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TRI-ADDITIVE MAPS AND PERMUTING TRI-DERIVATIONS
'HASRET YAZARLI MEHMET ALI OZTURK AND YOUNG BAE JUN

ABSTRACT. In [7],0ztiirk has proved some results concerning permuting tri-
derivations on prime and semi-prime rings.We study permuting tri-additive
maps with trace which is skew-commuting or skew-centralizing on s-unital
rings and also we obtain a few results on trace of permuting tri-derivations in
prime rings.

1. INTRODUCTION

The concept of a symmetric bi-derivation has been introduced by Maksa in
[4] (see also [5] ).In recent years,many mathematicans studied on commutativ-
ity of prime and semi-prime rings admitting suitably-constrained symmetric bi-
derivations.

In (7] ,Ozttirk introduced the notion of a permuting tri-derivations in rings and
proved some results.The aim of this paper is to study some properties of a permuting
tri-derivations of a s-unital rings and a prime rings.

2. PRELIMINARIES

Throughout this paper all rings R will be associative and the center (resp.extended
centroid ) of a ring will be denoted by Z ( resp. C ).

A mapping f : R — R is called commuting if [z, f(z)] =0, for all z € R.
Similarly f is called skew-commuting ( resp. skew-centralizing ) on R if zf (z)
+f(z) =0 (resp. zf (z)+ f(z)z € Z ) forall z € R.

-A mapping D(.,.) : Rx R — R is called symmetric if D (z,y) = D(y,z)
for all 2,y € R. In follows, denote by D(.,.) a symmetric mapping from R x R
to R without otherwise specified. A mapping d : R — R is called the trace of
D(.,.)if d(z) = D(=z,z) for all z € R. It is obvious that if D (-,.) is bi-additive
(i.e. additive in both arguments ), then the trace d of D (.,.) satisfies the identity
d(z+y) = d(z) +d(y) + 2D (z,y) for all z,y € R. If D(.,.) is bi-additive and
satisfies the identity D (zy, z) = D (z, 2) y+ 2D (y,2) for all z,y, z € R, we say that
D{.,.) is a symmetric bi-derivation.

A mapping D(.,.,.): Rx Rx R — R is called tri-additive if

D(z+'w,y,z) = D(mvy)z) +D(w,yaz)
D(z,y +w, 2) = D(z,y, z) + D(z,w, z)
D(z,y, z+w) = D(z,y, 2)+D(z,y,w)
for all z,y,z,w € R. A tri-additive mapping D(,,):RxRxR — Ris
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called permuting tri-additive if D (z,y,2) = D(z,2,y) = D(z,2,y) = D(2,v,%)
= D(y,z,z) = D(y,z,2) holds for all z,y,z2,w € R. Amappingd: Rx R — Rde-
fined by d (z) = D (z, z, z) is called trace of D (., .,.), where D (.,.,.) : RXxRXxR —> R
is a permuting tri-additive mapping.It is obvious that, if D(.,.,.): RxRXR— R
is a permuting tri-additive mapping then the trace of D (.,.,.) satisfies the relation
d{z+y)=d(z)+d(y) +3D(z,z,y) + 3D (z,y,y) for all z,y € R.

A permuting tri-additive mapping D{(.,.,.) : R x R x R — R is called per-
muting tri-derivation if D (zw,y,z) = D(z,y,z)w + 2D (z,y,w) are fulfilled for
all z,y,w,z € R. Then relation D (z,yw,2) = D(z,y,2)w + yD(z,w,z) and
D(z,y,2w) = D(z,y,2z)w + 2D (z,y,w) are fulfilled for all z,y,z,w € R. The
mapping d : R — R defined by d(z) = D (z, , z) is an odd-function.

R is called a left s-unital ( resp. s-unital ) ring if for each € R there holds
z € Rx (resp.x € Rt NzR ). If R is a left s-unital ( resp.s-unital ) ring then for
any finite subset F' of R there exists an element e in R such that ez = z ( resp.
ex = ze = z ) for all z € F ( see [9] ,Theorem 1 and [6], Lemma 1 ). Such an
element e will be called a left pseudo-identity ( resp. pseudo-identity ) of F.

