
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 24, S. 375-379, Nisan 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

EuropeanJournal of ScienceandTechnology

Special Issue 24, pp. 375-379, April 2021

Copyright © 2021 EJOSAT

ResearchArticle

http://dergipark.gov.tr/ejosat 375

An Analysis of Deep Neural Network for Recommending Developers

to Fix Reported Bugs

Zariab Fatima Abro1*, Shafqat ur Rehman2, Khushal Das3, Awinash Goswami4

1*Ankara Yildrim Beyazit University, Faculty of Natural Sciences and Engineering, Department of Computer Engineering, Ankara, Turkey, (ORCID: 0000-0002-8279-

470X), zariyabfatima@gmail.com
2 Ankara Yildrim Beyazit University, Faculty of Natural Sciences and Engineering, Department of Computer Engineering, Ankara, Turkey, (ORCID: 0000-0002-

1044-5682), shafqat.rehman@gmail.com
3XKhushal Das , University of Management and Technology Lahore, School of Business and Economics, Departmant of Data Science, Lahore, Pakistan, (ORCID:

0000-0001-8833-0888), khushaldasparmar@gmail.com
4Awinash Goswami, IET khairpur of Sukkur IBA University, Institute of Emerging Technologies, Departmant of Computer Science, Sukkur, Pakistan, (ORCID:

0000-0002-2403-7778), awinashgoswami3@gmail.com

(2nd International Conference on Access to Recent Advances in Engineering and Digitalization (ARACONF)-10–12 March 2021)

(DOI:10.31590/ejosat. 899698)

ATIF/REFERENCE: Abro, Z. F., Rehman, S., Das, K. & Goswami, A. (2021). An Analysis of Deep Neural Network for

Recommending Developers to Fix Reported Bugs. European Journal of Science and Technology, (24), 375-379.

Abstract

Occurrence of bugs during the production cycle of software projects is a serious concern of the present time. According to an estimate,

a very large number of bugs are recorded while dealing with complex and popular software releases. To locate these bugs and to solve

them in efficient manner software industries incorporate the process of bug triage in software testing. Bug triage is intended to

recommend the bug reports to an appropriate developer effectively to fix them successfully. However, it becomes labor-intensive and

expensive to manually allocate these bug reports to the developer. Deep learning methods have been extensively used and

experimented to various domains such as medical diagnosis, earthquake prediction and many more. To handle the above said bugs

concerns, many studies have been carried out in order to automate the bug triaging process. Several researchers have directed their

efforts by applying deep learning methods in different settings for autonomous recommendation for developers to remove or fix their

bugs. In this paper we have proposed a Convolutional Neural Network model for recommending Top 10 developers to fix the reported

bugs. For better performance of the model Word2Vec and Glove embeddings are combined with the neural network. The performance

of CNN+Word2vec and CNN+Glove models is calculated by averaging the accuracy for 10 developers at five distinct learning rates.

The reported results demonstrate that the combination of Convolution with word2vec embedding gives better average accuracy in the

testing phase.

Keywords: Artificial Intelligence, Deep learning, Convolution Neural Network, Word2vec, Glove.

*Corresponding Author: shafqat.rehman@gmail.com

http://dergipark.gov.tr/ejosat

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN:2148-2683 376

1. Introduction

Managing and resolving bugs is a crucial part of software

development cycle(Guo, et al., 2020; D.-G. Lee & Seo, 2020;

Zhang & Lee, 2013). Large open source projects often

incorporate bug tracking systems to effectively record and

manage bugs. A common example of bug tracking system is

Bugzilla(S.-R. Lee, Heo, Lee, Kim, & Jeong, 2017), which is

proposed by Mozilla and also adapted by other open source

projects such as Eclipse. In bug tracking system the information

of the occurrence of bugs is documented in the form of bug

reports (D.-G. Lee & Seo, 2020; Peng, Zhou, Liu, & Chen,

2017). These bug reports are of specific format and also include

details such as reporter information, priority and severity of the

bug, and environment etc (D.-G. Lee & Seo, 2020). During bug

triaging a developer carefully checks a bug report gathered in the

bug tracking system and then assigns the bug report to the

developer who has experience with fixing such bugs. The

software developers highly rely on these reports for resolving the

bugs (Peng, et al., 2017).

