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SOME SOLUTIONS AND DECOMPOSİTİONS FOR A CLASS OF 
EQUATIONS

AYŞEGÜL ERENÇİN

AbstraCT. This paper presents some Solutions and decompositions for a class 
of singular partial differential equations which consist of iterated differential 
Operatör

1. INTRODUCTION

In this work, vfe are interested in a class of partial differential equations of the 
form

(1-1)
where m is an arbitrary positive integer and

r ad'
~ 91/^ y dy (1-2)

The m-times iterated operators defined by the relations

k = 1,2,... ,m — 1.

In (1.2), a is a real parameter and P is any linear differential operatör of arbitrary 
order r and depends only on the variables Xı, X2, • • •, Xn such that

= p dy
9u \ 
dyj ' (1-3)

The domain of the operatör La is the set of ali real valued functions u{x, y) of class 
C'’'(jDi) P where x = (ajı,..., Xn), Di and D2 are the regularity domains
of u in P” and R, respectively. denote any solution of eguation LaU = 0 
by u“(a;,y) or simply by u°‘. Clearly, the equation (1.1) contains some classical 
equations among vrhich the best known are Laplace equation, ■wave equation, the
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generalized axially symmetric potential theory (GASPT) equation, Euler-Poisson- 
Darboux (EPD) equation and their iterated forms. As was pointed out by Weinstein 
[3] Solutions of equation LaU = 0 satisfy the two fundamental recursion relations

et 1—et-,2—au'
and

1 öıı“
—5“ = y ay

,q+2

The first relation establishes a one to one correspondence between Solutions u'
and and the second relation generates from a solution u“ to a solution
For some special cases of the operatör L,'Ct) numerous Solutions and decomposition
formulas for equation (1.1) are well known. For example, in [5] for the operatör

= y

n
T — (1-4)

i=l

Almansi showed that the general solution of equation (1.1) in which La is denoted 
by (1.4) can be decomposed into

,0w = ■«? + ızît” -t— + y'
where ali u® satisfy L^u = 0 and each term y'

(1-5)
(fc = l,...,m) satisfies an

eguation L^u = 0 oi order 2k. Later in [3], Weinstein proved that for the operatör

'Ct dy^ y dy dx"^ 
1=1 *

(1-6)

if the funetions u°‘, 11“-^

LaU = 0, La-2'U‘ = 0, = 0 etc. rcspectively, then
ete. are arbitrary Solutions of the equations

m—1

= 2
i=0

u',a—2i = 11“ + 11“ 2 + 11“-^ (l-î)

n

11“ 2

+ ■ • ■ +

is a general solution of the iterated equation (1.1) in which La is denoted by (1.6). 
Further, in [6] Payne showed that the equation (1.1) in which La is denoted by 
(1.6), also admits the solution of the form

m—1

1=0

_____|_ ^2(171-1)^0+2(171-1) (1-8)= 11“ + y'^u°‘'^'^ + î/'‘îi“+-‘

Moreover, it was pointed out that the representations (1.7) and (1.8) remain valid 
for Solutions of equation (1.1) provided that P is any linear differential operatör 
satisfying (1.3). It will be one of the purposes of this paper to show that analogous 
to some known results, it is possible to find alternative decomposition formulas for 
Solutions of equation (1.1). Finally, we note that Altın in [1] presented a generaliza- 
tion of the Almansi’s expansion, a homogeneous funetion expansion and the Lord 
Kelvin principle for the Solutions of a class of iterated elliptic or ultrahyperbolic 
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equations which are inciuded by the equation (1.1) and in [2] gave some particular 
Solutions for equation (1.1), where as given by (1.6), in terms of Bessel functions. 
More recently, in [4] we give same recursion relations which also hold for Solutions 
of equation (1.1).

2. Some Solutions

The main object of this section is to introduce some particular Solutions of equa- 
tion (1.1).

Now, we first establish the following lemma.

Lemma 2.1. Let k be arbitrary positive integer. Then

La = P’^ (,LaU}

where P'^ denotes the successive iterations of the operatör P, k times onto itself.