Throughout this paper e will be a left pseudo-identity of

E = {z,d(z),d(e),D(z,e,e),D(z,z,e)} CR
where z is an arbitrary element of R.
Remark 2.1. Let R be aring and D (,,.,.) be a permuting tri-derivation of R. In
this case, for any fixed a € R and for all z,y € R, a mapping D1 (.,.): ExR— R
defined by D; (z,y) = D(a,z,y) and a mapping d3 : R — R defined by d (z) =
D(a, a,x) is a symmetric bi-derivation ( in this meaning, permuting 2-derivation is
a symmetric bi-derivation ) and is a derivation, respectively.

3. TRI-ADDITIVE MAPS WITH SKEW-COMMUTING AND SKEW-CENTRALIZING
TRACE

Theorem 3.1. Let R be a 2,3 — torsion free left s-unital ring . Let D(,,.,.) be
a permuting tri-additive mapping of R with the trace d. Ifd is skew-commuting on

R, then D =0.

Proof. Let e be pseudo-identity of E C R and z be an arbitrary element of R.
Using the fact that d is skew-commuting on R, we get O

zd(z) +d(z)z =0, z€ R (3.1
Writing e for z in (3.1)

ed(e) + d(e)e = d(e) + d(e)e =0 (3.2)
and right multiplying by e gives 2d(e)e = 0 = d(e)e. Therefore by (3.2), d(e) = 0.
Now writing = for z+ e in (3.1) and using the fact that D is permuting tri-additive,
we get,
3zD(z, z,e) + 3zD(z, e, €) + d(z) + 3D(z,z,€) + 3D(z,e,€) +d(z)e

+3D(z, z,€)z + 3D(z,z,e)e + 3D(z, e,€)z + 3D(z, e, ele=0, z€R (3.3
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Replacing —z for z in (3.3) and subtracting (3.3) with the results and using the
fact that R is 2,3 — torsion free and d is an odd function, we get,

zD(z,e,e) + D(x,z,e) + D(z,z, e)e + D(z, e, ele=0, z€R (34)

Now writing z for z+e in (3.4). Using the fact that D is permuting tri-additive,
we get,

zD(z,e,€) +3D(z,e,€) + 2D(z, z,e)e + 3D(z,e,e)e =0, z€ R (3.5)

Replacing —z by z in (3.5) and subtracting (3.5) with the result and using the
fact that R is 2,3 — torsion free, we get,

D(z,e,e) + D(z,e,e)e=0, z € R (3.6)

Right multiplication of (3.6) by e gives 2D(z, e,e) = D(x, e, e), and so, by (3.6),
we get D(z,e,e) =0, z € R. Hence, we get
d(z + €) = d(z) + d(e) + 3D(z, z,e) + 3D(z,e,¢) =d(z)+ 3D(z,z,e), z€R
Using the fact that d is skeww-commuting on R, we have (z +e)d(z + e) +
d(z +e)(x +e) = 0. The last relation now becomes

d(z) +3zD(z, z,e) + 3D(z, z, €) + d(z)e + 3D(z, z, €)x + 3D(z,z,e)e =0, z€ R
(3.7)

Replacing —z for z in (3.7) and subtracting (3.7) with the results and using the
fact that R is 2,3 — torsion free, we get,

D(z,z,e) + D(z,z,e)e =0, z € R (3.8)

Right multiplication of (3.8) by e gives 2D(z, z, e)e = 0 = D(x, z, e) and so, by
(3.8), we get, D(z,z,€) =0,z € R. Therefore, by (3.7

d(z) +d(z)e=0, z€ R (3.9

Right multiplication of (3.9) by e gives 2d(z)e = 0 = d(z) and hence the relation
(3.9) implies d(x) =0, z € R. Thus D = 0.

Theorem 3.2. Let R be a 2,3 — torsion free left s-unital ring. Let D(.,.,.) be a
permuting tri-additive mapping of R with the trace d. If d is skew-centralizing on
R, then d is commuting on R.