The standard practise of bug triage is manual. Which often

becomes labor-intensive and subject to error (Guo, et al., 2020;

Mani, Sankaran, & Aralikatte, 2019). It is mainly due to two

reasons. 1)Large-scale software projects receive a large number

of bug reports every day which increases the work load of the

assigned developer/ fixer (Zhang & Lee, 2013). For instance, for

Eclipse project, more than 333,000 bugs with an average of 99

bugs per day were recorded from 2001 to 2010 (Hu, Zhang,

Xuan, & Sun, 2014). 2) The bug report assignment gets harder

when the project involves a large number of developers (S.-R.

Lee, Heo, et al., 2017). An incorrect assignment can occur due to

lack of knowledge about the developers’ expertise (Sahu,

Lilhore, & Agarwal, 2018). According to an empirical analysis

on Mozilla and Eclipse, about 37% - 44% of bugs are reassigned

at least once to another developer (Hu, et al., 2014). Thus,

inefficient bug triaging can be a contributing factor in the cost

affairs of the software maintenance (Zhang & Lee, 2013). Also,

a delay in the resolving time of bugs can lead to rescheduling of

the release date of the product (S.-R. Lee, Heo, et al., 2017; Xie,

Wen, Zhu, Gao, & Zheng, 2018).

In the recent years, Machine learning and Deep learning

algorithms have gained immense popularity due to their

breakthrough performance in technology (S.-R. Lee, Kim, Lee,

& Lee, 2017; Saad, Saad, Emaduddin, & Ullah, 2019; Zheng &

Yang, 2018). Several researchers have used open source

repositories which are available for the users and developers to

report bugs (Zheng & Yang, 2018) as datasets for semi or fully

automating the process of bug triaging. However, triaging bugs

is a challenging textual data problem that needs better modeling

for accurate results.

Following a detailed analysis of the literature, we concluded that

deep learning algorithms are well suited to textual data and

outweigh human experts and conventional algorithms for

multiclass classification problems. It is because deep learning

algorithms consider semantic information and function better

with large number of classes. They are also great at automatic

feature extraction and learning (Chen, et al., 2019; S.-R. Lee,

Heo, et al., 2017).

Provided with these factors, we decided to use a Deep Neural

Network in combination with various embedding techniques for

our research.

2. Related Work

Over the years, researches have proposed different models based

on techniques such as Information retrieval, Natural language

processing, Data reduction, Machine learning, and relevant

research for semi and fully automating the process of bug

triaging. (Anvik, Hiew, & Murphy, 2006; Chauhan, Katre, &

Jawalkar, 2020; Russo, et al.; Zhou, Zhang, & Lo, 2012).

(Chauhan, et al., 2020) presented an automated system for bug

triaging. The study combines feature selection with instance

selection for reducing the scale of bug report datasets along with

maintaining its quality. The supervised machine learning

algorithm generates a list of N developers which are relevant for

resolving the bug. (Zhou, et al., 2012) introduced a semi-

automated method by using a supervised machine learning

classifier for the assignment of bug reports to relevant

developers. The Machine learning classifier is applied to open

bug repository to learn the kind of reports resolved by each

developer. The triager then manually selects a developer for

from the generated developer recommendation list for resolving

the particular bug. Thus making the approach semi-automated.

(Peng, et al., 2017) Their study proposes a relevant search

method to recommend developers for resolving the newly

reported bug. An index of previously recorded bugs is generated.

For the newly reported bug, the index is utilized to search for the

bugs related to it. Finally, the bugs related to the newly reported

bugs are analyzed and recommendation of the fixer or triager is

based on that analysis. This study was evaluated using open

source repositories of Mozilla and Eclipse. (Zhang & Lee, 2013)

introduced a hybrid bug triaging method which is a combination

of a probability and experience model for suggesting assignees

or fixer to reslove a new bug. In their study, they implement

smoothed Unigram model (UM) to search bug reports which are

similar to the newly reported bug. They have used Social

Network technique and re-opened bugs factor to design the

probability model. Re-opened bugs factor is explained as, for an

assignee or fixer the possibility of fixing the next bug is lower if

a lot of fixed bugs are reopened. The probability model analyzes

the likeliness of a developer for fixing the recently reported bug

by analyzing the number of comments and related commenters.

