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osculating spheres and osculating circles of a 
CURVE in SEMI-RİEMANNIAN SPACE

E. SOYTÜRK, K. ILARSLAN AND D. SAĞLAM

Abstract. Ilı the Euclidean 3-space, t,here is a uııigue sphere for a curve
o : / —» R^ such that the sphere touchc.s a at. the third order at ct(0). The
iııtersectioıı of the splıere with oseulatiııg plaııe is a eircle which touches a 
at the secoud order at a(0) [5j. In this paper, the osculating sphere and the 
osculating circle of the curve are studied for each of timelike, spacelike and 
null (Ughtlike) curves in Semi-Riemannian Spaces; Rj, R| and R^.

1. Introduction

The Semi-Riemannian n-space R", is the Euclidean n-space R” with the Semi- 
Riemannian inner product

y n
(1-1)

i-l J=!^+l

where X = (atj, 3:2,...,!„) and Y = {yı,y2,
An arbitrary vector X = (xı, X2,..., a:„) in R" can have one of the three causal 

characters; it is spacelike if {X, X} > 0 01 X = 0, timelike if {X, < 0, X / 0
and null (Ughtlike) if {X, X) = 0, X / 0. Similarly, an arbitrary curve a : I —» R”,
s a(s) in R", where s is a pseudo-arciength parameter, can locally be spacelike, 
timelike or null, if ali of its velocity vectors a'(s) are respectively spacelike, timelike 
or null for every s & I.

A pseudosphere of radius r 0 in R" is the hyperquadric

^-i(r) = {pGR^.(p,p)=r2}.

Similarly, a pseudohyperbolic space of radius r 0 in R" is the hyperquadric

= {p e R: ; M = -r‘ }•

Let (T,TV,Bi,B2} the moving Prenet frame along the curve a. Here, T is the 
tangent vector field, N is the principal normal vector field, Bı and B2 are the first
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and second binormal vector fields of the curve a. Depending on the causal character 
of the curve a, we have the following Frene t formulae in Rf,®! and R^.

1.1. Frenet Prame in Rf-
Case 1: If a is a spaceüke curve with a timelike principal normal N,
T' - kiN, N' = kıT + kiB, B' = k2N,

wheıe {T, T} - 1, {N, N} -1, {B, B) = 1, {T, N} - 0, (T, B) = 0 and <7V, B) = 0.
If a is a spacelike curve with a spacelike principal normal N,
T' = kıN, N' = -kıT + k2B, B' = k2N,

where {T, T} = 1, {N, N) == 1, (B, B} - -1 and (T, N) = 0, {T, B} = 0, (AT, B} = 0.

Case 2: If a is a timelike curve,
T' = kıN, N' = kıT + k2B, B' -k2N, 

wheTe {T, T) = -1, {N,N} = 1, {B,B) = 1 and {T, N} = Q, {T, B) = 0, {N, B} = 0.

Case 3: If a is a null curve,
T' = k^B, N' = -k2B, B' = -k2T + k^N, 

wheTe {T, T) = 0, (T, N) 1, {T, B} = 0, N} = 0, (TV, B) = 0, (B, B} = 1.

1.2. Frenet Frame in Bf.
Case 1: If a is a spacelike curve with a timelike principal normal N,
T' = kıN, N' — kıT + k2Bı, B[ = k2N + k3B2 and B2 = —k^Bı, 

where {T, T) = 1, (Af, Af) = -1, {Bı,Bı) = 1, l,B2,B2} = 1, {T,N') = 0, (T,Bı) = 
0, (T, B2) = 0, (Af, Bı) = 0, (Af, B2') = 0 and {Bı ,B2} = 0.

If Q is a spacelike curve •with a timelike first binormal Bı,
T' = k^N, N' = —kıT + k2Bi, B{ = k2N + k3B2 and B2 = k^B^, 

vfheıe {T,T} = 1, {N,N} = 1, {Bt.,Bx} -1,(B2,B2) = 1 and (r,Af) = 0, 
(T,Bı) = 0, (r,B2) = 0, (Af,Bı) = 0, {N,B2} = 0 and (Bı,B2) = 0.