Proof. Let e be pseudo-identity of E C R and z be an arbitrary elelment of R.
Using the fact that d is skew-centralizing on R, we get,

zd(z) +d(z)z € Z, € R (3.10)
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Writing e for z in (3.10), we get,
ed(e) + d(e)e =d(e) + d(e)e € Z (3.11)
Commuting with e gives d(e) = d(e)e; and by (3.11) 2d(e) € Z, thus d(e) € Z.

Writing « for z + e in (3.10) and using the fact that D is permuting tri-addittive,
we get,

2zd(e) + 3zD(z, z, €) + 3zD(z, e, e) + d(z) + 3D(z, z,e) + 3D(z, e, e)+

d(z)e+3D(z,z,e)x + 3D(z,z,e)e + 3D(z, e,e)x + 3D(:z:, e;e}e€ Z z € R (3.12)

Again writing z for z + e in (3.12), since D is permuting tri-additive, we get,

15zd(e) + 3zD(z, z,€) + 9zD(z, e, €) + 9D(z, z, e) + 21D(z, e, €) + d(z)

+d(z)e + 9D(z, z,e)e + 21D(z, e,e)e + 3D(z, z,e)z + 9D(z,e,e)x € Z, T € R
(3.13)

Replacing —z by z in (3.13) and subtracting (3.13) with results and using the
fact that d is an odd function and R is 2,3 — torsion free, we get,

zD(z,e,e) + D(z,z, e)'+ D(z,e, e):; €Z,z€R (3.14)
We use (3.14) in (3.12)
2zd(e) + 3zD(z, 2, €) + d(z) + 3D(z, z,e) + 3D(z, e,e) + d(z)e+
3D(z,z,e)z +3D(z,e,e)e € Z, T € R (3.15)

Replacing —z by z in (3.15) and subtracting (3.15) with results, and using the
fact that R is 2,3 — torsion free and d is an odd function, we get D(z,z,e) € Z ,
z € R. We use (3.14) in (3.13)

15zd(e) + 3zD(z, z,e) + 21D(z, e, e) + d(z) + d(z)e + 21D(z, e, e)e

+3D(z,z,e)x € Z, z € R (3.16)
Commuting with e gives;

21[D(z,z,¢€),€] + [d(z),e] =0,z € R (3.17)

Writing z for z + e in (3.17). Using the fact that D is permuting tri-additive
and R is 3 — torsion free, we get,

[D(z,z,e),e] =0, € R (3.18)
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We use last relation in (3.17), [d(z), €] = 0 and so, by (3.17), we get d(z) = d(z)e,
z € R. By (3.15), we get,

2zd(e) +6zD(z,z,€) + 2d(z) + 6D(z,e,e) € Z, z € R (3.19)

Writing z for z + e in (3.19) and using the fact that Dis permuting tri-additive
and R is 3 — torsion free, we get,

2zD(z,e,e) + zd(e) + 3D(z,e,e) € Z,x € R (3.20)

Replacing —z by z in (3.20)and subtracting (3.20) with result and using the fact
that d is an odd function and R is 2 — torsion free, we get,

zd(z) + 3D(z,e,e) € Z, z € R (3.21)
We use last relation in (3.19)
6xD(z,z,e)+2d(z) € Z, x € R (3.22)

Commuting with e gives [d(z),z] = 0,z € R, since R is 2 — torsion free. Thus
d is commuting on R ]

For n > 2, a mapping f: R — R is called n-skew commuting (resp. n-skew
centralizing ) on R if 2" f(z) + f(z)a™ = 0 (resp. 2" f(z) + f(x)z" € Z ) for all
Tz € R.

Now we extend the result n-skew-commuting mappings (Theorem 1) to n-skew
commuting ones.

Theorem 3.3. Let n > 2, let R be an n! — torsion free left s-unital ring with
charR # 3. Let D(.,.,.) be a permuting tri-additive mapping of R with the trace d.
If d is n-skew commuting on R., then D = (.