The experience model is designed with respect to activity factor.

Activity factor is defined as the times of assignments for

resolving historical bugs. In the experience model developer’s

history in fixing bugs is analyzed. A developer is considered

experienced if he or she has successfully fixed a greater number

of assigned bugs with a shorter fixing time.

In comparison to the traditional Machine learning techniques

Deep learning algorithms have given better results (Kumari &

Singh, 2018; S.-R. Lee, Kim, et al., 2017; Mani, et al., 2019;

Russo, et al.; Zheng & Yang, 2018). (Russo, et al.) presented a

comparative study of word2vec with Naive Bayes and LSTM

models for bug triaging. Both the models showed better results

for the problem of bug triage and have a potential to contribute

in earlier bug fixes. Word2vec with LSTM, however, performed

slightly better than the machine learning model. (Zheng & Yang,

2018) proposed an LSTM model with Topic word embedding for

assignment of reports to fixers. Topic word embedding (TWE)

for each word creates a distinct embedding under different topic.

For experiments the data was collected from Bugzilla

EuropeanJournal of ScienceandTechnology

e-ISSN:2148-2683 377

repositories and Eclipse platform project. According to the

reported results LSTM-TWE perform better than SVM, Naive

Bayes and LSTM models.(S.-R. Lee, Heo, et al., 2017) present

Convolutional neural network model with word2vec embedding

to triage industrial projects. Word2vec addresses two main

linguistic challenges while working on industrial project data.

First, dealing with multi lingual bug reports. Second, presence of

jargons in the text data. The experiments were performed on four

industrial projects and three open source projects. The

performance of human triager, CNN with all developers and

CNN with active developers were compared. Active developers

are explained as the ones who fixed more than 10 bug reports.

The obtained results of this study are as follows. 1) CNN with

active developers attained better accuracy in industrial projects

than the open source projects. 2) Performance of human triager

is good at selecting the correct developer from a comparatively

small group of developers. However, CNN triager can give

better results with larger groups of developers. 3) It was

observed that combination of CNN and human triager give best

results with respect to triage expenses. (Guo, et al., 2020)

proposed an empirical study for bug triaging using

Convolutional neural network and monitoring Developer activity

abbreviated as (CNN-DA). Word2vec technique is used for word

embedding. In the training phase the CNN model obtains the

characterize of fixer from the text data and transform it to a

high-level feature and then the fixer is used as a class label for

the particular feature. For better prediction of fixer developer

activity is observed. Developer activity is checked by recording

the product information of the recent bug reports and see if each

developer has dealt with similar product information in the past.

If not then the developer is discarded.Experiments were

performed on Eclipse, Netbeans and Mozilla projects. CNN-DA

with word2vec embedding gave better results than CNN-One hot

encoding, supervised benchmark algorithms i.e. (NB, NBM,

SVM, KNN, RT, J48, DeepTriage) and unsupervised methods

i.e.(DREX, LDA-SVM, LDA-KL, DERTOM).(Chen, et al.,

2019) conducts the first study of evaluating bug traiging

methods for incident triage on real-world, large-scale online

service system. Six bug triaging techniques were short-listed

from Topic model, Tossing-Graph, fuzzy-set, Machine learning

and deep learning based techniques. The reported results indicate

that Deep learning techniques perform best among all the

techniques for incident triage with or without reassignment in

testing data. The results demonstrate that bug training techniques

are practical for incident triaging with respect to time efficiency.

Besides Topic model (TM), these techniques perform well for

assigning incident reports to the relevant teams of fixers to a

certain extent. But the performance of these techniques drops for

incident reports involving reassignments.

3. Material and Method

Artificial intelligence is not a modern day concept. Explored in

the mid 1950s Artificial Intelligence was aimed to build

machines which imitate human intelligence and have

understanding of human behavior (Ertel, 2018; Garnham, 2017).