If a is a spacelike curve with a timelike second binormal B2,
T' = k-iN, N' = -kıT + k2Bı, B[ = -k2N + k3B2 and B'2 = ksBı, 

^heıe {T,T) = 1, (N,Af) = 1, (Bı,Bı) = -\,{B2,B2} = -1 and (T,Af) = 0, 
(T,Bı) = 0, {T,B2}-=O, (Af,Bı) =0,(Af,B2) = 0 and {Bi,B2}=0.

Case 2: If a is a timelike curve,
T'= ki Af, Af'==kır + fc2Bı, B[ =-k2N + k3B2, B2 = -k2Bı, 

where {T,T} = -1, (Af,Af) = 1, {Bi,Bı) = 1, (B2,B2) = 1 and (T,N} = 0, 
(T,Bı) =0,(r,B2) = 0 (Af,Bı) =0,(Af,B2) =0 and {Bı,B2)=0.

Case 3: If n is a null curve,
T' = kiBi, N' = -k2Bi - kzB2, B[ = -k2T + k^N and B'2 = -k^T, 

where (T, T) = 0, (T, Af) = -1, (T,Bı) = 0, (T,B2) = 0, (Af, Af) = 0, (Af,Bı) = 0, 
(Af,B2) = 0, (Bı,Bı) = 1 and {B2-,B2} — 1.

1.3. Frenet Prame in R^.
Case 1: If a is a spaceUke curve with timelike principal normal Af and first 

timelike binormal Bı,
T' = k^N, N' = kıT + kiBı, B'-^ = -k2N + k3B2 and B^ = k^B^,

{T,T) = 1, (N,N) = -1, (Bı,Bı) = -1,(B2,B2) = 1, (T,Af) = 0, 
(T, Bı) = 0, (T, B2} = 0, (Af, Bı) = 0, (Af, B2) = 0 and (Bı, B2) = 0.
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If a is a spacelike curve with a timelike principal N and second binormal Bz,
T' = kıN, N' — kıT + k2Bı, B( = k2N + k2B2 and B2 = k.iBı, 

where {T,T) = 1, (TV,TV) = -1, {Bı,Bı) = 1,{B2,B2) = -1 and {T,N) 0,
(r,Bı) -0,(r,Bz) = 0, {N,Bı) =Q,{N,B2) = 0 a.nd (Bı,Bz) = 0.

If a is a spacelike curve with a timelike first binormal Bı and second normal Bz,
T' = kıN, N' = -kıT + k2Bı, B{ = k2N + k^B2 and B^ = -ksBı, 

where (T,!") = 1, {N,N) = 1, {Bı,Bı) = l,(Bz,B3) = -1 and {T,N) = 0, 
{T, Bı) = 0, (T, Bz) = 0, {A-, Bı} = 0, {N, B^) = 0 and (Bı, Bz) = 0.

Case 2: If cc is a timelike curve with tinıelike principal normal 2V,
T’ k^N, N' = -kyT + k2Bı, B{ = k2N + k^B2, B2 = -k^Bı, 

where {T,T) = -1, (JV.AT) = -1, (Bı,Bı) = 1, (Bz.Bz) = 1 and 
{T,Bı) = 0, (r,B2) = 0 (2V,Bı} = 0, {N,B2} = 0 and (Bı,Bz) = 0.

If a is a timelike curve with timelike first binormal Bı,
T' = kıN, N' = kıT + k2Bı, B{ = k2N + k^B2, B'2 = k^Bı, 

wheTe {T,T) = -1, (İV,A') = 1, (Bj.Bı) = -1, (Bz,Bz) = 1 and 
{T, B^) = 0, <T,B2} = 0 {N, B^} = 0, (N, B2} = 0 and (Bı, Bz) = 0.

If a is a timelike curve with timelike second binormal Bz,
T' kyN, N' = kıT + fczBı, B[ = -k2N + fcgBz, Bz = k^B^, 

{T,T) -1, {N,N} == 1, (Bı,Bı) = 1, (Bz,Bz) = -1 and 
(T,Bı) = 0, (T,B2) = 0 (AT,Bı) = 0, (TV,B2) = 0 and (Bı,Bz) = 0.

Case 3: If a is a null curve with timelike first binormal Bı,

{T,N) = o,

{T,N) = 0,

{T, N) = 0,

r = -kıBı, N' = k2Bı - kzB2, B'ı = -k2T + kıN and B^ = -k3T, 
vihere {T, T) = 0, (T, TV) = -1, {T,Bı) = 0, (T,Bz) = 0, (TV, TV) = 0, (TV,Bı) = 0, 
{h^.,B2) = 0, (Bı,Bı) = —1 and (Bz,Bz) = 1-

If a is a null curve with timelike second binormal Bz,
T' = kıBı, N' = -k2Bı + k2B2, B'ı = -k2T + kıN and B^ = -ksT, 

wheTe {T,T) = 0, (T,TV) = -1, (T,Bı) = 0, (T,B2) = 0, (TV, TV) = 0, (TV,Bı) = 0, 
(TV,Bz) = 0, (Bı,Bı) = 1 and (Bz,Bz) = - 1. [1], [2], [3] and [4].

2. OSCULATING SpHERE OF A TlMELIKE CURVE

We shall assume that the timelike curve a : I —+ Rf is parametrized such that 
||Q'(t)|| = 1. Then we have a'{t) = T. Let (j/ı, î/2,î/3) be the Euchdean coordinate 
System in Rj. We take a sphere {y — d, y — d) =r'^, with origin and radius d and r 
respectively, where y = {yı,y2, Vs)- Let f{t) = {a{t) — d, a{t) — d) —r^. If we have 
the following equations

/(O) = 0, /'(O) = 0, /"(O) = 0, r'(o) = 0 (2.1)

then we say that the sphere touches a at the third order to the curve at »(O).

Theorem 2.1. Let kı{Q) and k2{0), the curvatures of a timelike curve a : I —^^ı 
at a(0), &e different from zero. Then there exists a sphere which touches at the third 
order to the curve at o;(0), and the eguation of the sphere according to the frame 
{To,Nq,Bo} is

-31? + {X2 + Pof + («s + P'o<^of = Po + {2.2}
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where = 1

*1(0)
and ao

1

~ k2{0} ■

Proof. If /(O) = 0 then («(0) — d, a(0) — d} = r'^. Since we have f' — 2 {a', a — d}, 
f'{Q} = 0 implies (7),, a(0) — d) =0. Similarly we have f" = 2 [(a", a — d) + {of, a')], 
/"(O) = 0 imphes (/i:ı(0)Ao, a(0) - d) + {To,To} = 0. Substituting, {To,To} = -1 
in this equation we obtain {No, a(0) — d) = po is obtained.

Considering f" = 2 [(«'", a — d) + 3 {a", a')] and f"'{Q} = 0 v/e get 
{kl{Q)To + fci(0)Ao + *i(0)*2(0)Bo,q(0) - d) + 3 {k^{0)No,To} = 0.

Consequently,
*2(0) (T„, q(0) - d) + k{{0) {No, a{0} - d) 

+kı{0)k2{0} {Bo, a(0) - d} + 3kı{Q} {No,To} = 0.
Here, Substituting {To, a(0) — d) = 0, {No, a(0) - d) = Po, {No, To) =Q ,'ffe obtain

-Pofci(O)
fcı(0)fc2(0)

-fcı(O) = P'o^o-

Now we investigate the numbers uj, U2,113 such that a(0) — d = uıTg + U2N0 + 
U3B0 ■ Since (To,a(0) — d} — —u-^ and (To)Cv(O) — d) = 0 , then we find uı = 0. 
Since (A^o,a(0) — d} — U2 and {No,a{0') — d) — p^ then we find 1x2 = Po- Since 
(Bo, a;(0) — d} — U2 and (Bo, a(0) — d) = pof^oı then we find U3 = p'of^o- Also, the 
origin of the sphere that contacts at the third order to the curve at the point a(0) 
is

d a:(0) - PoNo - Pof^oBo- (2.3)

Given a variable P on the osculating sphere, suppose P = «(0) + a;ıTo + X2No + 
X2Bo- Hence,

B - d = xıTo + {X2 + Po}No + {X2 + p'o(ro)Bo
also

{P-d, P-d} 
using (2.3), we obtain

-A ,2+ {^2 + PoY + (^3 + P>o)'

r-^ (q(0) - d, a(fi) - d} = pI + {p'oi^oY-
□

Now, we show that the circle which is the intersection of the osculating sphere 
at a(0) with the plane Sp {To, No}, contacts at the second order to the curve at 
Q:(0). This circle is called osculating circle of the curve at a(0).

Theorem 2.2. For each timelike curve a : d —» Rj, there exist a curve 7 : R —> Rj,
7(0) = «(O) + (p^sinh 0)To + Po(-1 + coshO^No (2.4)

which contacts a at the second order at a(0).

Proof. The equation of the intersection of the plane Sp{To,No} with the sphere 
which is given by (2.2) according to the frame {To, No,Bo} is,

-xl + {x2 + poy = Pİ-
Prom this equation we can write x^ = p^sinh^, 12 Po(~l + coshö). Thus the 
intersection circle can be given by (2.4). Clearly 7(0) = q(0).
Since ^'{0} = (poCoshö)?), + {Po sinhö)7Vo, we have 7^(0) = PoTo = PgQ.'{G) . Also,
7"(ö) = (PoSİnhe)To + (poCOsh0)Afo implies 7"(0) = p^N^ = p^aa"{G).
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The equalities 7(0) = a(0), 7^(0) = Pga'(O') and 7"(0) = show that the
curve 7 touches a at the second order at a(0).

Corollary 1. OscuZating circle of a timelike curve a 
timelike curve.

□
; J —> Rj at q(0) is also a

Proof. It is easy to see that for every 6 e R, = —Po(coshÖ)2 4-
□p2(sinh0)2 = 0.

can State the following theorems for the osculating sphere of a timelike curve 
in Rj and R2 as follows:

Theorem 2.3. Let fcı(O), fc2(0) and ^3(0), the curvatures of a timelike curve a :
I Rj at q(0), be different from zero. Then there exist a sphere which touches
at the fourth order to at a(0) and eguation of the sphere according to the frame 
{To,No,Big,B2o} is

where A

-^1 “I" {^2 "I" -^1)2 d" (3:3 + A2)^ + (2:4 + A3)2 — Aj + A2 + A3,

= Po, ><2 = p'o<^o^ ^3 = ((PoO-o)' d- Wo and (To

(2.5)

1
1

1
“ hı(0) ’

Wo =
1

Theorem 2.4. Let and k^{Çi), the curvatures of a timelike curve a :
I R2 at q(0) uıith timelike principal normal N, be different from zero. Then
there exist a sphere uıhich touches at the fourth order to a at q(0) and the eguation 
of the sphere according to the frame {To,No,Bı^,B2o} is

-^1 — (^2 — '^1)2 d" (^3 d” A2)2 + (2:4 + A3) — —Aj + A2 + Ag,

where Aj

1
İOo =

= Po> ^2 = p'o^^o, ^3 = ((PoO'o)' - p„ 
(To wo and o-o

(2.6)

1

~ k2(oy

A:3(O)’

1
" *1(0) ’

Theorem 2.5. Let kı^O), k2{0') and k3{Q'j,the curvatures of a timelike curvea :
I R2 at a(0) wit/ı timelike first binormal B^, be different from zero. Then there 
exist a sphere uıhich touches at the fourth order to a at «(O) and the eguation of 
the sphere according to the frame {To,No,B-j.^,,B2a} is

~^ı d" (2^2 d- Aı)2 — (2:3 + A2)2 + (2:4 + A3)2 — Aj — A2 + A3,

where Aj

1

= Po^ >^2 = p'o^^o, ><3 = ((Po<^o)' - <^o and Po

Wo = ^3(0)’

1

“ Â:ı(0) ’ <^o

(.‘2-7}
1

" *3(0) ’

Theorem 2.6. Let fcı(O), /c2(0) and k^ÇO), the curvatures of a timelike curvea :
R2 at a(0) with timelike second binormal B2, be different from zero. Then 

there exist a sphere uıhich touches fourth order to a at a(0) and the eguation of the 
sphere according to the frame {To,No,Bx^,B2o} is

d- (2:2 d- Aı)2 + (2:3 — A2)2 — (2:4 — As)^ — Aj + A2 — A3, (2.8)
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where Aı

1

= Po^ ^2 = p'o<^o, A3 = {{p'o<^o 1

*1(0) ’
1

Wo =
*3(0)'

3. OSCULATING SPHERE OF A NULL CURVE

Theorem 3.1. Let *1(0) 0. The sphere that contacts at the third order to null
(lightlike) curve a : I Kj at a(0) is the pseudosphere at a(0) and the equation
of the sphere according to the frame [To, No, Bo} is

— 2X1X2 + x| = 0.

Proof. If /(O) = 0, then (»(O) - d, q;(0) — d} =

(3.1)

Since f' = 2{a',a — d}
f(fS} = 0 implies {Ta,a(0}-d} = 0. Since f” = 2ki {B,a-d), f"(0) 0 im-
pUes

2*1(0) {Bo, 0(0) — d) =0. Since *ı(0) 0 then we have (Bo, a(0) — d) = 0. Since 
= 2[*i {B, a-d}-kık2 {T, a-d) + kl{N,a-d} + k^ {B, T)]

then = 0 imphes *1 (0) {No, a(0) - d} = 0. And we obtain {No, «(O) - d) =0

Now we investigate the numbers uı, U2,U3 such that a(0) - d = u^To + U2N0 + 
U3B0. Considering (To,a(0) - d} = 0, {Bo, a(0) - d} = 0, {No,oı{0') - d) = 0 and 
Frenet frame, we have {To, a(0) - d) = uı {To,To) + U2 {To, No} + U3 {To, Bo} then 
U2 = 0. {No, 0(0) - d) = uı {No,To} + U2 {No, No} + U3 {No, Bo} then uj = 0. 
Similarly {Bo, a(0) - d} =uı {Bo, To} + U2 {Bo, No} + U3 (j5o, Bo} 
then U3 = 0. Thus d = q(0). Since (q(0) — d, a(0) — d} — r"^ then 'vre must have 
r = 0 . Also the eguation of the pseudosphere which contacts at the third order to
a at q(0) İs {y — «(0), y — a(0)) = 0 . □

We can state the following theorems for the osculating sphere of a null curve in 
Rj and R2 as follows:

Theorem 3.2. Let fcı(O) 0. The sphere that contacts at the third order to null
(lightlike) curve a : I Rj at a(0) is the pseudosphere at «(0) ond the eguation
of the sphere according to the frame {To,No,Bı„,B2o} is

-2X1X2 + X3 + (X4 - .^)2 =

^3
1 

^3

2
(3.2)

Theorem 3.3. Let kı{0} 0. The sphere that contacts at the fourth order to
null (lightlike) curve o : / —> R2 at q(0) with timelike first binormal Bı is the 
pseudosphere at a(0) and the eguation of the sphere according to the frame 
{T„,No,Bi„,B2„} İs

„ 2 , 1 X
-2X1X2 - X3 + {Xi - —) 

k3
,2 _ 1

2
(3.3)

Theorem 3.4. Let *ı(0) 0. The sphere that contacts at the fourth order to
null (lightlike) curve a : / —» R2 at q(0) ıvith timelike second binormal B2 is 
the pseudosphere at a(0) and the eguation of the sphere according to the frame
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{Îo,7Vo,S1o,B2o} İs
2

-2a;ıX2 + 3:3 - (2:4 - ■j^)^ = 1

ks
(3.4)

4. Osculating Sphere of a Spacelike Curve

Theorem 4.1. Let fcı(O) and fc2(0), the curvatures of a spacelike curve a ; / —» Kf 
with timelike principal normal N at a(0), be different from zero. Then there exists 
a sphere uıhich touches at the third order to the curve at a(0), and the eguation of 
the sphere according to the frame {Tq,No,Bi„} is

where =

a:? - {^2 + PoY + {^3 - = -pI + ^p'o(^o}^,

and a o —
1

A:2(O) ■

(4.1)

1

Proof. Let /(t) = {aft) — d, a{t} — d) — r^. If /(O) = 0 then («(0) — d, a(0) — d) = 
Since /' = I {of, a — d} then /'(O) = 0 implies to (To,q(0) —d) = 0. Since 

r = 2 [(o", a - d) + {a', a')], f'^O) = 0 implies to [{kr{0)No, a{Q) - d) + {To, To}] = 
0 and we get {No, «(O) - d) = -po- Since f" = 2 [(«"', a — d) + 3 {a", a()] and the 
eguality /"'(O) = 0 implies to