Proof. Let e be pseudo-idendity of E C R and z be an arbitrary element of R..
Suppose that’

z"d(z) +d(z)z2" =0, € R (3.23)

Using similar approach as in the proof of Theorem 1, we get d(e) = 0. Replacing
z+e by z in (3.23), we get

(x+e)"d(x+e)+dz+e)(z+e)"=0, z€R (3.24)

n
This can be written in the from ) s;(z,e)d(z +¢e) +d(z +e)s;(z, e) = 0, where
I=1
si(z,e) is the sum of terms involving i factors of e in the exponsion of (x -+ €)™.
Replacing e by 2e, 3e, ..., ne in turn, and expressing the resulting system of n
homogeneous equations, we see that the coefficient matrix of the system is a van
der Monde matriz
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1 1 1
2 22 2"
n n? n"

Since the determinant of the matrix is equal to a product of positive integers,
each of which is less than n, and since R is n! —torsion free, it follows immediately
that si(z,e)d(z +e) +d(z+e)s;(z,e) =0 foralli=1,2,..,n

In particular,

sp(z,e)d(z+e)+d(z+e)sp(z,e) = ed(z+e)+d(z+e)e=d(z+e)+d(z+e€)e,
z € R and as in the proof of Theorem 1 we get d(x +€) =0, z € R. On the
other hand, d(z + e) = d(z) + d(e) + 3D(z,z,€) + 3D(z,e,e) and d(e) = 0 and
hence we get

d(z) + 3D(z,z,e) + 3D(z,e,e) =0, z € R (1 3.25)

Replacing —z by z in (3.25) and subtracting (3.25) with the result, we get
D(z,z,e) =0, z € R. By (3.25),

d(z) +3D(z,e,e) =0,z € R (3.26)

Writing z for z + e in (2.26), and using the fact that D is permuting tri-additive
and R is 3 —torsion free, we get D(z,e,e) =0, z € R. By (3.25), d(z) =0,z € R.
Thus D = 0. a

4. PERMUTING TRI-DERIVATIONS IN PRIME RINGS

Lemma 4.1. Let R be prime ring with charR # 2,3. Let D(.,.,.) be permuting
tri-derivation of R with the trace d. If

ad(z)=0, z€R (4.1)
where a 15 a fived element of R, thena=0 or D =0.

Proof. Let z,y € R. Writing z for z +y in (4.1), we get
aD(z,z,y) + aD(z,y,y) =0 (4.2)
Replacing —z by z in (4.2) and subtracting with result, we get,
aD(z,y,y) =0 (4.3)
Writing z for zy in (4.3). Since D is permuting tri-derivation, we get, azd (y) = 0

for all z € R. Since R is a prime ring, we get, a = 0 or d(y) = 0 for all z € R.
Thusa=0o0r D=0. O
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Lemma 4.2. Let R be a prime ring with charR # 2,3 and let di and dy be
traces of permuting tri-derivations Dy (., .,.) and Dao(., ., .), respectively. If the iden-
tity

di(z)dz(y) = do(z)di(y)  forallz,ye R (44)

holds and dy # 0, then there erist
A € C such that da(z) = Md;(z).

Proof. Let z,y,z € R. Writing y for y 4 z in (4.4), we get

dl(x)D2(y’ Y, z) + dl (x)D2(y’ z, Z) = d2(2)D1 (y) Y, Z) + d2(x)D1 (yv Z,. z) (45)
since Dyand D, are permuting tri-derivations and charR #3.
Again writing y for y +2 in (4.5), we get,

dl(x)Dz(y,z, z) = dg(il?)Dl(y,Z, 2:) (46)
since Dy and D are permuting tri-derivations and charR # 2.
Writing y for yz in (4.6), we get,

di(z)yda(z) = da(z)yd; (2) (4.7
Replacing z by z in (4.7), we get,
di(z)yda(z) = dp(z)yd) () (4.8)

