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Abstract  
 
Available data of the temperature dependence of the superconducting heat capacity and of the thermal conductivity of 
the conventional superconductors are analyzed in detail. It is shown that in contrast to the exponential function 
predicted by the BCS theory, the temperature dependence of the superconducting heat capacity consists of a sequence 
of a few analytically different universal power functions of absolute temperature. The changes from one to the next 
power function are typical examples of crossover events. The crossover occurring at the lowest temperature, 
commonly below about ~1 K, is identified as transition from Maxwell-Boltzmann to Bose-Einstein (BE) statistics of 
the Cooper-pairs. Because of the low mass of the Cooper pairs of 2me (with me as the mass of the electron) and their 
high density, the BE-condensation temperature, TBE, of the Cooper-pairs is about five orders of magnitude higher than 
for the dilute alkali atom condensates. The condensation temperature TBE turns out to be proportional to the 
superconducting transition temperature TSC. Since TBE is proportional to ~n2/3, with n as the density of the Cooper 
pairs at TBE, it is possible to obtain the density of the Cooper pairs at low temperatures. Assuming that for the type I 
superconductors the Cooper pairs form a dense gas of bosons with virtually no space between them, the diameter of 
the Cooper-pair orbital, calculated from n2/3, turns out to agree quantitatively with the experimental value of the 
London penetration depth. As a conclusion, due to the large orbital diamagnetism of the Cooper-pairs, only one layer 
of Cooper-pairs, next to the inner surface of the sample, is sufficient to shield an applied external magnetic field 
completely.  
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1. Introduction 
    The postulation of Cooper-pairs marks a breakthrough in 
our understanding of the phenomenon of superconductivity, 
whatever the detailed mechanism of the attractive interaction 
between the two Cooper-pair electrons in the various types 
of superconductors is [1-9]. As was evidenced by the BCS-
theory, the superconducting excitation gap is a measure of 
the coupling strength between the two electrons of the 
Cooper-pair and therefore correlates with the 
superconducting transition temperature TSC [1]. Emergence 
of Cooper-pairs at TSC is associated with the rise of a large 
diamagnetism due to the large cross section of the Cooper-
pair orbital. As a consequence, the two Cooper-pair electrons 
are in a spin-compensated singlet state and circulate on a 
closed loop. Approaching TSC from the low-temperature 
side, the interaction between the two Cooper-pair electrons 
decreases, in parallel with the excitation gap, and the 
diameter of the Cooper pair orbital increases and, eventually, 
diverges at TSC. The increasing orbital diameter correlates 
with the behavior of the London penetration depth for an 
applied magnetic field (see Figure 10 below) [2,3]. With 
decreasing temperature, the interaction between the two 
Cooper-pair electrons and the excitation gap increase and the 
diameter of the Cooper-pair orbital shrinks [3]. We have 
every reason to assume that at the same time the density of 
the Cooper pairs, n, increases correspondingly. In other 
words, the Cooper-pairs form dense-packed gas of particles. 
At least for the type I superconductors there seems to be no 
free space between the Cooper pairs that would allow 