Over the time, Artficial Neural Networks have gained a

considerable popularity for solving Natural language processing

problems (Alshemali & Kalita, 2020; Kalchbrenner,

Grefenstette, & Blunsom, 2014; Y. Li, Hao, & Lei, 2016). A

Convolutional Neural Network which is a type of neural network

but with multiple layers has many advantages over the simple

neural network. For instance they are powerful in learning

features and classification, they can overcome the complexity of

computation and train well with less parameters and reduce the

probability of overfitting (Y. Li, et al., 2016; O'Shea & Nash,

2015).

In recent years the use of convolution models has been

increased for solving different software engineering problems

such as severity and priority prediction(Ramay, Umer, Yin, Zhu,

& Illahi, 2019; Umer, Liu, & Illahi, 2019), duplicate bug retirval

and bug report summarization (Deshmukh, Annervaz, Podder,

Sengupta, & Dubash, 2017; Kalchbrenner, et al., 2014; X. Li,

Jiang, Liu, Ren, & Li, 2018). In this paper we have proposed

Convolutional neural network combined with Word2vec and

Glove embedding for recommending Top 10 developers for

fixing the reported bugs.

In the following section the framework of our proposed bug

triage system is explained. Figure 1 presents the general

structure of our model. At the primary level text data is

preprocessed. After Text preprocessing, data is transformed to

word vectors via word embedding techniques. Following

vectorization data is inputted to CNN model. The CNN model is

then trained and predicts a list of developers which are most

suitable for bug fixing.

Figure 1: Convolutional Neural Network with Word2vec, Glove

embedding for recommending Top 10 developers

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN:2148-2683 378

3.1 Text Preprocessing

For better training of our model input data is preprocessed. We

have used columns namely Summary Description and Title for

input data and classification labels respectively. Rest of the data

columns are eliminated. For better cleaning of textual data

Regular expression is used for removing special characters,

additional spaces, line breaks, URLs links, and path of

directories, code and snippets.

3.2 Word Embedding Layer

Word embedding layer is the first layer of our network which

converts the preprocessed fields i.e. (Summary and description)

to vectors. Our model is trained separately with each embedding

layer. Word2vec and glove embedding are used for conversion.

The converted vectors are then fed to convolution layer for

feature learning.

3.3 Model

The convolution layer performs operation of convolution with n

number of filters of three different kernel sizes(n=3,4,5) for

extracting features of different lengths from the input data. In

convolution operation different sized kernels are applied to the

vectors for generating a feature map. To calculate the weights for

nodes of the network which are important during training of the

model back-propagation is used. Rectified Linear Unit

commonly known as Relu is used for computing the feature map

from convolution layer of the model. The reason for using ReLU

a non linear function is that most linear or sigmoid functions

have a vanishing gradient problem. For subsampling the features

obtained from the feature map Max pooling layer is added to the

model. To concatenate the subsampled features Softmax

regression is used.

Softmax regression acts as an activation function. It measures

the possibility of developers being assigned to a bug report. The

output classes are determined by the number of developers/fixers

from the Title column of JDT dataset. The output of the neural

network classifier is the probability count of each class/label.

The developer with the highest probability count is ranked first

in the list

Overfitting is one of the major challenges in training the neural

network. It greatly impacts the weights of training model (Tetko,

Livingstone, & Luik, 1995). The results of an overfitted model

are highly effected by unseen data. To prevent the problem of

overfitting dropout function, L2_regularization, Xavier

Initializer were used.

3.4 Dataset

For training and testing purpose we have used Eclipse JDT

dataset. The data for JDT was recorded from 20th of october

2013 to 20th october 2016. The jdt dataset has a total of 76

classes which is the total number of developers for JDT project

and 1465 bug reports.

3.5 Performance Measure

The experiments are performed on Elipse JDT dataset.

Convolutional Neural is combined with Word2vec and Glove

embedding for recommending developers. The two CNN

models are trained on Five distinct learning rates. The model

returns Top 10 developer accuracy. An average accuracy is

calculated to evaluate the overall performance of both the

models at each learning rate in testing phase. Equation 1 presents

the formula used for calculating the overall accuracy.

