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OSCULATING SPHERES AND OSCULATING CIRCLES OF A
CURVE IN SEMI-RIEMANNIAN SPACE

E. SOYTURK, K. ILARSLAN AND D. SAGLAM

ABSTRACT. In the Euclidean 3-space, there is a unique sphere for a curve
o : I — R3 such that the sphere touches a at the third order at a(0). The
intersection of the sphere with osculating plane is a circle which touches o
at the second order at a(0) {5]. In this paper, the osculating sphere and the
osculating circle of the curve are studied for each of timelike, spacelike and
null (lightlike) curves in Semi-Riemannian Spaces; R}, R% and R}.

1. INTRODUCTION

The Semi-Riemannian n-space R7, is the Euclidean n-space R® with the Semi-
Riemannian inner product

v n
(X, Y) = — Z.’I}iy,; -+ Z ziYj (11)
i=1 j=v+l
where X = (z1,22,...,Zn) and Y = (y1,¥2, ., Yn)-

An arbitrary vector X = (x,22,...,2,) in R? can have one of the three causal
characters; it is spacelike if (X, X) > 0 or X = 0, timelike if (X, X} <0, X # 0
and null (lightlike) if (X, X) = 0, X # 0. Similarly, an arbitrary curve a : I — R?,
s — afs) in R?, where s is a pseudo-arclength parameter, can locally be spacelike,

timelike or null, if all of its velocity vectors o/(s) are respectively spacelike, timelike
or null for every s € I.

A pseudosphere of radius > 0 in R? is the hyperquadric
SpUr)={peR}: (p,p) =77}.
Similarly, a pseudohyperbolic space of radius r > 0 in R? is the hyperquadric

HZ{(r) = {pe R} : {p,p) = —r?}.

Let {T, N, By, B3} the moving Frenet frame along the curve a. Here, T is the
tangent vector field, N is the principal norma} vector field, B; and Bj are the first
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and second binormal vector fields of the curve a. Depending on the causal character
of the curve a, we have the following Frenet formulae in R}, R$ and Rj.
1.1. Frenet Frame in R3.
Case 1: If o is a spacelike curve with a timelike principal normal N,
T =kiN, N' = kT + kyB, B’ = kyN,
where (T, T) =1, (N,N)=-1,(B,B)=1,(T,N) =0, (T, B) =0 and (N, B) = 0.
If o is a spacelike curve with a spacelike principal normal N,
T' =kN, N' = —kiT + k3B, B’ = k3N,
- where (I, T) =1,(N,N)=1,(B,B) = —land (T,N) =0, (T,B) =0, (N, B) = 0.
Case 2: If « is a timelike curve,
T'=k;N, N' = kyT + k2B, B’ = ~k3N,
where (I, T) = -1, (N,N)=1,(B,B) =1and (T,N) =0,(T,B) =0, (N,B) = 0.
Case 3: If a is a null curve,
T =kiB, N' = —kyB, B' = —kT + k1N,
where (I,T) =0, (T,N} =1, (T, B) =0, (N,N)=0, (N,B)=0, (B,B) = 1.
1.2. Frenet Frame in Rj.
Case 1: If ¢ is a spacelike curve with a timelike principal normal N,
T'=kN, N' =k T + koB1, B] = koN + k3B and B) = —k3 B,
where (T,T) = 1, (N,N) = —-1, (Bl,Bl) = 1, (Bz,Bz) = 1, (T, N) = 0, <T, Bl) =
0, (T,Bs) =0, (N,B;) =0,(N,By) =0 and (B, B3) = 0.
If « is a spacelike curve with a timelike first binormal By,
"=kiN, N' = ~k;T + kgBy, B} = kgN + k3B and B} = k3B;,
where (I, T) = 1, (N,N) = 1, (By,B1) = —1,(B2,B2) = 1 and (T,N) = 0,
(T,B3) =0,(T,By) =0, (N,By) =0,{(N, By) =0 and (B;, Bs2) =0.
If o is a spacelike curve with a timelike second binormal Bs,
T = kN, N' = ~k)T + koBj, Bi = —koN + k3 Bs and Bé = k3B,
where (T, T) = 1, (N,N) = 1, (By,B;) = —1,(B2,Bs) = —1 and (T, N) = 0,
(T, Bl> = 0, (T, Bz) = 0, <N,Bl> - 0, <N, BQ) =0 and <B1,BQ> = (.
Case 2: If o is a timelike curve,
T' = kN, N’ = k;T + k3 By, B, = —kyN + k3Ba, By = —k3 B,
where (T,T) = —1, <N,N> = 1, (Bl,Bl) = 1, <B2,B2> =1 and (T,N) = 0,
<T, B]) = 0, (T,Bz) =0 (N, Bl> = 0, <N, Bz) =0 and (Bl,Bz) =0.
Case 3: If « is a null curve,
T' = kyB1, N' = —k3B; — k3B2, B} = —koT + k1N and Bj = —k3T,
where (T,T) = 0, (T,N) = -1, (T, B;) = 0,(T, B2) = 0, (N,N) =0, (N, B;) =0,
(N, Bg) = 0, (B],Bl) =1 and <Bz,Bz> = 1.
1.3. Frenet Frame in Rj.

