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Abstract 

Occurrence of bugs during the production cycle of software projects is a serious concern of the present time. According to an estimate, 

a very large number of bugs are recorded while dealing with complex and popular software releases. To locate these bugs and to solve 

them in efficient manner software industries incorporate the process of bug triage in software testing. Bug triage is intended to 

recommend the bug reports to an appropriate developer effectively to fix them successfully. However, it becomes labor-intensive and 

expensive to manually allocate these bug reports to the developer. Deep learning methods have been extensively used and 

experimented to various domains such as medical diagnosis, earthquake prediction and many more. To handle the above said bugs 

concerns, many studies have been carried out in order to automate the bug triaging process. Several researchers have directed their 

efforts by applying deep learning methods in different settings for autonomous recommendation for developers to remove or fix their 

bugs. In this paper we have proposed a Convolutional Neural Network model for recommending Top 10 developers to fix the reported 

bugs. For better performance of the model Word2Vec and Glove embeddings are combined with the neural network. The performance 

of CNN+Word2vec and CNN+Glove models is calculated by averaging the accuracy for 10 developers at five distinct learning rates. 

The reported results demonstrate that the combination of Convolution with word2vec embedding gives better average accuracy in the 

testing phase.  
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1. Introduction 

Managing and resolving bugs is a crucial part of software 

development cycle(Guo, et al., 2020; D.-G. Lee & Seo, 2020; 

Zhang & Lee, 2013). Large open source projects often 

incorporate bug tracking systems to effectively record and 

manage bugs. A common example of bug tracking system is 

Bugzilla(S.-R. Lee, Heo, Lee, Kim, & Jeong, 2017), which is 

proposed by Mozilla and also adapted by other open source 

projects such as Eclipse. In bug tracking system the information 

of the occurrence of bugs is documented in the form of bug 

reports (D.-G. Lee & Seo, 2020; Peng, Zhou, Liu, & Chen, 

2017). These bug reports are of specific format and also include 

details such as reporter information, priority and severity of the 

bug, and environment etc (D.-G. Lee & Seo, 2020). During bug 

triaging a developer carefully checks a bug report gathered in the 

bug tracking system and then assigns the bug report to the 

developer who has experience with fixing such bugs. The 

software developers highly rely on these reports for resolving the 

bugs (Peng, et al., 2017).  

The standard practise of bug triage is manual. Which often 

becomes labor-intensive and subject to error (Guo, et al., 2020; 

Mani, Sankaran, & Aralikatte, 2019). It is mainly due to two 

reasons. 1)Large-scale software projects receive a large number 

of bug reports every day which increases the work load of the 

assigned developer/ fixer (Zhang & Lee, 2013). For instance, for 

Eclipse project, more than 333,000 bugs with an average of 99 

bugs per day were recorded from 2001 to 2010 (Hu, Zhang, 

Xuan, & Sun, 2014). 2) The bug report assignment gets harder 

when the project involves a large number of developers (S.-R. 

Lee, Heo, et al., 2017). An incorrect assignment can occur due to 

lack of knowledge about the developers’ expertise (Sahu, 

Lilhore, & Agarwal, 2018). According to an empirical analysis 

on Mozilla and Eclipse, about 37% - 44% of bugs are reassigned 

at least once to another developer (Hu, et al., 2014). Thus, 

inefficient bug triaging can be a contributing factor in the cost 

affairs of the software maintenance (Zhang & Lee, 2013). Also, 

a delay in the resolving time of bugs can lead to rescheduling of 

the release date of the product (S.-R. Lee, Heo, et al., 2017; Xie, 

Wen, Zhu, Gao, & Zheng, 2018).  

In the recent years, Machine learning and Deep learning 

algorithms have gained immense popularity due to their 

breakthrough performance in technology (S.-R. Lee, Kim, Lee, 

& Lee, 2017; Saad, Saad, Emaduddin, & Ullah, 2019; Zheng & 

Yang, 2018). Several researchers have used open source 

repositories which are available for the users and developers to 

report bugs (Zheng & Yang, 2018) as datasets for semi or fully 

automating the process of bug triaging. However, triaging bugs 

is a challenging textual data problem that needs better modeling 

for accurate results. 

Following a detailed analysis of the literature, we concluded that 

deep learning algorithms are well suited to textual data and 

outweigh human experts and conventional algorithms for 

multiclass classification problems. It is because deep learning 

algorithms consider semantic information and function better 

with large number of classes. They are also great at automatic 

feature extraction and learning (Chen, et al., 2019; S.-R. Lee, 

Heo, et al., 2017).  