 𝑥 =
Accuracy dev1+Accuracy dev2+⋯…+Accuracy dev 10

Total number of developers
 eq (1)

4. Results and Discussion

For experiments we trained our Convolutional model with two

distinct embedding layers. The two Convolution models with

Word2vec and Glove embedding layer were trained at five

different learning rates. It is because learning rate can

significantly effect the generalization accuracy of the model. A

careful choice of learning rate leads to faster convergence and

lowers the word errors (Senior, Heigold, Ranzato, & Yang, 2013;

Wilson & Martinez, 2001). Table 1 presents the average

accuracy across ten developers at five different learning rates.

The evaluated results are listed in the table 1.

The best Average Accuracy accross ten developers of

CNN+Word2vec and CNN+Glove models were observed at Max

learning rate 0.07, Minimum learning rate 0.0003 and Max

learning rate 0.0011, Minimum learning rate 0.0007 respectively.

CNN+Word2vec obtains average accuracy of 0.52649 in testing.

Also, CNN+glove attain average accuracy of 0.4816 in testing.

From the comparasion of both the models it can be understood

that CNN model with Word2vec embedding layer give better

results during testing phase. Moreover, from the varied results of

Average accuracy of both the models it can be understood that

selection of a good learning rate is very important for the better

optimization of the model.

Table 1: Average Accuray across Top-10 developers during Testing

5. Conclusion and Future work

In the domain of Software engineering bug triaging is a

challenging problem. The process of bug triage is very crucial in

software testing. Accurate assignment of bug reports can prevent

production cost and delay in releases of a software product. In

our study we have tried to automate the process of bug triaging

using a Convolutional Neural Network. For better performance

of the model we have used two distinct embedding layers and

trained the model at five different learning rate. The performance

measure of each model at five distinct learning rates is

calculated by taking an average accuracy of the Top 10

developers. Our evaluated results demonstrate that

CNN+Word2vec gives better average accuracy than the

CNN+Glove embedding model in testig phase.

S.No

Maximum

Learning

Rate

Minimum

Learning

Rate

Average

Accuracy across

10 developers

(CNN+Word2ve

c)

Average

Accuracy

across 10

developers

(CNN+Glove)

1 0.005 0.0001 0.480241 0.453

2 0.007 0.0003 0.52649 0.4542

3 0.009 0.0005 0.472092 0.42169

4 0.0011 0.0007 0.427159 0.4816

5 0.0013 0.0013 0.51074 0.46427

EuropeanJournal of ScienceandTechnology

e-ISSN:2148-2683 379

In the future, we plan to conduct empirical research on various

neural network architectures along with using different word

embedding techniques to see what effect this has on optimization

and accuracy of the system.

References

Alshemali, B., & Kalita, J. (2020). Improving the reliability of

deep neural networks in NLP: A review. Knowledge-

Based Systems, 191, 105210.

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this

bug? Paper presented at the Proceedings of the 28th

international conference on Software engineering.

Chauhan, S., Katre, M., & Jawalkar, T. (2020). Data Reduction

in Bug Triage using Supervised Machine Learning.

Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., et al.

(2019). An empirical investigation of incident triage for

online service systems. Paper presented at the 2019

IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice (ICSE-

SEIP).

Deshmukh, J., Annervaz, K., Podder, S., Sengupta, S., &

Dubash, N. (2017). Towards accurate duplicate bug

retrieval using deep learning techniques. Paper

presented at the 2017 IEEE International conference on

software maintenance and evolution (ICSME).

Ertel, W. (2018). Introduction to artificial intelligence: Springer.

Garnham, A. (2017). Artificial intelligence: An introduction:

Routledge.

Guo, S., Zhang, X., Yang, X., Chen, R., Guo, C., Li, H., et al.

(2020). Developer activity motivated bug triaging: via

convolutional neural network. Neural Processing

Letters, 51(3), 2589-2606.

Hu, H., Zhang, H., Xuan, J., & Sun, W. (2014). Effective bug

triage based on historical bug-fix information. Paper

presented at the 2014 IEEE 25th International

Symposium on Software Reliability Engineering.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A

convolutional neural network for modelling sentences.

arXiv preprint arXiv:1404.2188.