magnetic field lines (vortices) to penetrate the 
superconductor.  
    A completely new chapter of solid-state physics began 
with the development of the Renormalization Group (RG) 
theory at about 1974 [10]. Originally developed to explain 
the critical behavior of spin systems in the vicinity of the 
magnetic ordering temperature, the principles of the RG 
theory turned out to be of quite general importance for the 
dynamics of all energy degrees of freedom of the solids 
(magnetic, elastic, electronic…). One important issue of the 
RG theory was that the dynamics in the vicinity of a critical 
temperature is the dynamics of a boson field, exclusively. 
The atomistic near neighbor interactions are completely 
excluded from the critical dynamics. The bosons are mass-
less particles that propagate ballistic, i.e. independent of the 
lattice structure and of the chemical composition of the solid. 
This is the origin of the material-independent universality of 
the critical dynamics. RG theory was, however not able to 
specify the bosons that are responsible (relevant) for the 
critical magnetic dynamics. As could be shown recently, 
these bosons are essentially magnetic dipole radiation, 
generated basically through stimulated emission by the 
precessing spins [11]. We have called these bosons 
Goldstone bosons [12]. The bosons of the elastic degree of 
freedom are the well-known sound waves. We will call them 
Debye bosons [13]. The bosons of the metallic degree of 
freedom are completely unexplored. One reason for the 
generally poor information about the bosons is that mass-less 
bosons cannot be investigated using neutron scattering.  
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    In our context it is important to note that T=0 is a critical 
temperature, completely equivalent to a finite ordering 
temperature. The critical power functions at T=0 are power 
functions of absolute temperature. This is well-known for the 
heat capacity of the Debye boson field (~T3) and for the heat 
capacity of the bosons of the continuous metallic solid (~T). 
We will call the latter bosons CMS-bosons [14]. Note that 
the two mentioned power functions hold rather precisely 
over a finite temperature range, up to a crossover temperature 
at which thermal energy changes from the boson field into 
the corresponding atomistic excitation system, i.e. to the 
acoustic phonons and to the electron-band states, 
respectively [14]. At this crossover, an analytical change in 
the temperature dependence the heat capacity occurs and the 
two power functions of absolute temperature cease [15]. For 
higher temperatures, the heat capacity is material specific. 
This crossover, commonly occurs at a temperature of 10…30 
K [14]. For the unusual superconductor MgB2 with TSC as 
high as TSC=39 K, this crossover is at a surprisingly high 
temperature of larger than 80 K [16]. 
    The atomistic excitations (phonons, electron-band states) 
and the corresponding bosons (Debye-bosons, CMS-bosons) 
differ fundamentally by their translational symmetry that is 
discrete-periodic for the atomistic excitations but continuous 
for the bosons. Note that for the bosons there are no atoms, 
the zone-boundary is of no importance [13]. In principle, the 
two symmetries exclude each other. This means, the 
observed dynamics is either the dynamics of the bosons or 
the dynamics of the atomistic excitations. According to the 
symmetry selection principle of relevance, borne out by the 
Renormalization Group theory [10], within the critical 
temperature range at T=0 or at a finite ordering temperature, 
the bosons are the relevant excitations. In other words, in the 
critical range, all thermal energy is in the boson field, and the 
dispersion relations of the atomistic excitations are thermally 
not populated. However, in order that the thermal energy is 
either in one or the other excitation system, and the dynamic 
symmetry therefore is clearly defined as continuous or 
discrete, it is necessary that the thermal energy can change 
between the two excitation systems. This requires a finite 
interaction between the two systems. 
    The superconducting transition temperatures, TSC, of the 
elements (Al, Ga, In, Nb, Pb, Sn, Ta, V…) are all sufficiently 
low to fall in the critical range near T=0 [17]. As a 
consequence, the dynamics above and below TSC is 
exclusively due to bosons, and requires field theories, instead 
of atomistic concepts, for an adequate description. 
Universality of the linear-in-T function and of the T3 
function means, that all microscopic and material specific 
details such as the lattice structure and the inter-atomic 
interactions are not important (relevant) for the temperature 
dependence of the thermodynamic observables.  
    From the linear superposition of the heat capacities of the 
Debye-boson field (~T3) and of the CMS-boson field (~T) 
for T≥TSC [18] it follows that the two boson types do 
virtually not interact. For a finite interaction, the boson type 
with the lower dispersion energy would take over all thermal 
energy and a single power function of absolute temperature 
with the universal exponent characteristic of the low-energy 
system would be observed. A possible finite contribution of 
the non-relevant system can increase the pre-factor of the 
universal power function of the relevant system [15,21].   
    While the critical exponents are universal, i.e. material 
independent, the pre-factors of the universal power functions 
of temperature are material-specific. This is indicative of a 