Thus if di(z) # 0, then by (4.8) and [1, Corollary to Lemma 1.3.2] we have
da(z) = Mz)dy(z) for some A(z) € C. Hence if di(z) # 0 and dy(z) # 0, then
(AM(z) = Mx))d1(2)yd1(z) = 0 by (4.7). Since R is prime, it follows from Lemma 4
that A(z) = A(2). This shows that there exist A € C such that dy(z) = Ady(z) under
the condition d;(z) # 0. On the other hand, assume that d;(z) = 0. Since d; # 0
and R is prime, it follows from (4.7) that d2(z) = 0 as well. Thus dy(z) = Ad;(z).
This completes the proof. O

Theorem 4.3. Let R a prime ring with charR # 2,3 and let dy(# 0), da, d3
and dy(# 0) be trace of permuting tri-derivations Di(.,.,.), Da(,,.,.), Ds(.,.,.) and
Dy(.,.,.) respectively.If the identity
di(z)dz(y) = ds(z)da(y) (4.9)

holds for all x,y € R., then there exists A\ € C such that da(z) = Ad4(z) and
dz(z) = M, (). :
Proof. Let z,y,z € R. Writing y for y + z in (4.9), we get, di(z)D2(y,y,2) +
d1(z)D2(y, 2, 2) = d3(x) D4(y, y, 2) +ds(z) Dy(y, 2, 2), since D, and D, are permut-
ing tri-derivations and charR # 3.

Again writing y for y + z in last relation, we get,

d1(.’E)D2(y,z,z) = d3($)D4(y, 2, Z) (410)
sinceD; and Dy are permuting tri-derivations and charR # 2.
Writing y for yz in (4.10), we get,

di(z)yda(2) = ds(z)yds(2) (4.11)
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Replacing y by yds(w) in (4.11), we get, dy(z)yds(w)da(z) = d3(z)yds(w)ds(z) =
di(z)yda(w)ds(2), so that dy(z)y(ds(w)da(z) —da(w)ds(z) = 0. Since d; # 0 and R
is prime, it follows that dgq(w)da(z) = do(w)ds(2). Applying Lemma 4, there exist
A € C such that da(z) = Ad4(z), which implies (4.11) that (Ady(z) —ds(z))yds(2) =
0 so that dz(z) = Ady(z). This completes the proof. O

ACKNOWLEDGEMENT: The authors are highly grateful to the referees for
their valuable comments and suggestions for improving the paper.

OZET: Oszturk [7] de asal ve yari-asal halkalar tizerinde permuting tri-
tirevlerle ilgili baz sonuglar ispatladi. Biz s-unital halkalar tizerinde
carptk-kommuting veya c¢arpik-merkezleyen izli tri-toplamsal déntigtim-
leri ¢alistik ve ayrica asal halkalarda permuting tri-tiirevlerin izleriyle
ilgili bazi sonuclar elde ettik.
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MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS WITH
ALTERNATING COEFFICIENTS

M. K. AOUF, F. M. AL-OBOUD] AND M. M. HADAIN

ABSTRACT. Coefficient inequalities and distortion theorems are obtained for
certain subclass of meromorphically close -to- convex functions with alternat-
ing coefficients. Further class preserving integral operators are obtained.

1. INTRODUCTION

Let 3 denotes the class of functions of the form:
f&) ==+ iakzk (1.1)
S
which are regular in the punctured disc U* = {2:0 < |z| < 1}. Define
D°f(z) = f(2);
D'f(z) = %+3a1z+4a2z2+-~-
(*f (2))’

D’f(z) = D(D'f(2);
and forn=1,2,3, ...

Df(2) = D(D"'f(2))
_ 1. 5 "
= ~+) (k+2) a2
k=1
(z2Dn—1f (z))'
z
Let K, (o, B,7) denote the class of functions f (2) in 3 satisfying the condition
2Z2(D"f(2)) +1

(2y - 1) 2 (D"f (2)) + (207 — 1)l <B neN.={0,1,2---} (12

for some a(0<a<1),8(0<B<1),vy(A <v< 1), and for all z € U*.We note
that Ko (a,8,7) = (e, 8,7) (Cho, Lee and Owa [3]).Let 04 be the subclass of
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3" which consisting of functions of the form