Kumari, M., & Singh, V. (2018). An improved classifier based

on entropy and deep learning for bug priority

prediction. Paper presented at the International

Conference on Intelligent Systems Design and

Applications.

Lee, D.-G., & Seo, Y.-S. (2020). Improving bug report triage

performance using artificial intelligence based

document generation model. Human-centric Computing

and Information Sciences, 10(1), 1-22.

Lee, S.-R., Heo, M.-J., Lee, C.-G., Kim, M., & Jeong, G. (2017).

Applying deep learning based automatic bug triager to

industrial projects. Paper presented at the Proceedings

of the 2017 11th Joint Meeting on foundations of

software engineering.

Lee, S.-R., Kim, H.-M., Lee, C.-G., & Lee, K.-S. (2017). Study

on Automatic Bug Triage using Deep Learning. Journal

of KIISE, 44(11), 1156-1164.

Li, X., Jiang, H., Liu, D., Ren, Z., & Li, G. (2018).

Unsupervised deep bug report summarization. Paper

presented at the 2018 IEEE/ACM 26th International

Conference on Program Comprehension (ICPC).

Li, Y., Hao, Z., & Lei, H. (2016). Survey of convolutional neural

network. Journal of Computer Applications, 36(9),

2508-2515.

Mani, S., Sankaran, A., & Aralikatte, R. (2019). Deeptriage:

Exploring the effectiveness of deep learning for bug

triaging. Paper presented at the Proceedings of the

ACM India Joint International Conference on Data

Science and Management of Data.

O'Shea, K., & Nash, R. (2015). An introduction to convolutional

neural networks. arXiv preprint arXiv:1511.08458.

Peng, X., Zhou, P., Liu, J., & Chen, X. (2017). Improving Bug

Triage with Relevant Search. Paper presented at the

SEKE.

Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., & Illahi, I. (2019).

Deep neural network-based severity prediction of bug

reports. IEEE Access, 7, 46846-46857.

Russo, F., Raju, R., Clarke, C., Yang, N., Escalona, A., Tappert,

C. C., et al. Software Bug Triage using Machine

Learning and Natural Language Processing.

Saad, A., Saad, M., Emaduddin, S. M., & Ullah, R. (2019).

Optimization of bug reporting system (BRS): artificial

intelligence based method to handle duplicate bug

report. Paper presented at the International Conference

on Intelligent Technologies and Applications.

Sahu, K., Lilhore, U., & Agarwal, N. (2018). Survey of various

data reduction methods for effective bug report

analysis. International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology.

Senior, A., Heigold, G., Ranzato, M. a., & Yang, K. (2013). An

empirical study of learning rates in deep neural

networks for speech recognition. Paper presented at the

2013 IEEE international conference on acoustics,

speech and signal processing.

Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural

network studies. 1. Comparison of overfitting and

overtraining. Journal of chemical information and

computer sciences, 35(5), 826-833.

Umer, Q., Liu, H., & Illahi, I. (2019). CNN-based automatic

prioritization of bug reports. IEEE Transactions on

Reliability, 69(4), 1341-1354.

Wilson, D. R., & Martinez, T. R. (2001). The need for small

learning rates on large problems. Paper presented at the

IJCNN'01. International Joint Conference on Neural

Networks. Proceedings (Cat. No. 01CH37222).

Xie, Q., Wen, Z., Zhu, J., Gao, C., & Zheng, Z. (2018).

Detecting duplicate bug reports with convolutional

neural networks. Paper presented at the 2018 25th Asia-

Pacific Software Engineering Conference (APSEC).

Zhang, T., & Lee, B. (2013). A hybrid bug triage algorithm for

developer recommendation. Paper presented at the

Proceedings of the 28th annual ACM symposium on

applied computing.

Zheng, S., & Yang, H. (2018). A deep learning approach to

software evolution. International Journal of Computer

Applications in Technology, 58(3), 175-183.

Zhou, J., Zhang, H., & Lo, D. (2012). Where should the bugs be

fixed? more accurate information retrieval-based bug

localization based on bug reports. Paper presented at

the 2012 34th International Conference on Software

Engineering (ICSE).