finite coupling of the bosons to the atomistic back-ground. 
In other words, the bosons cannot be treated as free particles. 
In fact, the stiffness constant of the linear dispersion of the 
Debye bosons and therefore their absolute velocity is 
material dependent and, commonly, agrees with the initially 
linear dispersion of the acoustic phonons [19]. Since the 
dispersion relation of the CMS-bosons is not known, the heat 
capacity provides the only experimental access to the CMS-
bosons. Note that the dispersion relations of mass-less 
bosons cannot be investigated using neutron scattering.  
    Characteristic of the superconducting transition is that 
neither in the heat capacity (see Figures 1-4 below) nor in the 
critical field [20] critical power functions of the argument 
|TSC-T| occur, as they are typical for a phase transition into a 
long-range and coherently ordered state [21]. Instead, only 
power functions of absolute temperature are observed above 
and below TSC. This shows that T=0 is the only critical point, 
in the sense of the RG-theory. As is well known, upon 
approaching TSC from the high-temperature side, the T3 
function and the linear-in-T function hold precisely until the 
discontinuity at TSC [15,18].  
     Viewing the superconducting transition as a classical 
mean-field transition it follows that there is no coherent long-
range order in the superconducting state. Instead, there is 
short-range order only. Note that short-range order is typical 
for the critical range, either above T=0 or above a finite 
ordering temperature. In fact, we can consider the Cooper 
pairs [3,4] as the short-range ordered objects. This behavior 
is in contrast to the boson executed magnetic ordering 
transitions, at which the typical critical power functions of 
the argument |Tc-T| are observed [21,22]. As we have 
mentioned, universality of the critical magnetic dynamics 
above and below Tc implies that the atomistic near-neighbor 
interactions are excluded from the critical dynamics. As is 
well-known, for ferromagnets and for antiferromagnets of 
the same symmetry class, the critical exponents are identical. 
As a consequence, the ordering transition is a phenomenon 
of the boson field. In fact, at the magnetic ordering transition, 
the Goldstone-boson field orders [22]. Due to a finite 
interaction of the spins with the boson field, the spins order 
at the same time. At the magnetic ordering transition, the 
density of the Goldstone-bosons has reached the threshold 
value for stimulated emission to become the decisive process 
and the Goldstone-boson field orders perfectly one-
dimensional along each magnetic domain axis. Typical for 
the ordered state of the Goldstone-boson field are domains, 
which have not been identified in the superconductors [17]. 
The boson field in each magnetic domain resembles the 
beam of a LASER.  A three-dimensional global boson field 
results by a coupling of the one-dimensional boson fields of 
the domains along x-, y- and z-axis. In other words, the 
dimensionality of the global boson field corresponds to the 
number of inequivalent domain orientations. In a two-
dimensional magnet there are domains along x- and y-axis 
only. The coherent and long-range ordered spin system 
results from a strong interaction of the spins with the 
coherent and one-dimensional boson field [22]. In fact, 
stimulated emission seems to be an important mechanism for 
the phenomenon of broken symmetry. Note that the 
microscopic interactions between atoms or spins are well 
able to drive an ordering transition but this transition is not 
associated with the formation of domains and therefore is not 
into a state with a coherent long-range order [12,22]. In 
reality, all magnetic ordering transitions of the magnets with 
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a three-dimensional spin are boson driven and exhibit 
universal critical dynamics.  
    The CMS-bosons interact very little with all other degrees 
of freedom, and their mean free path is correspondingly 
large. This can be concluded from the fact that the low-
temperature thermal conductivity of all normal conducting 
metals is exclusively due to the CMS-bosons and starts, at 
low-temperatures, with the same linear-in-T dependence as 
the heat capacity of the CMS-bosons [14,15]. This shows 
that the mean free path of the CMS-boson is larger than the 
linear dimension of the samples used in the thermal 
conductivity measurements. The Debye bosons do not 
contribute at all to the thermal conductivity of the normal 
conducting metals, in spite of their finite heat capacity (in the 
temperature range of the T3 function). 
    On the other hand, thermal conductivity of the insulators 
is exclusively due to the Debye bosons [14]. In contrast to 
the CMS-bosons, the Debye bosons are strongly coupled to 
the (acoustic) phonons [19]. Only for a few known insulators 
with a high thermal conductivity, thermal conductivity starts 
with the T3 function of the heat capacity of the Debye-boson 
field [14,19]. Phonons do not contribute at all to the thermal 
conductivity of the insulators and of the metals as well [14]. 
In the harmonic approximation, phonons are standing waves.  
    A high thermal conductivity of the metals and of the 
insulators requires that the CMS-bosons and the Debye-
bosons are relevant. This means, they must have a heat 
capacity. This holds for the low-temperature range of the 
linear-in-T function and of the T3 function in the heat 
capacity only [15].  
    At the superconducting transition temperature TSC, the 
interactions between all involved sub-systems change. In 
particular, the Debye-bosons and the CMS-bosons seem to 
interact significantly. As a consequence, the heat capacities 
of the two boson fields do no longer superimpose for T<TSC. 
We can assume that thermal conductivity below TSC is still 
dominated by the CMS-bosons but due to the interaction 
with the Debye-bosons, the mean free path of the CMS-
bosons becomes shorter and thermal conductivity is lower in 
the superconducting state compared to the normal 
conducting state [23]. Another sudden change occurring at 
the superconducting transition concerns the electron-electron 
interaction which is repulsive above TSC but attractive below 
TSC such that Cooper-pairs are formed [1,3]. It is tempting to 
assume that one possible coupling mechanism between the 
two electrons of the Cooper-pair could be essentially by 
exchange of Goldstone-bosons (magnetic dipole radiation).  
    As an empirical fact, the temperature dependence of the 
superconducting heat capacity can well be described by a 
sequence of universal power functions of absolute 
temperature each of which has a rational exponent and holds 
over a finite temperature range [15]. This is typical for boson 
dynamics. The changes from one to the next power function 
of temperature are textbook examples of crossover events 
[19,22]. The various observed rational exponents seem to 
depend in a complicated way on the densities of states and 
on the interactions between the involved sub-systems, and 
therefore are difficult to understand [19,22]. Although 
quantities such as the density of states can be assumed to 
change monotonically as a function of energy (temperature), 
the boson-defined dynamics reacts in the discrete manner of 
crossover events. At these crossovers the exponent in the 
power functions of absolute temperature changes but 
remains always a rational number. As examples of this 
behavior, Figures 1-4 show for a selection of 