Case 1: If o is a spacelike curve with timelike principal normal N and first
timelike binormal B;,

T' = kN, N =T+ ko Bs, Bill = —koN + k3 B3 and Bé = k3 B,
where (T,T) = 1, (N,N) = -1, (B1,B1) = —1,(B2,B;) = 1, (T,N) = 0,
(T, Bl> = 0, (T, Bz) = 0, (N,B]) = 0, (N, Bz) =0 and (Bl,Bz) =0. :
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If o is a spacelike curve with a timelike principal N and second binormal By,

T = IC]N, NI = k1T+ kQBl, Bi = ng + k332 and 312 = k3B],
where (T,T) = 1, (N,N) = -1, (By,B;) = 1,(B,B2) = ~1 and (T,N) = 0,
(T,Bl) = 0, (T,Bg) = O, (N,Bl) = 0, (N, BQ) =0 and (B],Bg) =0.

If o is a spacelike curve with a timelike first binormal B; and second normal B,

T = k1N, N =T+ ko By, Bi = koN + k3B, and Bé = —k3 By,
where (T, T) = 1, (N,N) = 1, (By,B;1) = 1,(B2,B;) = ~1 and (T, N)
(Ta Bl> = 07 (T’ B2) = 0) (Ny Bl) = 0, (N, B2> =0 and (BI)B2> =0.

Case 2: If o is a timelike curve with timelike principal normal N,

T' = kiN, N' = k1T + kyB1, B, = kyN + k3 By, By = —k3 By,
where (T',T) = -1, (N,N) = -1, (B1,B;) = 1, (B2,B) = 1 and (T,N) = 0,
(T, B1) = 0,(T, Bz) =0 (N, B1) =0,(N, Bz) =0 and (B, B3) = 0.

If a is a timelike curve with timelike first binormal B;,

T' =kyN, N' = kT + k3 By, Bi = koN + k3Bs, B; = k3B,
where (T, T) = -1, (N,N) = 1, (By,B;) = -1, (B,B2) = 1 and (T,N) = 0,
(T, B]) = 0, (T,Bz) =0 (N, Bl> = 0, <N, Bz) =0 and (Bl,Bz) =0.

If o is a timelike curve with timelike second binormal Bsy,

T' = kN, N’ = kyT + kyBy, B} = —k3N + k3B3, By = k3 By,
where (I, T) = -1, (N,N) = 1, {(By,B1) = 1, (By,B2) = -1 and {T,N) = 0,
(T,Bl) = 0, (T,Bz) =0 (N,B]) = 0, (N,Bz) =0 and (Bl,Bz) =0. .

Case 3: If o is a null curve with timelike first binormal Bj,

T' = —k1By, N' =kgBy — k3By, B} = —koT + k1N and Bj = —k3T,
where (T, T) =0, (T,N) = -1, (T, B;) = 0,(T,Bs) = 0, (N,N) =0, (N, B;) =0,
(N,Bz) = 0, (B1,Bl) =-1 and (Bg,Bz) = 1.