Provided with these factors, we decided to use a Deep Neural 

Network in combination with various embedding techniques for 

our research. 

2. Related Work 

Over the years, researches have proposed different models based 

on techniques such as Information retrieval, Natural language 

processing, Data reduction, Machine learning, and relevant 

research for semi and fully automating the process of bug 

triaging. (Anvik, Hiew, & Murphy, 2006; Chauhan, Katre, & 

Jawalkar, 2020; Russo, et al.; Zhou, Zhang, & Lo, 2012). 

(Chauhan, et al., 2020) presented an automated system for bug 

triaging. The study combines feature selection with instance 

selection for reducing the scale of bug report datasets along with 

maintaining its quality. The supervised machine learning 

algorithm generates a list of N developers which are relevant for 

resolving the bug. (Zhou, et al., 2012) introduced a semi-

automated method by using a supervised machine learning 

classifier for the assignment of bug reports to relevant 

developers. The Machine learning classifier is applied to open 

bug repository to learn the kind of reports resolved by each 

developer. The triager then manually selects a developer for 

from the generated developer recommendation list for resolving 

the particular bug. Thus making the approach semi-automated. 

(Peng, et al., 2017) Their study proposes a relevant search 

method to recommend developers for resolving the newly 

reported bug. An index of previously recorded bugs is generated. 

For the newly reported bug, the index is utilized to search for the 

bugs related to it. Finally, the bugs related to the newly reported 

bugs are analyzed and recommendation of the fixer or triager is 

based on that analysis. This study was evaluated using open 

source repositories of Mozilla and Eclipse. (Zhang & Lee, 2013) 

introduced a hybrid bug triaging method which is a combination 

of a probability and experience model for suggesting assignees 

or fixer to reslove a new bug. In their study, they implement 

smoothed Unigram model (UM) to search bug reports which are 

similar to the newly reported bug. They have used Social 

Network technique and re-opened bugs factor to design the 

probability model. Re-opened bugs factor is explained as, for an 

assignee or fixer the possibility of fixing the next bug is lower if 

a lot of fixed bugs are reopened. The probability model analyzes 

the likeliness of a developer for fixing the recently reported bug 

by analyzing the number of comments and related commenters. 

The experience model is designed with respect to activity factor. 

Activity factor is defined as the times of assignments for 

resolving historical bugs. In the experience model developer’s 

history in fixing bugs is analyzed. A developer is considered 

experienced if he or she has successfully fixed a greater number 

of assigned bugs with a shorter fixing time.  

In comparison to the traditional Machine learning techniques 

Deep learning algorithms have given better results (Kumari & 

Singh, 2018; S.-R. Lee, Kim, et al., 2017; Mani, et al., 2019; 

Russo, et al.; Zheng & Yang, 2018). (Russo, et al.) presented a 

comparative study of word2vec with Naive Bayes and LSTM 

models for bug triaging. Both the models showed better results 

for the problem of bug triage and have a potential to contribute 

in earlier bug fixes. Word2vec with LSTM, however, performed 

slightly better than the machine learning model. (Zheng & Yang, 

2018) proposed an LSTM model with Topic word embedding for 

assignment of reports to fixers.  Topic word embedding (TWE) 

for each word creates a distinct embedding under different topic. 

For experiments the data was collected from Bugzilla 
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repositories and Eclipse platform project. According to the 

reported results LSTM-TWE perform better than SVM, Naive 

Bayes and LSTM models.(S.-R. Lee, Heo, et al., 2017) present 

Convolutional neural network model with word2vec embedding 

to triage industrial projects. Word2vec addresses two main  

linguistic challenges while working on industrial project data. 

First, dealing with multi lingual bug reports. Second, presence of 

jargons in the text data. The experiments were performed on four 

industrial projects and three open source projects. The 

performance of human triager, CNN with all developers and 

CNN with active developers were compared. Active developers 

are explained as the ones who fixed more than 10 bug reports. 