superconducting elements the temperature dependence of the 
superconducting heat capacity in a semi-logarithmic 
representation as a function of TSC/T. Since in this plot the 
experimental data fall on curved lines throughout, the linear 
dependence expected for the exponential function according 
to the BCS theory, does not hold. This is no surprise since, 
as for T≥TSC, the superconducting heat capacity is the heat 
capacity of boson fields for T≤TSC as well. Bosons are, 
however, not included in the BCS theory. Note that bosons 
always have gap-less excitation spectra, given by a power 
function of wave-vector with a rational exponent [12,22]. As 
a consequence, the temperature dependence of the heat 
capacity of the boson fields is given by a power function of 
absolute temperature, also with a rational exponent. 
Although the energy of the superconducting gap is indicative 
of the coupling strength between the two Cooper-pair 
electrons, the gap is not relevant for the dynamics. This type 
of behavior we know from the ordered magnets. For 
instance, in the axial antiferromagnet MnF2 a magnon 
excitation gap of ~1.1 meV (~13 K) occurs [15]. 
Nevertheless, thermal decrease of the spontaneous 
magnetization is given by the heat capacity of the Goldstone-
bosons, and does not follow an exponential function but a 
T5/2 power function over a large temperature range 
[12,15,22]. It is therefore evident that, at the lowest 
temperatures, the power function of the bosons results in 
much larger heat capacity values than the exponential 
function of the BCS-theory. This disagreement with the 
BCS-theory has already been noticed for lead in 1965 [24]. 
Lead is a mechanically soft metal with a very low Debye 
temperature of ΘD~100 K [17, 25]. As a consequence, the 
heat capacity of the Debye boson field is much larger than 
the heat capacity of the CMS-boson field such that the 
exponent of three of the Debye boson field dominates the 
superconducting heat capacity at the lowest temperatures. 
Moreover, for higher temperatures the dynamics is bosonic 
as well and the heat capacity exhibits a crossover to a power 
function of absolute temperature with another exponent 
[15,19,22]. Note that the non-asymptotic power functions 
include an absolute constant. Since the Cooper-pairs are 
atomistic objects they receive their dynamics -as the spins in 
the ordered magnets- from the relevant boson fields. 
    Cooper pairs are massive bosons with an integer spin of 
S=0 [4]. Treating the Cooper pairs as an ideal gas, an 
estimate for the crossover temperature from Maxwell-
Boltzmann to Bose-Einstein statistics (TBE) can be obtained 
from the condition that the de Broglie wavelength of the 
Cooper-pairs, λdB, must be equal or larger than the mean 
distance between the Cooper pairs. Expressing the mean 
distance between the Cooper-pairs by their density, n, the 
condition for BE-statistics reads: 
  

λdB > n-1/3                                (1) 
 
    The de Broglie wave-length is equal to 
λdB=h/p=h/(2E‧m)1/2 with an average thermal energy that can 
be assumed to be proportional to E~kBT. The proportionality 
factor depends on the details of the system. From quantitative 
calculations [26] for the uniform Bose gas, confined to a 
three-dimensional box, the Bose-Einstein temperature comes 
out as: 
 