If o is a null curve with timelike second binormal Bs,

T =kiB,, N = —koB; + k3B, Bl/l = —koT + k3N and Bé = —k3T,
where (T, T) =0, (T,N) = -1, (T, B;) = 0,(T,B3) =0, (N,N) =0, (N, B;) =0,
(N) B2) = 0’ (BlaBl> =1and (B2’B2> =-1 [1])[2], [3] and [4]

0,

2. OSCULATING SPHERE OF A TIMELIKE CURVE

We shall assume that the timelike curve o : I — R} is parametrized such that
llo/(t)|| = 1. Then we have a'(t) = T. Let (y1,¥2,y3) be the Euclidean coordinate
system in R}. We take a sphere (y — d,y — d) = 2, with origin and radius d and r
respectively, where y = (y1,y2,¥3). Let f(t) = (a(t) — d,a(t) — d) — r2. If we have
the following equations

f(0)=0, f(0)=0, f"(0)=0, f"(0)=0 (2.1)

then we say that the sphere touches a at the third order to the curve at «(0).

Theorem 2.1. Let k;(0) and k3(0), the curvatures of a timelike curve o : I — R3
at &(0), be different from zero. Then there exists a sphere which touches at the third
order to the curve at a(0), and the equation of the sphere according to the frame
{To, No, Bo} s

"x% + (1:2 + po)2 + (x5 + 9200)2 = ,03 + (p:;ao)zv (2'2)
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1 and o, = 1
k1(0) ° ke(0)
Proof. If f(0) = 0 then (a(0) — d, o(0) — d) = r2. Since we have f' = 2{(o/,a —d),
f'(0) = 0 implies (T,, a(0) — d) = 0. Similarly we have f” = 2[{a”,a — d) + (o, d)],
f"(0) = 0 implies (k1(0)N,, a(0) —d) + (T,,T,) = 0. Substituting, (T, T,) = ~1
in this equation we obtain (N,,a(0) — d) = p, is obtained.
Considering f” = 2[(a/,a — d) + 3 (¢, )] and f"(0) = 0 we get
(k2(0)To + k1 (0)No + k1(0)k2(0) Bo, (0) — d) + 3 (k1 (0)No, To) = 0.
Consequently,
£2(0) (T, a(0) = d) + K (0) (N, a(0) — d)
+k1(0)k2(0) (Bo,a(0) — d) + 3k1(0) (No, Tp) = 0.
Here, Substituting (T,, a(0) — d) = 0, (N,, a(0) — d) = p,, (N,, T,) = 0, we obtain
—pok1(0) —k1(0)
B,,a(0) —d) = = = ploo-
Bor 20 =D = L Oe(0) = HO)R0) ~
Now we investigate the numbers uj,us, us such that a(0) —d = u1T, + ua N, +
ugB, . Since (T,, (0) —d) = —uy and (Tp, ®(0) —d) = 0, then we find u; = 0.
Since (N,, a(0) —d) = ug and (N,, «(0) —d) = p, then we find uz = p,. Since
(Boya(0) — d) = uz and (B,, a(0) — d) = p,0,, then we find ug = p,o,. Also, the
origin of the sphere that contacts at the third order to the curve at the point a(0)
is

where p, =

d= a(O) ~ polNo — pi)UoBo' (2.3)
Given a variable P on the osculating sphere, suppose P = a(0) + 1T, + 22N, +
z3B,. Hence,
P—d=z1To + (2 + p,)No + (z3 + P;Uo)Bo
also
(P—d, P—d) =~} + (23 + p,)° + (x3 + p,00)°
using (2.3), we obtain
r2 = (a(0) — d,(0) — d) = 2 + (pho)
O
Now, we show that the circle which is the intersection of the osculating sphere

at a{0) with the plane Sp{T,, N,}, contacts at the second order to the curve at
«(0). This circle is called osculating circle of the curve at a(0).