Proof. We will proof this lemma by induction on A. Since P is free of the variable 
y, it is easily seen that expression (2.1) is correct for k = 1, that is,

La {Pu) = P {LaU) .

Now we suppose that it holds for /c — 1, i.e. let

(2.2)

La {P'^-'^u'} = P'^-'^ (LaU) . (2.3)

Hence by making use of (2.2) and (2.3), we then find 

La {P'^u} = La (Pır)]

= P‘

= P‘

.fc-1 (Pw)] 

[PCia-u)]►fc-1

= P'^ (La«)

which is the required result.

Lemma 2.2. Let m and k be arbitrary positive integers. Then 

L’̂  {P'^u') = P’’ {L'^u}. (2.4)

Proof. Prom Lemmal, we already know that La {P'‘u^ = P'‘ (Lau). Apphcation 
of the operatör La on both sides of this gives

Ll {p'^u} = La [P'' (LaU)]

= P'' [Lc (Lan)]
= p'^ {Llu}.

Hence, in a similar manner by applying the operatör La consecutively zn — 2 times 
on both sides of the last equality we immediately obtain the formula (2.4).

Now, using Lemma2 we can prove our first theorem.
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Theorem 2.3. If u is a solution of the eguation (1.1), then for fc = 1,2,... each 
of the functions P'^u is also a solution of the eguation (1.1).

Proof. By the hypothesis, since tz is a solution of equation (1.1), from (2.4) we 
have

L’^ (^P'^u) = 0
which means that the functions Pu, P'^u, P^u,... satisfy the equation (1.1).

9292 92
Example 1. In equation (1.1), taking m = l,a — —2 and P =

consider the GASPT equation
d^ud^u d^u d'^u____ ____ ____________
dxl 9a;2 dy"^ y dy (2.5)

A simple computation shows that

u 2 (x, 7/) = u = (a:^ + a;! +
satisfies (2.5). Hence by Theoreml,

k

P'°u = A:= 1,2,...
dxl ’9a;^

are also Solutions of the same equation. For instance.

Pu =
92 92

9a;2 - 29a:^
(a;^+a;2+ı/2)i = 2 (a;2 4-a;|+7/2) 2 _(3,2 ^,2 ^2) ^(aiı+a:!)

and
2

P^u =
dxl 02:2

+a:^ +7/2)2

= -8 (x2 + a;2 + 2 24 (x2 + a;2 + (a;2 + a;2)

.2 
•1- 15 (x2 + a;| + y'^') Çx‘ + :r2) 2

are two Solutions of equation (2.5).

Theorem 2.4. Let T be an operatör denoted by T = y-^, and let m > 2 be 
arbitrary positive integer. Suppose also that u is a solution of eguation L'^~^u = 0. 
T/ıen Tu is a solution of eguation (1.1).

Proof. By direct calculation, it can be shown that

La {Tu) = (2 + T) LaU — 2Pu.
Application of the operatör La on both sides of expression (2.6) yields

Ll {Tu) La [(2 + T) LaU - 2P7z]
= 2Llu + La [T {LaU)] - 2La {Pu)

(2.6)
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and by means of (2.6),

Ll {Tu} = 2Llu + (2 + T) _ 2P {Lau} - 2La {Pu}.

Further, from Lemmal since LaP = PLa, can write

Ll {Tu} = {^ + T} Llu - A.P {Lau}
= [(4 + T)L„-4P]L,'OiH,

Hence, applying the operatör La repeatedly on both sides of this, by induction we 
readily obtain the formula

La (r^^) = [(2m + T}La- 2mP] u. (2.7)

By the hypothesis, since u is a solution of the equation L’^ = 0, (2.7) gives
L'^ ÇTu) = 0 which means that the function Tu satisfies equation (1.1).