                         TBE < 0.084‧h2‧n2/3/m‧kB                        (2)                                                                
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with h as Planck´s constant and kB as Boltzmann constant. 
This equation is proven as quantitatively correct for a dilute 
gas of spin-polarized atomic hydrogen with a density of 
n=1.8‧1014 cm-3 particles [27]. For this particle density the 
BE temperature calculated according to Eq. (2) is TBE=51 
μK, inserting as mass the mass of the proton. This value 
agrees perfectly with the observed BE temperature of 
TBE=50 μK [27].     
    Note that in contrast to the dilute alkali atom condensates 
[2], the Cooper pair density, n, is temperature dependent. 
Moreover, for the Cooper pairs we have to insert into Eq. (2) 
as mass of the bosons m=2me with me as the mass of the 
electron. Since the mass of the proton is about a factor of 
2000 larger than the mass of the electron, and a typical 
atomic mass for the alkali atoms is ~50, the denominator in 
Eq. (2) is smaller for the Cooper-pairs by about a factor of 
105 compared to the alkali atoms. Additionally, we can 
assume that the Cooper-pairs form a dense gas with a particle 
density at TBE of higher by a factor of 10 to 20 compared to 
the particle density of the dilute alkali gases [26]. The BE-
temperature of the Cooper pairs therefore is larger by about 
six orders of magnitude compared to the dilute alkali atom 
gases, and therefore falls in an experimentally much easier 
to realize temperature range. For a typical BE-temperature of 
TBE~0.5 K observed in the heat capacity of the 
superconducting elements a density of the Cooper-pairs, at 
TBE, of n=6.4‧1015 cm-3 follows according to Eq. (2). The 
mean distance between the Cooper-pairs therefore is λ=n-1/3 
=54 nm. This value is of the order of the experimentally 
observed London penetration depths (see Figure 10 below) 
[17]. Assuming that the Cooper-pairs form a dense gas of 
bosons, the linear dimension of the Cooper pairs agrees with 
their distance [4]. In other words, only one layer of Cooper-
pairs at the inner surface of the superconductor appears to be 
sufficient to shield an applied magnetic field completely. 
This is a consequence of the large orbital diamagnetism of 
the Cooper-pairs. 
    Although it is well established that the phenomenon of 
superconductivity bases on the emergence of Cooper-pairs at 
the superconducting transition temperature, there is still a 
strong need to obtain more detailed experimental 
information on their nature. In the present study it will be 
shown that quantitative analyses of the BE condensation 
temperatures of the Cooper pairs allow one to obtain rather 
precise data of their size and density. Surprisingly, in spite 
of their two-fold charge, the BE condensation of the Cooper-
pairs can be described using the same concepts as were 
developed for the condensation of the neutral alkali metal 
atoms.  

2. Analysis of experimental data
In order to illustrate the experimental characteristics of 

boson dynamics, and therefore the discrepancies to the 
atomistic BCS theory, Figures 1 to 4 display published heat 
capacity data of the superconducting range of vanadium [28], 
gallium [29], aluminum [30] and indium [31, 32], 
respectively. In these Figures the natural logarithm of the as-
measured superconducting heat capacity is plotted as a 
function of TSC/T with TSC as superconducting transition 
temperature. As can be seen in Figures 1-4, for all 
temperatures the superconducting heat capacity data are on 
curved lines that can excellently be described by a sequence 
of power functions of absolute temperature with different 
rational exponents. If the data would follow the exponential 
function predicted by the BCS-theory, a straight line should 
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result in these plots. We should recall that it is not possible 
to decompose the experimental heat capacity into an 
electronic contribution due to the CMS-bosons and an elastic 
contribution due to the Debye-bosons, simply because the 
two degrees of freedom interact significantly in the 
superconducting state. Note that all fit functions have to 
include an absolute constant [13,22]. An absolute constant 
indicates that the observed power function is not the 
asymptotic behavior for T→0 and that one or more further 
crossover events can be expected to follow at lower 
temperatures. Only the asymptotic power function does not 
include a significant absolute constant. In the temperature 
window shown in Figures 1-4, at least one crossover event 
between two power functions of absolute temperature with 
different exponents is identified. At the temperatures of the 
conventional superconductors, phonons are not relevant, and 
completely negligible. Within the error limits, the adopted 
rational exponents are consistent with the given fit values. 
    The crossover events in Figures 1-4 are rather smooth 
functional changes and require a very careful look on the 
experimental data for their identification. In particular, the 
precise identification of the validity limits of each power 
function is crucial for a reliable fit-result for the exponent. 
Since we are rather sure that all exponents are rational 
numbers, one can be confident in the fitting procedure if the 
obtained exponent comes out as a rational number within the 
experimental error limits.  

Figure 1. Natural logarithm of the as-measured heat 
capacity of the superconducting state of vanadium as a 
function of TSC/T with TSC=5.4 K as superconducting 
transition temperature [28]. Four sections with power 
functions of T2, T7/2, T6 and T8 can be distinguished. The 
crossover at the lowest temperature is identified as the Bose-
Einstein crossover temperature TBE (see Figure 9). 

    In the case of vanadium (Figure 1), the four power 
functions T2, T7/2, T6 and T8 can be identified in the 
temperature dependence of the superconducting heat 
capacity. This implies three crossover events. As we have 
already mentioned, the condition for a crossover event to 
occur as well as the exponents involved are difficult to 
understand. 
    The exponent of three in the asymptotic power function of 
the mechanically soft metal indium (Figure 4) can be 
assumed to be dominated, as for lead [24], by the enormous 
large heat capacity of the Debye-bosons, according to a 
Debye-temperature of ΘD~110 K only [17,25]. As we have 
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mentioned, finite but non-relevant heat capacity 
contributions can increase the pre-factor of the T3 function 
[21].   