The obtained results of this study are as follows. 1) CNN with 

active developers attained better accuracy in industrial projects 

than the open source projects. 2) Performance of human triager 

is good at selecting the correct developer from a comparatively 

small group of developers. However, CNN triager can give 

better results with larger groups of developers. 3) It was 

observed that combination of CNN and human triager give best 

results with respect to triage expenses. (Guo, et al., 2020) 

proposed an empirical study for bug triaging using 

Convolutional neural network and monitoring Developer activity 

abbreviated as (CNN-DA). Word2vec technique is used for word 

embedding. In the training phase the CNN model obtains the 

characterize of fixer from the text data and transform it to a 

high-level feature and then the fixer is used as a class label for 

the particular feature. For better prediction of fixer developer 

activity is observed. Developer activity is checked by recording 

the product information of the recent bug reports and see if each 

developer has dealt with similar product information in the past. 

If not then the developer is discarded.Experiments were 

performed on Eclipse, Netbeans and Mozilla projects. CNN-DA 

with word2vec embedding gave better results than CNN-One hot 

encoding, supervised benchmark algorithms i.e. (NB, NBM, 

SVM, KNN, RT, J48, DeepTriage) and unsupervised methods 

i.e.(DREX, LDA-SVM, LDA-KL, DERTOM).(Chen, et al., 

2019) conducts the first study of evaluating bug traiging 

methods for incident triage on real-world, large-scale online 

service system. Six bug triaging techniques were short-listed 

from Topic model, Tossing-Graph, fuzzy-set, Machine learning 

and deep learning based techniques. The reported results indicate 

that Deep learning techniques perform best among all the 

techniques for incident triage with or without reassignment in 

testing data. The results demonstrate that bug training techniques 

are practical for incident triaging with respect to time efficiency.  

Besides Topic model (TM), these techniques perform well for 

assigning incident reports to the relevant teams of fixers to a 

certain extent. But the performance of these techniques drops for 

incident reports involving reassignments.   

3. Material and Method 

Artificial intelligence is not a modern day concept. Explored in 

the mid 1950s Artificial Intelligence was aimed to build 

machines which imitate human intelligence and have 

understanding of human behavior (Ertel, 2018; Garnham, 2017). 

Over the time, Artficial Neural Networks have gained a 

considerable popularity for solving Natural language processing 

problems (Alshemali & Kalita, 2020; Kalchbrenner, 

Grefenstette, & Blunsom, 2014; Y. Li, Hao, & Lei, 2016). A 

Convolutional Neural Network which is a type of neural network 

but with multiple layers has many advantages over the simple 

neural network. For instance they are powerful in learning 

features and classification, they can overcome the complexity of 

computation and train well with less parameters and reduce the 

probability of  overfitting (Y. Li, et al., 2016; O'Shea & Nash, 

2015). 

In recent years the use of convolution models  has been 

increased for solving different software engineering problems 

such as severity and priority prediction(Ramay, Umer, Yin, Zhu, 

& Illahi, 2019; Umer, Liu, & Illahi, 2019), duplicate bug retirval 

and bug report summarization (Deshmukh, Annervaz, Podder, 

Sengupta, & Dubash, 2017; Kalchbrenner, et al., 2014; X. Li, 

Jiang, Liu, Ren, & Li, 2018). In this paper we have proposed 

Convolutional neural network combined with Word2vec and 

Glove embedding for recommending Top 10 developers for 

fixing  the reported bugs. 

In the following section the framework of our proposed bug 

triage system is explained. Figure 1 presents the general 

structure of our model. At the primary level text data is 

preprocessed. After Text preprocessing, data is transformed to 

word vectors via word embedding techniques. Following 

vectorization data is inputted to CNN model. The CNN model is 

then trained and predicts a list of developers which are most 

suitable for bug fixing. 

  

Figure 1: Convolutional Neural Network with Word2vec, Glove 

embedding for recommending Top 10 developers  
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3.1 Text Preprocessing  

For better training of our model input data is preprocessed. We 

have used columns namely Summary Description and Title for 

input data and classification labels respectively. Rest of the data 

columns are eliminated. For better cleaning of textual data 

Regular expression is used for removing special characters, 

additional spaces, line breaks, URLs links, and path of 

directories, code and snippets. 

3.2 Word Embedding Layer 

Word embedding layer is the first layer of our network which 

converts the preprocessed fields i.e. (Summary and description) 

to vectors. Our model is trained separately with each embedding 

layer. Word2vec and glove embedding are used for conversion. 

The converted vectors are then fed to convolution layer for 

feature learning.   