Example 2. We again consider the equation (2.5) and its Solutions in ex- 
ample 1. Thus, from Theorem2, two-times iterated GASPT equation

-2 d^u d‘^u „ d^u 
3x^x1

d'^u 
dxldy^

4 d^u
y dxldy y dxldy

+ 2 + 2
4 d^u

4 d^u 8 du
+

8
y dy^ y"^ dy'^ j/3 Qy = 0

has the Solutions

= y-^ [(a:? + a:2 +1/2) =^y^ + a:! + y"^}

T(Pu) = [2 + 7/2) 2 _ (a;2 ^2 ^2) 2 + ^2)^

3 5
= y'^ [-2 (x? + :2. + 1/2) 2 4-3 (a;2 + a;2 ^2^ ^(a:î + a:2)]

and

ı2. - 8 (xj + X2 + y^)
3 

"î + 24 (aiı + a;2 +1/2) ^(a^î + aia)
1_15 (a:ı + ^2 + y^} (^j + 2:2)2]

_ 5 
2= y'^ [24 (xı + ^2 + y^} - 120 (xı +2:2 + y"^} (xl + x^

+ 105 (aiı + 312 +1/2) ^(a;ı+x2)2].
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3. Applications of Theorem 2

In this section, by making use of Theorem 2, shall give alternative decompo- 
sitions for Solutions of the iterated equation (1.1).

Theorem 3.1. Let m > 2 be arbitrary integer. If u' 
then

any solution of LaU = 0,

wı = y
m^2 
E 

i=0

ya+2(l-i) (3.1)

İS a solution of eguation (1.1).

Proof. For the equation (1.1) the following decomposition formula is well-known 
m—1= z
i=0

u',a—2i (3.2)u + . . . + ya-2(m-l)

(see [3]). In (3.2) replacing m by m - 1 we immediately find that 
m^2“=z ,a—2i H-------1- u“~2(’"-2)+= + u“ 2u
i=0

is a solution of equation L'^~^u = 0. Thus by Theorem2,

d 'm-‘2 m—2

i-O

,a—2i

dy (3.3)u

satisfies equation (1.1). On the other hand, If we take a — 2i in place of a in the 
recursion relation

lâu^^
y dy

,a+2— = u

which expresses terms of u“, then it becomes
lâu  ̂

y dy
^a+2(l-i)

or

dy
Substituting this on the right side of (3.3) we receive the solution (3.1) which is 
the desired result. We note that by virtue of the recursion relation u°‘ = y
that relates a to every u‘ 
in the alternative form

and vice versa, the solution (3.1) can be expressed

îiı = y,1—û:
m—2 
z 

i=0
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Theorem 3.2. Let m > 2 be arbitrary integer. If u°‘ any solution of LaU = 0, 
t/ıen

ın-'2

1=1

771—2

+ İL^'
i=0

,2i+2.^Of+2(14-i) (3.4)

İS a solution of eguation (1.1).

Proof. The proof is similar to that of the processing theorem. As we mentioned 
before, another decomposition formula for Solutions of eguation (1.1) is given by

u
771—1

-E»’ 

i=0

j2t.j^O!+2ı = 4- • • • + î/2(’" i)y“+2(’T> 1) (3.5)

(see [6]). If we take m — 1 in place of m in (3.5), we then find that

u =
771—2

i=0

,2iyQ+2i = U" + y^U°‘+‘^ + + ■ . . + y^(rn-2)^a+2(m-‘2)

is a solution of eguation L’̂  = 0. Hence, from Theorem 2 it follows that
'771—2

İ=0
m—2

(3.6)
1=0

771 — 2771 — 2 z

i=CI1=0

Q

)

öy

satisfies eguation (1.1). By using the recursion formula
19u“ 
y oy

,a+2

we can write (3.6) as follows:

U2 =

m—2
İL 2^2^' 
i=l

m—2

i=0

f2i+2^a+2(l+i)

Thus, the proof is completed. It should be note that by aid of the relation u“ = 
y,1—a.^2—a the solution (3.4) also can be represented in the form

W2 = y
’m—2 771—2

,1—a

i=l i-0

ÖZET:Bu çalışmada ardışık türev operatörlerini içeren kısmi 
türevli denlemlerin bir sınıfı için bazı çözümler ve dekomposizyon 
formülleri verilmiştir.
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