Figure 2. Natural logarithm of the as-measured heat 
capacity of the superconducting state of gallium plotted as a 
function of TSC/T with TSC=1.09 K as superconducting 
transition temperature [29]. The crossover from T2 function 
to T5 function is identified as Bose-Einstein temperature TBE 
(see Figure 9). 

    There is one remarkable difference between Figure 4 and 
the Figures 1-3: the two power functions in Figure 4 cross 
(see Figure 7) while the power functions in the Figures 1 to 
3 avoid each other and approach tangentially only. Crossing 
means that there is either no interaction between the 
excitations giving rise to the two heat capacity functions 
(which can be excluded) or both excitations have the same 
symmetry. Note that power functions pertinent to excitations 
with different symmetries cannot cross if there is a finite 
interaction between them. If, by symmetry reasons, the 
power functions are not allowed to cross, we must assume 
that the observed exponents could be affected by the non-
crossing condition [21]. This makes the interpretation of the 
observed exponents additionally difficult. 
    As an empirical fact, the Bose-Einstein transitions of the 
superconducting elements give rise to a similarly weak 
anomaly in the heat capacity as the other crossover events 
seen in Figures 1- 4. A clear discontinuity is not observed in 
the heat capacity at TBE [8,9,26]. This behavior conforms to 
the model of a Bose gas of non-interacting particles, confined 
to a three-dimensional box [26]. For this model, the heat 
capacity is continuous at TBE but the first derivative with 
respect to temperature is discontinuous.  The problem 
therefore is to identify the BE transition among the other 
observed crossover events. Commonly, however, the Bose-
Einstein crossover is the crossover at the lowest temperature. 
The consistency of this criterion will be rationalized below 
(see Figures 9 and 10). 
    A considerable problem with boson dynamics is that the 
bosons get scattered at all types of lattice imperfections. This 
proves some coupling of the bosons to the atomistic 
background. Scattering provides damping to the bosons and 
decreases their velocity and therefore changes their 
dispersion relation. Strain can additionally affect the 
dynamics of the boson field. Fortunately, boson dynamics 
holds under all conditions but the observed universal 
exponents and the crossover temperatures between the 

various power functions of temperature can be sample 
dependent. Note that this is in contrast to the atomistic 
dynamics of the phonons that is determined by the local 
interactions between the atoms and therefore is less sensitive 
to strain or to the mosaic structure of the sample. Strain is a 
phenomenon on the larger length scale of the bosons. In the 
elastic case, sample-dependent effects are well-known from 
the sound velocities, and therefore from the elastic constants. 
Due to this non-intrinsic effect, the elastic constants get 
additionally decreased as a function of increasing 
temperature and therefore are not perfectly reproducible 
[34].      

Figure 3. Natural logarithm of the as-measured heat 
capacity of the superconducting state of aluminum plotted as 
a function of TSC/T with TSC=1.19 K as superconducting 
transition temperature [30]. Three sections with power 
functions of T3/2, T5/2 and T5 can be distinguished. The 
crossover from T5/2 to T5 function is identified as Bose-
Einstein temperature TBE=0.33 K (see Figures 8 and 9). 

Figure 4.  Low-temperature heat capacity data of the 
superconducting state of indium, plotted in the manner as for 
the Figures above [31]. The crossover from T7/2 to T3 
function at ~0.63 K is identified as Bose-Einstein crossover. 
A further crossover to T3 function occurring above about ~1 
K is outside the temperature window on the left-hand side of 
this plot (see Figure 7) [31,32].  
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Figure 5.  Logarithm to the basis of 10 of the heat-capacity 
of niobium in the temperature region of the BE crossover at 
TBE=1.23 K [35]. The two power functions of temperature 
avoid each other (see Figure 8). 

    In order to visualize the anomaly at the Bose-Einstein 
crossover temperature with a better resolution than in the 
preceding Figures, we now show enlarged views of the 
temperature regions just in the vicinity of the BE crossover. 
For niobium with the largest superconducting transition 
temperature of TSC=9.2 K the BE crossover temperature is as 
high as TBE=1.23 K (Figure 5) [35]. It becomes evident from 
Figure 5 that the extremely weak anomaly at TBE can easily 
be overlooked. Only with the help of the fitted power 
functions the crossover appears clearly. 

Figure 6.  Logarithm to the basis of 10 of the thermal 
conductivity of tin in the temperature range of the BE 
crossover at TBE=0.43 K [33]. The two power functions 
avoid each other. 

