right| }{\frac{\sum\limits_{k=1}^{\infty} k (k+2)^n a_k z^{k+1}}{2\gamma (1-\alpha) - \sum\limits_{k=1}^{\infty} (2\gamma - 1) k (k+2)^n a_k z^{k+1}} \right| }$$

$$\leq \frac{\sum\limits_{k=1}^{\infty} k (k+2)^n |a_k|}{2\gamma (1-\alpha) - \sum\limits_{k=1}^{\infty} (2\gamma - 1) k (k+2) |a_k|} .$$

The last expression is bounded above by β , provided

$$\sum_{k=1}^{\infty} k (k+2)^n |a_k| \le \beta \left\{ 2\gamma (1-\alpha) - \sum_{k=1}^{\infty} (2\gamma - 1) k (k+2)^n |a_k| \right\}$$

which is equivalent to

$$\sum_{k=1}^{\infty} k \left(k + 2 \right)^n \left(1 + 2\beta \gamma - \beta \right) |a_k| \le 2\beta \gamma \left(1 - \alpha \right) \tag{2.3}$$

which is true by hypothesis.

For functions in $\sigma_{A,n}^*(\alpha,\beta,\gamma)$ the converse of the above theorem is also true.

Theorem 2.2. A function f(z) in σ_A is in $\sigma_{A,n}^*(\alpha,\beta,\gamma)$ if and only if

$$\sum_{k=1}^{\infty} k (k+2)^n (1+2\beta\gamma-\gamma) a_k \le 2\beta\gamma (1-\alpha).$$

Proof. In view of Theorem 1 it suffices to show that the only if part. Let us assume that $f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} (-1)^{k-1} a_k z^k$ $(a_k \ge 0)$ is in $\sigma_{A,n}^*(\alpha,\beta,\gamma)$. Then

$$\left| \frac{z^{2} (D^{n} f(z))' + 1}{(2\gamma - 1) z^{2} (D^{n} f(z))' + (2\alpha \gamma - 1)} \right|$$

$$= \left| \frac{\sum\limits_{k=1}^{\infty} (-1)^{k-1} k (k+2)^{n} a_{k} z^{k+1}}{2\gamma (1-\alpha) - \sum\limits_{k=1}^{\infty} (-1)^{k-1} (2\gamma - 1) k (k+2)^{n} a_{k} z^{k+1}} \right| < \beta.$$

for all $z \in U^*$. Using the fact that $\operatorname{Re} z \leq |z|$ for all z, it follows that

$$\operatorname{Re}\left\{\frac{\sum_{k=1}^{\infty} (-1)^{k-1} k (k+2)^{n} a_{k} z^{k+1}}{2\gamma (1-\alpha) - \sum_{k=1}^{\infty} (-1)^{k-1} (2\gamma - 1) k (k+2)^{n} a_{k} z^{k+1}}\right\} < \beta (z \in U^{*}) \cdot (2.4)$$

Now choose values of z on the real axis so that $z^2(D^n f(z))'$ is real. Upon clearing the denominator in (2.3) and letting $z \to -1$ through real values, we obtain

$$\sum_{k=1}^{\infty} k (k+2)^n a_k \le \beta \left\{ 2\gamma (1-\alpha) - \sum_{k=1}^{\infty} (2\gamma - 1) k (k+2)^n a_k \right\}$$

which is equivalent to

$$\sum_{k=1}^{\infty} k (k+2)^n (1+2\beta\gamma-\beta) a_k \le 2\beta\gamma (1-\alpha).$$

This completes the proof of Theorem 2.