1
f(z) = ;+012-a232+0323—"', ar >0
= l+{Z:(—-1)k_la z* a, >0 (1.3)
2 & k< k = .

and let oAn(a ﬁ”Y) K (anBa’Y)nUA

In this paper, coefficient inequalities and distortion theorems for the class o7 , (v, B8,7)
are determine. Techniques used are similar to these of Silverman [4], Uralegaddi
and Ganigi [5], Aouf and Darwish [1] and Aouf and Hossen (2]. Finally, the class
preserving integral operators of the form

Fo)= o / ©FH)dt (c>0) (1.4)
0

is considered.

2. COEFFICIENT INEQUALITIES

Theorem 2.1. Let f(2) =1+ 3 ap2®. If
k=1

o0

Sk +27 k(1+ 287 = B)loxl < 267 (1 - ), @)

k=1
then f (2) € 0% , (@, B,7).
Proof Suppose (2.1) holds for all and missible values of @, 8,7 and n. It suffices
to show that
l 2 (D"f(2)) +1 ‘
(2v~-1) z2 (D"f (2)) + (20y = 1)
for |z| < 1. We have

(2.2)

2(D"f(2)) +1 l
(2y-1)22 (D"f (2)) + (20y - 1)
Z k(k +2)" agz**t?

27(1-0) - E;‘l 2y — 1) k (k +2)" apzk+?

b n
S k(k+2)" |ak
< k=1

27(1—a>-21(27—1)k<k+2>|ak1

The last expression is bounded above by 3,provided

ik(k+2)" lax| < 5{27(1—a) —i(2’7—1)k(k+2)” lakl}

k=1 k=1
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which is equivalent to

> k(k+2)" (14267~ ) laxl < 287 (1 — @) (2.3)

k=1
which is true by hypothesis.
For functions in Tl (o, B,7) the converse of the above theorem is also true.

Theorem 2.2. A function f(2) in o4 is in 04 n (@ B,7) if and only if

D k(k+2)" (1+28y-7)ax <287(1—a)-

k=1
P'roof In vzew of Theorem 1 it suffices to show that the only if part. Let us assume
that f(z) = - + Z (—1)* " ar2* (ax > 0) is in T4 n (@, B,7). Then

I 2(Dnf () +1
(27 =1)22(D"f (2)) + (2ay - 1)

5 (D k ( + 2)" gt
= k=1°° < ﬂ.
27(1-a) = 2 (-1)* ' 2y = 1) k(k + 2)" azk+!
k=1

for all z € U*. Using the fact that Re z < |2| for all z, it follows that

5 (—1)F 1k (k 4 2)" gttt
Re k=1 <B(zeU*)- (24)

27(1-0) = 3 (-0 2y~ Dk(k+ 2" oyt

Now choose values of z on the real azis so that 22 (D™ f (z))’ is real. Upon clearing
the denominator in (2.3) and letting 2 — —1 through real values, we obtain

Zk(k+2) ak<ﬂ{2'y (1-a Z(ny-—l)k(k+2) ak}

k=1

which is equivalent to

Sk (k+2)" (14 28y - 6) ok < 261 (1 — )

k=1

This completes the proof of Theorem 2.
Corollary 1. Let the function f (z) defined by (1.3) be in the class % , (o, B,7),

then
28v(1 - o)
< k>1).
%S rkTor (T —p 2 kzb
Equality holds for the functions of the from

fu(a) = 2+ (-1

26y(1 - a) 2~
(k+2)" (14287 - ﬁ)
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3. DISTORTION THEOREMS

Theorem 3.1. Let the function f(2) defined by (1.3) in the class % , (o, B,7),
then for 0 < |z| =7 <1,

1 By(l-a) <l 28v(1-a)

ey oy vy U A e Ty Y vy 4 3.1)
with equality for the function
f(z)= H 267(1 — o) z at z=r,ir. (3.2)

T3 (1267~ )

Proof. Suppose f (2) is in the class 0% , (o, B,7). In view of Theorem 2, we have