Theorem 2.2. For each timelike curve o : I — R3, there exist a curvey : R — RE,
v(8) = a(0) + (p, sinh )T, + p,(—1 + cosh 6) N, (2.4)
which contacts a at the second order at a(0).

Proof. The equation of the intersection of the plane Sp{T,, N,} with the sphere
which is given by (2.2) according to the frame {T,, No, Bo} is,

—z} + (22 + p.)° = P3. . -
From this equation we can write ; = p,sinh6, z, = p,(—1 4 cosh8). Thus the
intersection circle can be given by (2.4). Clearly v(0) = (O)

Since v/(8) = (p, cosh 8)T, + (p, sinh 8)N,, we have v'(0) = = p,a’(0) . Also,
v"(8) = (p, sinh 8)T, + (p, cosh )N, implies v (0) = p,No = pg 7 (0).
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The equalities 7(0) = a(0), 7'(0) = p,o/(0) and v"(0) = p2a”’(0) show that the
curve vy touches a at the second order at a(0). 0O

Corollary 1. Osculating circle of a timelike curve o : I — R} at o(0) is also a
timelike curve.

Proof. 1t is easy to see that for every § € R, (v/(6),7'(8)) = —p2(coshé)? +
pi(sinh )2 = —p2 < 0. O

We can state the following theorems for the osculating sphere of a timelike curve
in R} and R$ as follows:

Theorem 2.3. Let k1(0), k2(0) and k3(0), the curvatures of a timelike curve o :
I — R% at o(0), be different from zero. Then there exist a sphere which touches

at the fourth order to at a(0) and equation of the sphere according to the frame
{TO,NO’Blo,B2o} 18

—22 4 (@ + M)2 (2 + X)) + (e + Xa)2 = A2 402 4 02, (2.5)
' 1 1
here A\; = p,_, Ay = .00, X3 = [ (p.0,) + £= dp,=—=, o= —=,
where ; Pos A2 P00 3 ((poo ) + a',,) Wwo and g, ky (0) To kz(O)
“0 = a0y’

Theorem 2.4. Let k1(0), k2(0) and k3(0), the curvatures of a timelike curve o :
I — R% at o(0) with timelike principal normal N, be different from zero. Then
there exist a sphere which touches at the fourth order to a at a(0) and the equation
of the sphere according to the frame {T,, No, B1,, Ba,} i3

22 — (2g — M1)? + (T3 + X2)% + (Zg + A3)° = =22 + A2+ A2, (2.6)

: 1 1
where \; = p,, Ay = plLoo, A3 = ((p{,oo) - 55) wp and p, = m y Oo = m,

1
"~ k3(0)

Theorem 2.5. Let k1(0), k2(0) and k3(0),the curvatures of a timelike curve o :
I — R3 at a(0) with timelike first binormal By, be different from zero. Then there
exist a sphere which touches at the fourth order to a at a(0) and the equation of
the sphere according to the frame {T,, N,, By,, Ba,} is

Wo

—22 + (@ + M) = (3 + X) + (ma+ 23)2 = A2 = A2 402, (2.7)
/ 1 1
= =09 = / — Po = e—— = —
where A\ = p,, Ay = pL0,, A3 = ((pooo) a,,) wg and p, ) O, OR
1
wo= k3(0)’

Theorem 2.6. Let k;1(0), k2(0) and k3(0), the curvatures of a timelike curve « :
I — R} at o(0) with timelike second binormal Bo, be different from zero. Then
there ezist a sphere which touches fourth order to o at o0) and the equation of the
sphere according to the frame {T,, Ny, B1,, Ba,} 15

—a2 + (3 + A1)+ (T3 — M) — (w4 — X3)° = N + 03 — A3, (2.8)
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/ 1 1
h )\ = y )\ = / s )\ = / Py —_— e——— 0 = ——
where Ay Po 2 PoT0; A3 ((poao) + g'o) wo and Po kl (0) y O kz(O),
1
wo= k3(0)’