3.3  Model 

The convolution layer performs operation of convolution with n 

number of filters of three different kernel sizes(n=3,4,5) for 

extracting features of different lengths from the input data. In 

convolution operation different sized  kernels are applied to the 

vectors for generating a feature map. To calculate the weights for 

nodes of the network which are important during training of the 

model back-propagation is used. Rectified Linear Unit 

commonly known as Relu is used for computing the feature map 

from convolution layer of the model. The reason for using ReLU 

a non linear function is that most linear or sigmoid functions 

have a vanishing gradient problem. For subsampling the features 

obtained from the feature map  Max pooling layer is added to the 

model. To concatenate the subsampled features Softmax 

regression is used.  

Softmax regression acts as an activation function. It measures 

the possibility of developers being assigned to a bug report. The 

output classes are determined by the number of developers/fixers 

from the Title column of JDT dataset. The output of the neural 

network classifier is the probability count of each class/label. 

The developer with the highest probability count is ranked first 

in the list    

Overfitting is one of the major challenges in training the neural 

network. It greatly impacts the weights of training model (Tetko, 

Livingstone, & Luik, 1995). The results of an overfitted model 

are highly effected by unseen data. To prevent the problem of 

overfitting dropout function, L2_regularization, Xavier 

Initializer were used.  

3.4 Dataset  

For training and testing purpose we have used Eclipse JDT  

dataset. The data for JDT was recorded from 20th of october 

2013 to 20th october 2016. The jdt dataset has a total of 76 

classes which is the total number of developers for JDT project 

and 1465 bug reports. 

3.5 Performance Measure 

The experiments are performed on Elipse JDT dataset. 

Convolutional Neural is combined with Word2vec and Glove 

embedding  for recommending developers. The two CNN 

models are trained on Five distinct learning rates. The model 

returns Top 10 developer accuracy.  An average accuracy is  

calculated to evaluate  the overall performance of both the 

models at each learning rate in testing phase. Equation 1 presents 

the formula used for calculating the overall accuracy. 

         

      𝑥 =
Accuracy dev1+Accuracy dev2+⋯…+Accuracy dev 10

Total number of developers
      eq (1)  

4. Results and Discussion 

For experiments we trained our Convolutional model with two 

distinct embedding layers. The two Convolution models with 

Word2vec and Glove embedding layer were trained at five 

different learning rates. It is because learning rate can 

significantly effect the generalization accuracy of the model. A 

careful choice of learning rate leads to faster convergence and 

lowers the word errors (Senior, Heigold, Ranzato, & Yang, 2013; 

Wilson & Martinez, 2001). Table 1 presents the average 

accuracy across ten developers at five different learning rates. 

The evaluated results are listed in the table 1. 

The best Average Accuracy accross ten developers of 

CNN+Word2vec and CNN+Glove models were observed at Max 

learning rate 0.07, Minimum learning rate 0.0003 and Max 

learning rate 0.0011, Minimum learning rate 0.0007 respectively. 

CNN+Word2vec obtains average accuracy of 0.52649 in testing. 

Also, CNN+glove attain average accuracy of 0.4816 in testing. 

From the comparasion of both the models it  can be understood 

that CNN model with Word2vec embedding layer give better 

results during testing phase. Moreover, from the varied results of 

Average accuracy of both the models it can be understood that 

selection of a good learning rate is very important for the better 

optimization of the model.  

Table 1:  Average Accuray across Top-10 developers during Testing 

5. Conclusion and Future work 

In the domain of Software engineering bug triaging is a 

challenging problem. The process of bug triage is very crucial in 

software testing. Accurate assignment of bug reports can prevent 

production cost and delay in releases of a software product. In 

our study we have tried to automate the process of bug triaging 

using a Convolutional Neural Network. For better performance 

of the model we have used two distinct embedding layers and 

trained the model at five different learning rate. The performance 

measure of each model at five distinct learning rates is 

calculated by taking an average accuracy of the Top 10 

developers. Our evaluated results demonstrate that 

CNN+Word2vec gives better average accuracy than the 

CNN+Glove embedding model in testig phase.  

S.No 

Maximum 

Learning 

Rate 

Minimum 

Learning 

Rate 

Average 

Accuracy across  

10 developers 

(CNN+Word2ve

c) 

Average 

Accuracy 

across  10 

developers 

(CNN+Glove) 

1 0.005 0.0001 0.480241 0.453 

2 0.007 0.0003 0.52649 0.4542 

3 0.009 0.0005 0.472092 0.42169 

4 0.0011 0.0007 0.427159 0.4816 

5 0.0013 0.0013 0.51074 0.46427 
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In the future, we plan to conduct empirical research on various 

neural network architectures along with using different word 

embedding techniques to see what effect this has on optimization 

and accuracy of the system. 
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