3" (1+28y - ﬁ)Zak<Zk(k+2 (14267 - B)ax <28v(1- )

k=1 k=1
which evidently yields
o o)
2By(1-a)
ay < ——————t0. 3.3
;k’3"(1+2ﬁv~ﬁ) 33

Consequently, we obtain

1 26v(1— @)
EASIE +Z“’°T =7 “Z“’“—_ 3"(112&7 B)"

by (3.8). This gives the right-hand inequality of (3.1).Also

1 = 1 & 1 287(1-a
[f ()2~ = Dokt > = =) Tap > - - CaRComts)
k=1 k=1

r 3r(1+28y— ﬂ)

by (3.3),which gives the left-hand side of (3.1). It can be easily seen that the function
[ (2) defined by (3.2) is extremal for the theorem.

Theorem 3.2. Let the function f (z) defined by (1.3) be in the class 0% ,, (@, B,7)
, then for 0 < |z| =7 < 1,
1__2%(-9) 267(1-0a)
r2 3" (1+2By-B) (1+28y-B)
The result is sharp, the extremal function being of the form (3.2).

’ 1 ,
SIS 5+5 (3.4)

Proof. From Theorem 2, we have

3"(1+28yY-B)Y kaw <Y k(k+2)" (1+28y - f)ax <28v(1-0)

k=1 k=1
which evidently yields
26y(1— o)
k —_— 3.5
Zak_3”(1+2ﬁv B)’ (39

Consequently, we obtain

|f (z)[<—+2kak.,-k 1<_+Zk ar < 1 26y(1 - a)

T+ 28-B)
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Also

, 1 & 1 1 26v(1-a)
012 5= Skt 2 - S ke > G- RO

This completes the proof of Theorem 4.
Putting n = 0 in Theorem 4, we get:

Corollary 2. Let the function f (z) defined by (1.8) be in the class o an (e B,7) =
U0 (@, 8,7) , then for 0 < Iz =r < 1,

1_2v0-0) _ ., . _1_  26y(1-q)
R ey ey R R e vy L
The result is sharp.

Putting n = 0 and # =4 =1 in Theorem 6, we get:

Corollary 3. Let the function f (z) defined by (1.8) be in the class o* ap0(1,1) =
(@), then for0 < |z| =r < 1,

1
(- <|f ()< 5 +(1-0).
This result is sharp.
4. CLASS PRESERVING INTEGRAL OPERATORS
In this section we consider the claa preserving integral operators of the form

(1.4).

Theorem 4.1. Let the function f (z) defined by (1.3) be in the class o* an (@ B,7),
then

z

F(z) =cz™°7! / t°f (t)dt =

0 k=1

oo
—_— a2 0
+Z c+k+1 wE5 >

™} -

belongs to the class O (Aay¢),B8,7), where

Maye)=1— %1:‘21)) 4.)

The result is sharp for

26~(1 - a)
&)=+ wavm -5~

Proof. Suppose f(z) € Tan (a,ﬂ,'y),then

Sk (k +2)" (14 28y = 6) ok < 267 (1~ ).

k=1

In view of Theorem 2, we shall find the largest value of ) for which
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[ o]

Zk (k+2)"(1+28y~B) ¢
28v(1 =N Ttk +1*S

k=1

It suffices to find the range of A for which

ck (k+2)" (1 + 28y~ B) < k(k+2)"(1+28y-0)
28v(1=A)(c+k+1) — 2B9(1 — ) '

Solving the above inequality for A we obtain

c(l—a)
As T e+ k+1)
Since
oy 4 c(l—a)
Alk)y=1 ——(C+k+1)’ (4.2)

is an increasing function of k (k > 1), letting k = 1 in (4.2), we obtain

_ _ _c(l—a)
A=A =1 —(c+2)

and the theorem follows at once.

OZET: Bu cahgmada, alterne katsayith konvekse - yakin meromorfik
fonksiyonlann belirli bir altsimfi-icin katsay: esitsizlikleri ve bikiilme
teoremleri elde edilmigtir. Aynica simf koruyan integraller incelenmigtir.
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