3. OSCULATING SPHERE OF A NULL CURVE

Theorem 3.1. Let k1(0) # 0. The sphere that contacts at the third order to null
(lightlike) curve o : I — R3 at o(0) is the pseudosphere at a(0) and the equation

of the sphere according to the frame {Tp, No, By} is

—221z4 + 25 = 0. (3.1)
Proof. If f(0) = 0, then ((0)—d,a(0)—d) = r% Since f' = 2{(a’,a—d)
f'(0) = 0 implies (T,,a(0) —d) = 0. Since f” = 2k, (B,a~d), f'(0) = 0 im-
plies
2k1(0) (Bo, a(0) — d) = 0. Since k1(0) # 0 then we have (B,, a(0) — d) = 0. Since
" =2k} (B,a—d) ~ kiky (T, — d) + k} (N, — d) + k, (B, T))

then f"/(0) = O implies k2(0) (N,, 2(0) — d) = 0. And we obtain (N,, (0) —d) =0

Now we investigate the numbers uj, ug,us such that a(0) —d = u; T, + ugN, +
u3B,. Considering (T,,a(0) —d) = 0, (B,, a(0) —d) = 0, (N,,a(0) —d) = 0 and
Frenet frame, we have (T,, a(0) — d) = uy (Tt, To) + u2 (T,, No) + us (T, B,,) then
uy = 0. (No,a(O) —-d) = U (No,Tc,) + Uz <NO,NO) + us (NO,BO) then u; = 0.
Similarly (B, a(0) — d) = uy (B, T,) + uz (Bo, N,) + u3 (Bo, Bo)
then uz = 0. Thus d = a(0). Since (a(0) — d, a(0) — d) = 72 then we must have
r =0 . Also the equation of the pseudosphere which contacts at the third order to
a at a(0) is (y — a(0),y - a(0)) =0 . O

We can state the following theorems for the osculating sphere of a null curve in
R4 and R} as follows:

Theorem 3.2. Let k1(0) # 0. The sphere that contacts at the third order to null
(lightlike) curve o : I — R} at a(0) is the pseudosphere at a(0) and the equation

of the sphere according to the frame {T,, N,, By,, B2, } is

1 1\’
—2.’1:111:2 + .’17% + (1’4 - -k—)2 = <k_> . (32)
3 3
Theorem 3.3. Let k1(0) # 0. The sphere that contacts at the fourth order to
null (lightlike) curve o : I — R% at o(0) with timelike first binormal By is the
pseudosphere at o(0) and the equation of the sphere according to the frame

{Tm No, Bl(,,B2(,} 18
2
1 1
~2ms -+ - P = () (33)
Theorem 3.4. Let k1(0) # 0. The sphere that contacts at the fourth order to

null (lightlike) curve a : I — R} at a(0) with timelike second binormal By is
the pseudosphere at a(0) and the equation of the sphere according to the frame
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{Tm Noa Blo’ Bzo} is

1 1)\?
—22?11'2 + .’Eg - (.’E4 - ']g)z = (k_g) . (34)

4. OSCULATING SPHERE OF A SPACELIKE CURVE

Theorem 4.1. Let k1(0) and k2(0), the curvatures of a spacelike curve o : I — R}
with timelike principal normal N at a(0), be different from zero. Then there exists
a sphere which touches at the third order to the curve at a(0), and the equation of
the sphere according to the frame {Tp, No, By, } is

x% - (z + po)2 + (z3 - p;UO)2 = _p(27 + (P200)2a (4.1)
1 1
=-——and o, =——.
where p, P0) and o %2(0)

Proof. Let f(t) = (a(t) — d, a(t) ~ d) — r2. If £f(0) =0 then (a(0) ~ d,a(0) —d) =
r2. Since f' = 2{a/,a —d) then f/(0) = O implies to (T,,(0) —d) = 0. Since
f"=2[{a",a—d)+{,a)], f'(0) = 0 implies to [(k1 (0) Ny, a(0) — d) + (T,,T,)] =
0 and we get (N,,0(0) ~ d) = ~p,. Since f" = 2[(,a — d) + 3 (&, a!)] and the
equality f"/(0) = 0 implies to