    For many materials, the BE crossover appears as a more 
pronounced anomaly in the thermal conductivity [33] rather 
than in the heat capacity. Only for a mean free path of the 
bosons of larger than the linear dimension of the sample, 
thermal conductivity starts with the temperature dependence 
the heat capacity. This, however, is scarcely the case for the 
low temperatures of the BE transition where thermal 
conductivity is low [23].  Figure 6 shows the logarithm to the 
basis of ten of the thermal conductivity of tin (Sn) as a 
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function of temperature [33]. In this representation the BE 
crossover appears as a very similar and weak anomaly as in 
the heat capacity in Figure 5. 

Figure 7.  Superconducting heat capacity of indium divided 
by T3 in the vicinity of the BE crossover temperature as a 
function of absolute temperature (compare Fig. 4) [31]. The 
two power functions cross. 

Figure 8.  Superconducting heat capacity divided by T3 of the 
temperature range of the BE crossover at TBE=0.33 K of 
aluminum (compare Fig. 3) [30]. The two power functions 
avoid each other. 

    Another method to increase the weight of the extremely 
low heat capacity data at the lowest temperatures is to divide 
the heat capacity by the absolute temperature raised to an 
appropriate power. In Figure 7 the low-temperature heat 
capacity data in the vicinity of the BE crossover of indium 
have been divided by T3 and are plotted as a function of 
absolute temperature. As can be seen, the two power 
functions above and below TBE cross (compare Figure 4). 
This is different for the other superconductors (Figures. 5, 6, 
8) for which the two power functions above and below TBE
avoid each other.

3. Results
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    As assumed by the BCS-theory, we use the empirical fact 
that the superconducting properties of the elements are all 
very similar, except for their transition temperatures, TSC. 
The fitted Bose-Einstein crossover temperatures, TBE, turn 
out to be, to a good approximation, proportional to the 
superconducting transition temperature, TSC (Figure 9). 
Qualitatively, this can be understood since when TSC is high, 
the Cooper-pairs are tightly bound and therefore are small 
objects. Since the size of the Cooper-pairs decreases with 
decreasing temperature, we have to assume that the number 
of Cooper-pairs increases in such a way with decreasing 
temperature that the Cooper-pairs always form a dense gas. 
In other words, their density, n, increases with decreasing 
temperature, and eventually reaches the critical density 
necessary for the BE-condensation to occur. As 
consequence, for superconductors with a high TSC, the 
critical density for BE-condensation is reached at 
correspondingly high temperature. 

. 

Figure 9.  Bose-Einstein crossover temperature, TBE, 
obtained from analyses of heat capacity and thermal 
conductivity data of the here investigated superconductors 
as a function of the superconducting transition temperature, 
TSC. These data represent the average over the TBE 
temperatures, identified in the heat capacity and in the 
thermal conductivity [33]. 
. 
    According to Eq. (2) the Bose-Einstein temperature scales 
with the Cooper-pair density, n, as TBE~n2/3. In other words, 
from TBE~TSC (Figure 9) it follows that n2/3 must be 
proportional also to TSC. The density of the Cooper-pairs is 
given by n~λ-3 and therefore n2/3~λ-2~TSC. The distance 
between the Cooper pairs, λ, at T=TBE, therefore is given by 

      λ~TSC
-1/2  (3)      

    In other words, the distance between the Cooper pairs, λ, 
is the larger the lower the superconducting transition 
temperature, TSC, is. This is a consequence of the weaker 
coupling of the Cooper-pairs and therefore of their larger 
size, when TSC is low. Using the numerical factors of Eq. (2) 
and setting TBE=0.135‧TSC (Figure 9) it follows for λ in nm: 

      λ=104‧TSC
-1/2         (4) 

    This relation, obtained from the observed TBE values, 
replacing in Eq. (2) TBE by TBE=0.135‧TSC (Figure 9), agrees 
-in fact- nearly quantitatively with direct measurements of
the London penetration depths, λL, of the superconducting
elements (Figure 10) [17]. Note that the London penetration
depth is obtained with a completely different experimental
method. The larger pre-factor of 104 compared to 90 in
Figure 10 could be due to the fact that the λ-values in Eq. (4)
refer to the finite temperature of TBE and not to T=0.
However, since the fitted TBE values are much lower than
TSC, the Cooper pair density, n, calculated from TBE
according to Eq. (2) can be considered as the density for
T→0. The λL values in Figure 10 are also representative for
T→0 [17]. Additionally, the assumption that the Cooper
pairs are closely packed might not be completely correct.
    Assuming, nevertheless, that for a dense gas of Cooper-
pairs the distance between the Cooper-pairs equals their 
diameter, we can identify the London penetration depth λL 
with the diameter of the Cooper-pairs, λ. This result provides 
a reasonable interpretation of the London penetration depth, 
λL.  
   It has to be noted that the London theory [36,37] was 

developed in 1935, i.e. much before the postulation of the 
Cooper pairs in 1957 [1] and their consecutive experimental 
verification [3,4,17]. As a consequence, the London theory 
treats on unpaired conduction electrons assuming a free 
electron gas. Using the expression for the London 
penetration depth [36,37]: 

λL=[me/(μ0‧qe
2‧ne)]1/2 (5) 

a single-electron density of ne=9.7‧1021 cm-3 is obtained 
inserting λL=54 nm, as calculated for a typical BE 
temperature of TBE=0.5 K using Eq. (2). Note that according 
to Figure 9, TBE=0.5 K conforms to a superconductor with 
TSC~3.7 K.  