Corollary 1. Let the function f(z) defined by (1.3) be in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$, then

$$a_k \le \frac{2\beta\gamma(1-\alpha)}{k(k+2)^n(1+2\beta\gamma-\beta)} \qquad (k \ge 1).$$

Equality holds for the functions of the from

$$f_k\left(z\right) = \frac{1}{z} + \left(-1\right)^{k-1} \frac{2\beta\gamma\left(1-\alpha\right)}{k\left(k+2\right)^n\left(1+2\beta\gamma-\beta\right)} z^k.$$

3. DISTORTION THEOREMS

Theorem 3.1. Let the function f(z) defined by (1.3) in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$, then for 0 < |z| = r < 1,

$$\frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}r \le |f(z)| \le \frac{1}{r} + \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}r \tag{3.1}$$

with equality for the function

$$f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}z \quad at \ z = r, ir.$$
 (3.2)

Proof. Suppose f(z) is in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$. In view of Theorem 2, we have

$$3^{n} \left(1 + 2\beta \gamma - \beta\right) \sum_{k=1}^{\infty} a_{k} \leq \sum_{k=1}^{\infty} k \left(k + 2\right)^{n} \left(1 + 2\beta \gamma - \beta\right) a_{k} \leq 2\beta \gamma \left(1 - \alpha\right)$$

which evidently yields

$$\sum_{k=1}^{\infty} a_k \le \frac{2\beta\gamma (1-\alpha)}{3^n (1+2\beta\gamma - \beta)}.$$
(3.3)

Consequently, we obtain

$$|f(z)| \leq \frac{1}{r} + \sum_{k=1}^{\infty} a_k r^k \leq \frac{1}{r} + r \sum_{k=1}^{\infty} a_k \leq \frac{1}{r} + \frac{2\beta\gamma\left(1-\alpha\right)}{3^n\left(1+2\beta\gamma-\beta\right)} r,$$

by (3.3). This gives the right-hand inequality of (3.1). Also

$$|f(z)| \ge \frac{1}{r} - \sum_{k=1}^{\infty} a_k r^k \ge \frac{1}{r} - r \sum_{k=1}^{\infty} a_k \ge \frac{1}{r} - \frac{2\beta\gamma (1-\alpha)}{3^n (1+2\beta\gamma-\beta)} r,$$

by (3.3), which gives the left-hand side of (3.1). It can be easily seen that the function f(z) defined by (3.2) is extremal for the theorem.

Theorem 3.2. Let the function f(z) defined by (1.3) be in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$, then for 0 < |z| = r < 1,

$$\frac{1}{r^2} - \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)} \le |f'(z)| \le \frac{1}{r^2} + \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}$$
(3.4)

The result is sharp, the extremal function being of the form (3.2).

Proof. From Theorem 2, we have

$$3^{n} \left(1+2\beta\gamma-\beta\right) \sum_{k=1}^{\infty} k a_{k} \leq \sum_{k=1}^{\infty} k \left(k+2\right)^{n} \left(1+2\beta\gamma-\beta\right) a_{k} \leq 2\beta\gamma \left(1-\alpha\right)$$

which evidently yields

$$\sum_{k=1}^{\infty} k a_k \le \frac{2\beta\gamma (1-\alpha)}{3^n (1+2\beta\gamma - \beta)}.$$
(3.5)

Consequently, we obtain

$$\left|f'\left(z\right)\right| \leq \frac{1}{r^{2}} + \sum_{k=1}^{\infty} ka_{k}r^{k-1} \leq \frac{1}{r^{2}} + \sum_{k=1}^{\infty} ka_{k} \leq \frac{1}{r^{2}} + \frac{2\beta\gamma\left(1-\alpha\right)}{3^{n}\left(1+2\beta\gamma-\beta\right)}$$

Also

$$|f'(z)| \ge \frac{1}{r^2} - \sum_{k=1}^{\infty} k a_k r^{k-1} \ge \frac{1}{r^2} - \sum_{k=1}^{\infty} k a_k \ge \frac{1}{r^2} - \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}.$$

This completes the proof of Theorem 4.

Putting n = 0 in Theorem 4, we get:

Corollary 2. Let the function f(z) defined by (1.3) be in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma) = \sigma_{A,0}^*(\alpha,\beta,\gamma)$, then for 0 < |z| = r < 1,

$$\frac{1}{r^{2}} - \frac{2\beta\gamma\left(1-\alpha\right)}{\left(1+2\beta\gamma-\beta\right)} \leq \left|f'\left(z\right)\right| \leq \frac{1}{r^{2}} + \frac{2\beta\gamma\left(1-\alpha\right)}{\left(1+2\beta\gamma-\beta\right)}.$$

The result is sharp.

