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ABSTRACT  Embryo transfer may be performed at cleavage stage (on day 2-3) or at blastocyst 

stage (on day 5) in In-Vitro Fertilization (IVF) treatment. Elective single embryo 

transfer at blastocyst stage increases the pregnancy probability and reduces the 

number of multiple pregnancies. However, the extended culture of embryos in the 

laboratory may result in transfer cancelation if no high quality blastocyst develops 

by day 5. Predicting the blastocyst score of individual embryos may help physicians 

to decide whether or not to further culture the embryos in the laboratory. 

In this paper, we use Bayesian networks for predicting the blastocyst score by 

modeling the morphological evolution of IVF embryos. We propose a weighted 

nearest neighbor approach to adjust the frequency estimates in the conditional 

probability table. Experimental results show that the proposed method significantly 

increases the accuracy and reduces false positive rates in IVF data in comparison to 

the frequency estimate method. Our proposed model can also predict low quality 

blastocyst development with a 77.3% True Negative rate. Using this model can help 

preventing developmental failures of embryos during IVF treatment. 

 

Keywords : In-Vitro Fertilization, Predicting Blastocyst Development, Bayesian Networks, 
Parameter Learning, