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SOME SOLUTIONS AND DECOMPOSITIONS FOR A CLASS OF
EQUATIONS

AYSEGUL ERENCIN

ABSTRACT. This paper presents some solutions and decompositions for a class
of singular partial differential equations which consist of iterated differential
operator

1. INTRODUCTION

In this work, we are interested in a class of partial differential equations of the
form

LMy =0 | (11)
where m is an arbitrary positive integer and
2 ad
Ly= — 4+ —— +P. 1.2
a2 T yay T (12

The m-times iterated operators L defined by the relations
Lty = L (L), k=1,2,...,m—1.

In (1.2), a is a real parameter and P is any linear differential operator of arbitrary

order r and depends only on the variables z;, o, ..., Z, such that
a Ju
—Plu)=P|=]. 1.3
5= (5) 9

The domain of the operator L, is the set of all real valued functions u(z,y) of class
CT™(D1) N C?(D,), where x = (z1,...,%,), D; and D, are the regularity domains
of uin R™ and R, respectively. We denote any solution of equation L,u = 0
by u*(z,y) or simply by u®. Clearly, the equation (1.1) contains some classical
equations among which the best known are Laplace equation, wave equation, the
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generalized axially symmetric potential theory (GASPT) equation, Euler-Poisson-
Darboux (EPD) equation and their iterated forms. As was pointed out by Weinstein
3] solutions of equation L,u = 0 satisfy the two fundamental recursion relations

u® = yl—au2—a

and

10 ans

y 9y
The first relation establishes a one to one correspondence between solutions u®
and u?~“ and the second relation generates from a solution u® to a solution u®+2,
For some special cases of the operator L,, numerous solutions and decomposition
formulas for equation (1.1) are well known. For example, in [5] for the operator

62 n 32

Lo=—=+ —
Oy? 4y 0z}

(1.4)
Almansi showed that the general solution of equation (1.1) in which L, is denoted
by (1.4) can be decomposed into

u=u +yuf + - +y" ", (1.5)

where all u® satisfy Lou = 0 and each term y*~!u) (k = 1,..,m) satisfies an
equation LXu = 0 of order 2k. Later in [3], Weinstein proved that for the operator

2 ad "\ 2

L, = — PR —_
« 8y2+y6y:':i___1 dz?

(1.6)
if the functions u®, wu®2, u®* etc. are arbitrary solutions of the equations
Lou=0, Ly ou=0, L, 4u=0 etc. respectively, then

m—1

u= Z w2 =& 02 ety u®—2(m=1) (17)

=0
is a general solution of the iterated equation (1.1) in which L, is denoted by (1.6).
Further, in {6] Payne showed that the equation (1.1) in which L, is denoted by
(1.6), also admits the solution of the form

m—1
u= Z y2iua+2i = u® 4 y2ua+2 + y4ua+4 4o y2(m—1)ua+2(m—-1). (18)

=0
Moreover, it was pointed out that the representations (1.7) and (1.8) remain valid
for solutions of equation (1.1) provided that P is any linear differential operator
satisfying (1.3). It will be one of the purposes of this paper to show that analogous
to some known results, it is possible to find alternative decomposition formulas for
solutions of equation (1.1). Finally, we note that Altin in [1] presented a generaliza-
tion of the Almansi’s expansion, a homogeneous function expansion and the Lord
Kelvin principle for the solutions of a class of iterated elliptic or ultrahyperbolic



SOME SOLUTIONS AND DECOMPOSITIONS FOR A CLASS OF EQUATIONS 17

equations which are included by the equation (1.1) and in [2] gave some particular
solutions for equation (1.1), where L, as given by (1.6), in terms of Bessel functions.
More recently, in {4] we give same recursion relations which also hold for solutions
of equation (1.1).

2. SOME SOLUTIONS

The main object of this section is to introduce some particular solutions of equa-
tion (1.1).
Now, we first establish the following lemma.

Lemma 2.1. Let k be arbitrary positive integer. Then
Lo (P*u) = P* (Lau) (2.1)
where P* denotes the successive iterations of the operator P, k times onto itself.

Proof. We will proof this lemma by induction on k. Since P is free of the variable
y, it is easily seen that expression (2.1) is correct for k = 1, that is,

Ly (Pu) = P (Lau). (2.2)
Now we suppose that it holds for k£ — 1, i.e. let
Lo (P ) = PP (Lau). (2.3)

Hence by making use of (2.2) and (2.3), we then find
Lo (P*u) = Lo [P (Pu)]
= P*1 Lo (Pu)]
= P[P (Lau))
= P (Lou)
which is the required result.
Lemma 2.2. Let m and k be arbitrary positive integers. Then
L7 (P*u) = P* (L) (24)
Proof. From Lemmal, we already know that Lo (P*u) = P* (Lqu) . Application
of the operator L, on both sides of this gives
L% (P*u) = Lo [P* (Lau))
= P* Lo (Lau))
= P (Liu) .

Hence, in a similar manner by applying the operator L, consecutively m — 2 times
on both sides of the last equality we immediately obtain the formula (2.4).
Now, using Lemma2 we can prove our first theorem.
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Theorem 2.3. If u is a solution of the equation (1.1), then for k = 1,2,... each
of the functions P*u is also a solution of the equation (1.1).

Proof. By the hypothesis, since u is a solution of equation (1.1), from (2.4) we
have

L7 (P*u) =0

which means that the functions Pu, P?u, P3y,... satisfy the equation (1.1).

&2 o2
Example 1. In equation (1.1), taking m = l,a = =2 and P = =5 + 7, we

ox% = Oz}
consider the GASPT equation
u, o Fu 2ou_
dz? ' 8z  Oy? ydy
A simple computation shows that

L,.2u = (25)

w(z,9) = u= (g} + 23 +¢°)?
satisfies (2.5). Hence by Theorem1,
82 #\* )
Pry=( = + 2 24224422, k=1,2,...
“ (6w%+6x%) (a1 +23+97) ’
are also solutions of the same equation. For instance,

2 2
Pu=(r + 33 ) a9 =2 (e 43 + 47

1
. —_— -2
dz? + 072
and .
2 82\’ 1
Pu= (gt o) @+ades!
1 2

= —8(z2+a2+12) 7 +24 (22 + 2k +y?) ¢ (22 + )
~15(23 + 53 +%)? (F +23)°
are two solutions of equation (2.5).

Theorem 2.4. Let T be an operator denoted by T = ya%, and let m > 2 be

arbitrary positive integer. Suppose also that u is a solution of equation L 1u = 0.
Then Tu is a solution of equation (1.1).

Proof. By direct calculation, it can be shown that
Lo (Tu) = (2+T) Lou — 2Pu. (2.6)
Application of the operator L, on both sides of expression (2.6) yields
L2 (Tu) = Lo [(2+ T) Lou — 2P]
=2L2u+ Ly [T (Lou)] — 2Lo (Pu)

—(a? + 22+ %) (a2 + 2)
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and by means of (2.6),
L% (Tu) =2L2u+ (24 T) L2u — 2P (Lou) — 2L, (Pu).
Further, from Lemmal since L, P = PL,, we can write
L2 (Tu) = (44 T) L2u — 4P (L,u)
= [(44T) Lo — 4P) Lou.

Hence, applying the operator L, repeatedly on both sides of this, by induction we
readily obtain the formula

L™ (Tu) = [(2m + T) Lo — 2mP| L™ u. 2.7)

By the hypothesis, since u is a solution of the equation L7 1u = 0, (2.7) gives
L7 (T'w) = 0 which means that the function T'u satisfies equation (1.1).

Example 2. We again consider the equation (2.5) and its solutions in ex-
ample 1. Thus, from Theorem2, two-times iterated GASPT equation

ftv B*u 8 *u dtu tu 4 Bu 4 &u
9%+ 5af T 0yt * 200707 T 20307 T P0edo”  y0a30y 3 9a3y
4P 8w 8w

yoy® 20y 38y

L2_2U =

has the solutions

[N

Tu=ya£y [(mf+x§+y2) ] = y? (23 +x§+y2)_%

P (g3 +e?) 7 (o)

T(Pu) = y% (3 + 5 +4?)

wien

-3
2

=y?[-2(ed+ B +9) T +3(af +af+9?)

and

T(P?u) 0 [— 8 (2% +23+ y2)—% +24 (z2 + 23 + yz)—% (22 + z3)

=ya—y
—15 (a2 + 73 +97) 7 (2 + B’

-3
2

=24 (3 + 497 120 (& + a3 +9?) 7 (a4 )

+105 (23 + 23 +9%) " F (a2 + x%)z].
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3. APPLICATIONS OF THEOREM 2

In this section, by making use of Theorem 2, we shall give alternative decompo-
sitions for solutions of the iterated equation (1.1).