{kl{0}To + k[{0)No + kı{0}k2{0}Bo, a(0) - d) + 3 {k^{0}No,To} - 0
Let us consider (ro,a(0) — d) = 0, (7Vo,a(t) — d} = -po, {No,To} = 0 then we 

obtain

{B„,a{Q}-d} = /^o^(0) _ _ I

fcı(0)A:2(0) fc?(0)Â:2(0)

Now we investigating the numbers uı, U2,U3 such that a(0) — d = u^To + U2N0 + 
U3B0, yive obtain

«(0) - d = p^No - p'o(ToBo.
Thus, the origin of the sphere which contacts at the third order to the curve a at 
point 0(0) is

d = a(0) - p„No + Pof^oBo.
When a variable P is given on this sphere, we suppose P = «(0) + x\To + X2No + 
X3Bo- Hence, we get

P - d = XıTo + (2:2 + Po)No + (2:3 - Po<To)Po, 
then

{P-d, P-d} =xl- (2:2 + PoY + (X3 - p'oCTof-
Also = (a(0) - d, a(0) — d) = + {p'o^oY then the eguation (4.1) is obtained.

□

Corollary 2. Tf —p^ + (PgO’o)^ > 0 at a{0} for the spacelike curve a ; I -► Kİ
whose Principal normal vector is timelike, then osculating sphere is a one-sheet 
hyperboloid. If —Po + {Po<^o)^ < 0, then osculating sphere is a tuıo-sheet hyperboloid.
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Now, we show that the circle which is the intersection of the osculating sphere at
û(0) for a spacelike curve a : I Rı whose principal normal vector is timelike the
plane Sp {Tg, Ng} , contacts at the second order to the curve at a(0) . The circle is 
called osculating circle of the spacelike curve at q;(0).

Theorem 4.2. A spacelike curve a : I —> Rj whose principal normal vector is
timelike has a circle 7 : R —» Rj uıhich contacts at the second order to the curve at 
a(0) and

7(ö) = «(0) + (PoSİnh 0)T'o + Po(-1 + cosh0)MO’ (4.2)

Proof. The eguation of the intersection of the plane Sp{To,No} with the sphere 
which is given in (4.1) according to the frame {To,No,Bo} is

+ (2:2 + p„f pI.

Then we have = PoSİnh0,3:2 = Po(—H-cosh0) . Thus, the intersection circle 
can be given as in the eguality in (4.2). Clearly 7(0) = «(0) . Since

'y (0) = (poCosh0)T'o + (poSİnh0)7Vo
then we get,

'i' (0) = PoTo = PoO (0).
Since 7"(0) = (PoSİnh0)ro + {pgCoshd)No, then we obtain, 

7"(0) = PoA^o = Poa"(0).
The equalities 7(0) = «(0), 7'(0) = Po‘^^(0) 7'^(0) = Po‘^"(0) show that the
curve 7 contacts at the second order to the curve a at «(O). □
Corollary 3. Osculating circle of a spacelike curve a : I —> Rj whose principal 
normal vector is timelike at is also a spacelike curve.

Proof. It is easy to see that for every 0 € R, (7'(0), 7'(0)) = Po(cosh0)^—=
□Po 0.

Theorem 4.3. Let a : I Rj be a spacelike curve uıith timelike binormal vector
field and the curvatures of the curve at point a(0); feı (0) and ^2(0) different from 
zero. Thus there exist a sphere uıhich contacts at the third order to the curve a at 
Q'(0) and the eguation of the sphere according to the frame {To, No, Bo} is

+ (a:2 - Pof - (3=3 - P'o'^of = pI- (PoÖ-o)2,
1

(4.3)

where = and a o =
1

fc2(0)’
Proof. The proof is similar to the proof of the Theorem 4.1. □
Theorem 4.4. For each spacelike curve a : 1 Rj, tvhose binormal vector field is
timelike, there exist a circle 7 : —» Rj which contacts at the second order to the
curve at û:(0) and

7(0) = a(0) + Po sinh(0 + 'k'})To + (Po + Po cosh(0 + ır^No. (4.4)
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Proof. The proof is similar to the proof of the Theorem 4.3. □
Corollary 4. Osculating circle of a spacelike curve a : I —> Rj whose binormal 
vector field is timelike at point o:(0) is also a spacelike curve.