(K2(0)T, + K, (0)N, + k1 (0)k(0) Bo, a(0) — d) + 3 (k; (0)No, Tp) =0

Let us consider (To,a(0) —d) = 0, (N,, a(t) —d) = —p,, (No,To) = 0 then we
obtain

__pKO) _ KO
(Bo,a(0) —d) = kl(O)lkz(O) - k%(ol)kz(o)

/
= —Pu00

Now we investigating the numbers u;, ug, u3 such that o0) —d = u1To + u2 N, +
uzB,, we obtain

a(0) —d = p,N, — p,o,Bo.
Thus, the origin of the sphere which contacts at the third order to the curve a at
point a(0) is

d = a(0) — p,N, + p,00Bo.
When a variable P is given on this sphere, we suppose P = a(0) + 21T, + z2N, +
z3B,. Hence, we get
P—d=uzT, + (z2 + p,)No + (z3 — p,05)Bo,
then
(P—d, P~d) =}~ (z3+p,) + (x5 — ,00)*.

Also 2 = {a(0) — d, a(0) — d) = —p2 + (0,0,)? then the equation (4.1) is obtained.

|

Corollary 2. If —p2+ (p,0,)2 > 0 at a(0) for the spacelike curve o : I — R}
whose principal normal vector is timelike, then osculating sphere is a one-sheet
hyperboloid. If —p2+(p\o,)? < 0, then osculating sphere is a two-sheet hyperboloid.
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Now, we show that the circle which is the intersection of the osculating sphere at
a(0) for a spacelike curve a : I — R} whose principal normal vector is timelike the
plane Sp {T,, N,} , contacts at the second order to the curve at a(0) . The circle is
called osculating circle of the spacelike curve at «(0).

Theorem 4.2. A spacelike curve o : I — R} whose principal normal vector is
timelike has a circle v : R — R} which contacts at the second order to the curve at
a(0) and

¥(0) = a(0) + (p, sinh )T, + p,(—1 -+ cosh §)N,. (4.2)

Proof. The equation of the intersection of the plane Sp{7,, N,} with the sphere
which is given in (4.1) according to the frame {T,, N,, B,} is
—2% + (25 + p,)° = P2
Then we have x; = p,sinh6, z, = p,(~1+cosh @) . Thus, the intersection circle
can be given as in the equality in (4.2). Clearly v(0) = @(0) . Since

’

v (8) = (p, cosh )T, + (p, sinh )N,
then we get,
7(0) = pTo = pocf (0)-
Since v"(8) = (p, sinh )T, + (p, cosh §)N,, then we obtain,
7”(0) — poN 2 //(O)
The equalities v(0) = «(0), v'(0) = p,&/(0) and v/(0) = p2a”(0) show that the
curve <y contacts at the second order to the curve o at «(0). O

Corollary 3. Osculating circle of a spacelike curve o : I — R} whose principal
normal vector is timelike at a(0) is also a spacelike curve.

Proof. It is easy to see that for every 8 € R, (v'(8),7'(8)) = p2(cosh )% —p2(sinh §)% =
2
pz>0. O

Theorem 4.3. Let o : I — R? be a spacelike curve with timelike binormal vector
field and the curvatures of the curve at point a(0); k1(0) and k2(0) different from
zero. Thus there exist a sphere which contacts at the third order to the curve « at
a(0) and the equation of the sphere according to the frame {T,,N,, B,} is

m% + (22 — Po)2 —(z3 P;UO)Z = P¢2> - (P::O'O)za (4.3)
1 1
where p, = —— and 0, = ——.
o7 @ 7T k(0)
Proof. The proof is similar to the proof of the Theorem 4.1. 0

Theorem 4.4. For each spacelike curve o : I — R}, whose binormal vector field is
timelike, there exist a circle v : R — R} which contacts at the second order to the
curve at a(0) and

() = a(0) + p, sinh(8 + 7))T, + (p, + p, cosh(f + 7)No. (4.4)
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Proof. The proof is similar to the proof of the Theorem 4.3. O

Corollary 4. Osculating circle of a spacelike curve a : I — R3 whose binormal
vector field is timelike at point a(0) is also a spacelike curve.