Figure 10.  Experimental London penetration depths, λL, of 
the superconducting elements at T~0 K as a function of the 
superconducting transition temperature TSC [17]. These data 
can reasonably be described by λL=90‧TSC

-1/2 with λL in 
nanometer. 

    The hypothetical single-electron density of the London 
theory, ne, needed to shield a magnetic field is larger by about 
a factor of 106 compared to the density of the Cooper-pairs 
of n=6.4‧1015 cm-3 calculated using Eq. (2) with TBE=0.5 K. 
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As a consequence, in order to explain the strong 
diamagnetism emerging at TSC, the London theory has to 
assume a dramatic increase of the single electron density, ne, 
upon entering the superconducting phase. There is no 
evidence for this dramatic change. The reason for the large 
difference between the single electron density, ne, of the 
London theory and the Cooper-pair density, n, is the large 
diameter of the Cooper-pair orbitals and the associated large 
diamagnetism. For a wave-function of the Cooper-pairs of 
the isotropic s-state there is no orbital magnetism. 
Additionally, there is no paramagnetism due to the 
antiparallel orientation of the spin moments of the two 
Cooper pair electrons. The field induced orientation of the 
large diamagnetic orbitals compensates the externally 
applied magnetic field much more effectively than the 
unpaired conduction electrons of the assumed free electron 
gas of the London theory. The assumption of a dense gas of 
Cooper-pairs with no significant space between them, 
irrespective of their size, appears justified for the type I 
superconductors for which no magnetic field lines (vortices) 
penetrate the sample (Meissner-Ochsenfeld effect). As a 
result, from the identity λ= λL it follows that only one layer 
of Cooper pairs next to the inner surface of the sample is 
sufficient to shield the applied magnetic field completely. 
We can assume that the electrons of the Cooper-pairs are the 
only electrons to be considered in the superconducting 
ground-state, at least for the here considered case of T→0. 
    The temperature dependence of the superconducting heat 
capacity has been shown to be boson controlled, as the 
dynamics of ordered magnets and the lattice dynamics of the 
non-magnetic solids [19,22]. It is, however, not easy to 
decide to which extend the superconducting heat capacity is 
determine by the bosons of the elastic continuum (Debye-
bosons) or by the bosons of the metallic continuum (the 
CMS-bosons) because both boson types interact 
significantly. The observed universal exponents therefore 
result from a varying proportion of both systems.  
    Concluding, all nine exponents identified in the 
superconducting heat capacity should be compiled. Writing 
these exponents as multiples of 1/2 they are: 3/2, 4/2, 5/2, 
6/2, 7/2, 8/2, 10/2, 12/2, 16/2. As we have mentioned, a 
quantitative understanding of these exponents is rather 
difficult. 

4. Conclusions
From the here observed Bose-Einstein condensation of the 

Cooper-pairs, the following scenario results: The Cooper-
pairs are tightly bound objects with a well-defined orbital 
cross section. The large orbital area is the origin of the strong 
diamagnetism of the superconductors. However, in contrast 
to the BE condensation observed for the dilute alkali atom 
gases, the density of the Cooper-pairs is not a constant but 
increases with decreasing temperature. The Cooper-pair 
density calculated from TBE, therefore, applies to T=TBE but 
can be taken as representative for T→0. On the one hand, the 
interaction between the Cooper-pair electrons increases with 
decreasing temperature, in conformity with the gap energy. 
The area of the Cooper-pair orbital therefore shrinks. But, on 
the other hand, the number Cooper pairs seems to increase 
correspondingly such that the Cooper pairs always form a 
dense gas of particles. This is condition that no magnetic 
field lines (vortices) can penetrate the interior of the type I 
superconductors. Identifying the diameter of the Cooper pair 
orbital with the London penetration depth it follows that only 
one layer of Cooper-pairs next to the inner surface of the 
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sample is sufficient to shield an external magnetic field 
completely. The decreasing penetration depth with 
decreasing temperature conforms to the decreasing diameter 
of the Cooper-pair orbital.   
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