Proof. It can be made in a similar way to the proof of Theorem4.2. □
We can state the following theorems for the osculating sphere of a spacelike curve 

in Rf and R2 as follows:
Theorem 4.5. Let a : I Rj be a spacelike curve uıith timelike principal vector
field N and the curvatures of the curve at q(0); â:i(0), k2{Q') and ^3(6) 6e different 
from zero. Thus there exist a sphere uıhich contacts at the fourth order to the curve 
a at a(0) and the eguation of the sphere according to the frame {To, No, Big, B20} 
is

uihere Aı

0-0 =

2^1 — {^2 + -^1)2 + (^3 ~ ^2)^ + (2:4 + — — A4 + A2 + A3,

= = PoO-0, As = ((-(Poo-o)' + ojo^and Po

(4.5)
_ 1

*1(0)
1

*2(0)
1

*3(0)'

Theorem 4.6. Let a : / Rf &e a spacelike curve with timelike first binormal Bı
and the curvatures of the curve at o(0); A:ı(0), A:2(0) and ^3(0) 6e different from 
zero. Thus there exist a sphere uıhich contacts at the fourth order to the curve a at 
a(0) and the eguation of the sphere according to the frame {To,No,Big,B2o} is

+ (2:2 ~ Aı)2 — (^3 + As)^ + (^4 + As)^ — Aj — A2 + A§,

where Aı = Po^ ^2 = PQ(Te-,\3 = ((-(poo-o)'+ wo)and

(4.6) 

1

*1(0) ’

Theorem 4.7. Let a : / —+ Rj be a spacelike curve uıith timelike principal normal 
N and timelike first binormal Bı and the curvatures of the curve at point q(0);
*1(0), *2(0) and *3(0) 6e different from zero. Thus there exist a sphere uıhich
contacts fourth order to the curve a at a(0) and the eguation of the sphere according 
to the frame {To, No, Big, B2g} is

where Aı

~ (^2 '^1)2 “ (2^3 + ^2}^ d" (2^4 ~ As)^ — —Al — A2 + A3, 

= Po^^2 = Po<^o, ^3 = - (((Po^^o) d-^^^^o^and Po ■

(4.7)
1

(To =
1

*2(0) ’
1

*3(0)’

> ^0 =

1 
w 5 ^<20 =

1

Theorem 4.8. Let a ; I R2 be a spacelike curve uıith timelike principal normal
N and timelike second binormal B2 and the curvatures of the curve at point a(0);
*1(0), *2(0) and *3(0) 6e different from zero. Thus there exist a sphere uıhich
contax.ts fourth order to the curve a at a(0) and the eguation of the sphere according 
to the frame {To,No,Big,B2g} is
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~ (^2 4“ .^1)2 d" {^3 ~ A2)2 — -)- As)^ — —Aj -t- A2 — A;

where Aj = ^2 — Po<7o, A3 = — ^^(Po’^o)

2 '3)

tro =
1

*2(0) ’ Wo =
1

*3(0)

. (4.8)

1

*1(0) ’

Theorem 4.9. Let a : I ^2 spacelike curve with timelike first binormal 
Bı and timelike second binormal B2 and the curvatures of the curve at point q(0);
fcı(O), A:2(O) and A:3(0) 6e different from 
contacts at the fourth order to the curve <

zero. Thus there exist a sphere which

according to the frame {To,No,Bi„,B2o} is
a at q(0) and the eguation of the sphere

Xy + (x2 — Aı)2 — (a;3 4- A2)2 ~ (1C4 — Aa)^ — Aj — A2 + A3,

where Aı

0-0 =
1 

*2(0)

= Po,><2 = Po«^o, A3 = wo)and

, ‘*’o =
1

*3(0)*

Po
1

*1(0) ’

ÖZET. Üç boyutlu Öklid uzayında bir a : / —» B.^ eğrisinin Q:{0)
noktasında eğriye üçüncü basamaktan değen bir ve yalnız bir küre vardır. 
Oskülatör düzlemiyle bu kürenin arakesiti, eğriye 0(0) noktasında ikinci 
basamaktan değen bir çemberdir [5]. Bu çalışmada 7î|, jR| ve Bq yaxı 
Riemann uzaylarında zamansı, uzaysı ve boşluksu (ışıksı) eğrilerin her 
biri için eğrinin oskülatör küresi ve eğrilik çemberi incelenmiştir.
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