Proof. It can be made in a similar way to the proof of Theorem4.2. O

We can state the following theorems for the osculating sphere of a spacelike curve
in R} and R} as follows:

Theorem 4.5. Let o : I — R% be a spacelike curve with timelike principal vector
field N and the curvatures of the curve at a(0); k1(0), k2(0) and k3(0) be different
from zero. Thus there exist a sphere which contacts at the fourth order to the curve
a at a(0) and the equation of the sphere according to the frame {Ty, No, B1y, B2, }
18

23— (zy + M)ZH (23 — A2)? + (24 + Ma)2 = =23 + 22 + 3, (4.5)
1

= = / = —(p ' £o = X
where Ay Pos A2 Pad0, A3 (( (pooo) + ,o)wo) and po 0
Go= s, wp =
T k(0) 0T Rs(0)
Theorem 4.6. Let o : I — R} be a spacelike curve with timelike first binormal By
and the curvatures of the curve at a(0); k1(0), k2(0) and k3(0) be different from
zero. Thus there exist a sphere which contacts at the fourth order to the curve a at

a(0) and the equation of the sphere according to the frame {To, No, B1,, Bz, } is

22 4 (2g — M1)? = (T3 + X2)? + (2 + Ag)? = A2 — 22 + )3, (4.6)

! ’ 1
where A1 = pg, A2 = ppo0, A3 = ((—(poao) +-§%) wo)and Po = m ,
1 1

" ®(0) T &(0)

4]

Theorem 4.7. Let a: I — RS be a spacelike curve with timelike principal normal
N and timelike first binormal B, and the curvatures of the curve at point a(0);
k1(0), k2(0) and k3(0) be different from zero. Thus there ezist a sphere which
contacts fourth order to the curve o at a(0) and the equation of the sphere according
to the frame {Ty, No, Bi1,, Ba, } is

22 — (zp + M)% = (23 + X)? + (24 — As)? = =XF = N+ )5, 4.7)

where A\ = py, A2 = ppooe, A3 = —(((pbao)'+§§) wo)and Po =
1 1

5(0) " T ks(0)

1
ki(0) ’
agg =

Theorem 4.8. Let o : I — R} be a spacelike curve with timelike principal normal
N and timelike second binormal By and the curvatures of the curve at point o(0);
k1(0), k2(0) and k3(0) be different from zero. Thus there exist a sphere which
contacts fourth order to the curve a at o(0) and the equation of the sphere according
to the frame {To, No, Bi,, Ba, } s
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o] — (22 + M) + (23— X2)® — (24 + Ma)? = =N + 25 = 0§, (4.8)

where Ay = pg, Ao = ppoo, A3 = —(((paoo)lﬁ-fﬁ-) wo)and Po
1 1

k2(0) * T ka(0)’

Theorem 4.9. Let a : I — R} be a spacelike curve with timelike first binormal
B and timelike second binormal By and the curvatures of the curve at point (0);
k1(0), k2(0) and k3(0) be different from zero. Thus there exist a sphere which
contacts at the fourth order to the curve o at a(0) and the equation of the sphere
according to the frame {Top, No, B1,, B2, } 1s

1
ki(0) ’

0 =

22+ (T — M)~ (3 4+ M) = (mg — A3)2 = A2 — 22 4+ 02 (4.9)
1

where Al = Pos A2 - PGUO» )\3 = ((—(p;)a'o)'-i-gg‘) wo)and Po — _kl(O) 3

1 _ 1

T R0) T k()
OZET. Ug boyutlu Oklid uzaymnda bir @ : I — R3 egrisinin o(0)
noktasinda egriye ticiincii basamaktan degen bir ve yalmz bir kiire vardir.
Oskiilator ditzlemiyle bu ktirenin arakesiti, egriye (0) noktasinda ikinci
basamaktan degen bir cemberdir [5]. Bu ¢ahsmada R3, R} ve R} yan
Riemann uzaylarinda zamansi, uzays: ve bogluksu (1s1ksi) egrilerin her
biri icin egrinin oskulatdr kiiresi ve egrilik gemberi incelenmigtir.

g0
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