Theorem 3.1. Let m > 2 be arbitrary integer. If u® any solution of Lou = 0,
then

m-—2 )
u = y2 Z ua+2(l—t) (31)

1=0
is a solution of equation (1.1).

Proof. For the equation (1.1) the following decomposition formula is well-known

m-1

w= Z u®—% — g0 + w2 + w4 4 ua—Z(m—-l) (32)
i=0

(see [3]). In (3.2) replacing m by m — 1 we immediately find that

m—2

w= Z u® 2 = o + w2 + w4 ot ua—2(m—2)‘
=0

is a solution of equation L™~ 1u = 0. Thus by Theorem2,

m-2 a a—21
up=Tu= (Z u“‘2”) =y Z e (3.3)

i=0 =0

satisfies equation (1.1). On the other hand, If we take o — 2i in place of a in the
recursion relation
10u® d2

y oy
which expresses u*+2 in terms of u®, then it becomes

10us™ _ at2q-y)

y Oy
or

Hux—2 — guet2(-9),

Oy
Substituting this on the right side of (3.3) we receive the solution (3.1) which is
the desired result. We note that by virtue of the recursion relation u® = y!~*y?-¢
that relates a u® to every u2~* and vice versa, the solution (3.1) can be expressed
in the alternative form
l —a Z 2 —a+21,
U Y

=0
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Theorem 3.2. Let m > 2 be arbitrary integer. If u® any solution of Lou = 0,
then

m—2 m—2
Uy = Z 2zy21 a+2i + Z y2i+2ua+2(1+i) (34)
i= i=0

is a solution of equation (1.1).

Proof. The proof is similar to that of the processing theorem. As we mentioned
before, another decomposition formula for solutions of equation (1.1) is given by

u= Z YPust =y Pyt g ghyetd g g2melyetdmel) (35

=0
(see [6]). If we take m — 1 in place of m in (3.5), we then find that
m—2
u = Z yZz at2i __ u® + y2 a+2 + y4 a+4 4ot y2(m—2)ua+2(m—2)
=0

is a solution of equation LT~ 'u = 0. Hence, from Theorem 2 it follows that

=Tu= (Z y2z a+21>

=0

m—2
. 0
=u X g () @)

i=0

— (22 27 a+21 2z+1 auoz+21' )
E Yy Y
Oy

1=0
satisfies equation (1.1). By using the recursion formula

10u* Lo+?

y Oy
we can write (3.6) as follows:
m—2
up = Z %iyiuote 4 Z Y22y ot 2(149)
i=1 =0

Thus, the proof is completed. It should be note that by aid of the relation v® =
y!~*u%~= the solution (3.4) also can be represented in the form

ug = (Z iy~ F2(1-19) + mz-:zu—-a——%) .

i=] i=0

OZET:Bu calismada ardigik tirev operatorlerini iceren kismi
tiirevli denlemlerin bir sinifi igin bazi ¢oziimler ve dekomposizyon
formiilleri verilmigtir.



22 AYSEGUL ERENCIN

REFERENCES

1] A. Altin: Some expansion formulas for a class of singular partial differential equations, Proc.
Amer. Math. Soc.,85(1982), 42-46.

[2] A. Altin: Particular solutions for iterated GASPT equation in terms of Bessel functions, Bull.
Inst. Math. Acad. Sinica, (4)12(1984), 379-387.

[3] A. Weinstein: On a class of partial differential equations of even order, Ann. Mat. Pura Appl.,
39(1955), 245-254.

{4] A. Erencin: Some recursion relations for solutions of a class of equatijons, Appl. Math. Lett.(in
press)

[5] E. Almansi: Sull’ integrazione dell’ differenziale A2™y = 0, Ann. Mat. Ser.ILIII (1899),1-59.
[6] L.E. Payne: Representation formulas for solutions of a class of partial differential equations,
J. Math., 38(1959), 145-149.

Current address: Abant Izzet Baysal University, Faculty of Arts and Sciences, Department of
Mathematics, Golkoy, 14280, Bolu, Turkey

E-mail address: erencina®hotmail.com

URL: http://math.science.ankara.edu.tr