Putting n = 0 and $\beta = \gamma = 1$ in Theorem 6, we get:

Corollary 3. Let the function f(z) defined by (1.3) be in the class $\sigma_{A,0}^*(\alpha, 1, 1) = \sigma_A^*(\alpha)$, then for 0 < |z| = r < 1,

$$\frac{1}{r^2} - (1 - \alpha) \le |f'(z)| \le \frac{1}{r^2} + (1 - \alpha).$$

This result is sharp.

4. Class preserving integral operators

In this section we consider the claa preserving integral operators of the form (1.4).

Theorem 4.1. Let the function f(z) defined by (1.3) be in the class $\sigma_{A,n}^*(\alpha,\beta,\gamma)$, then

$$F(z) = cz^{-c-1} \int_{0}^{z} t^{c} f(t) dt = \frac{1}{z} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{c}{c+k+1} a_{k} z^{k}, \quad c > 0$$

belongs to the class $\sigma_{A,n}^{*}(\lambda(\alpha,c),\beta,\gamma)$, where

$$\lambda\left(\alpha,c\right) = 1 - \frac{c\left(1-\alpha\right)}{\left(c+2\right)}.\tag{4.1}$$

The result is sharp for

$$f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{3^n(1+2\beta\gamma-\beta)}z.$$

Proof. Suppose $f(z) \in \sigma_{A,n}^*(\alpha,\beta,\gamma)$, then

$$\sum_{k=1}^{\infty} k (k+2)^n (1+2\beta\gamma-\beta) a_k \le 2\beta\gamma (1-\alpha).$$

In view of Theorem 2, we shall find the largest value of λ for which

$$\sum_{k=1}^{\infty} \frac{k \left(k+2\right)^n \left(1+2\beta\gamma-\beta\right)}{2\beta\gamma \left(1-\lambda\right)} \cdot \frac{c}{c+k+1} a_k \le 1.$$

It suffices to find the range of λ for which

$$\frac{ck\left(k+2\right)^{n}\left(1+2\beta\gamma-\beta\right)}{2\beta\gamma\left(1-\lambda\right)\left(c+k+1\right)} \leq \frac{k\left(k+2\right)^{n}\left(1+2\beta\gamma-\beta\right)}{2\beta\gamma\left(1-\alpha\right)}.$$

Solving the above inequality for λ we obtain

$$\lambda \le 1 - \frac{c(1-\alpha)}{(c+k+1)}.$$

Since

$$A(k) = 1 - \frac{c(1-\alpha)}{(c+k+1)},\tag{4.2}$$

is an increasing function of $k (k \ge 1)$, letting k = 1 in (4.2), we obtain

$$\lambda = A(1) = 1 - \frac{c(1-\alpha)}{(c+2)}$$

and the theorem follows at once.

ÖZET: Bu çalışmada, alterne katsayılı konvekse - yakın meromorfik fonksiyonların belirli bir altsınıfı için katsayı eşitsizlikleri ve bükülme teoremleri elde edilmiştir. Ayrıca sınıf koruyan integraller incelenmiştir.

REFERENCES

- M. K. Aouf and H. E. Darwish, Meromorphic starlike univalent functions with alternating coefficients, Utilitas Math. 47 (1995), 137-144.
- [2] M. K. Aouf and H. M. Hossen, Meromorphic starlike functions of order α with alternating coefficients, Rend. Sem. Math. 92 (1994), 221-230.
- [3] N. E. Cho, S. H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
- [4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- [5] B. A. Uarlegaddi and M. D. Ganigi, Meromorphic starlike functions with alternating coefficients, Rend. Mat. (7) 11, Roma (1991), 441-446.

Current address: M. K. Aouf. Dept. of Mathematics, Girls collage of education, Science Section, Jeddah, SAUDI ARABIA, M. AL-Oboudi. Dept. of Mathematics, Girls collage of education, Science Section, Riyadh, SAUDI ARABIA, M. M. Hadain. Dept. of Mathematics, Girls collage of education, Science Section, Abha, SAUDI ARABIA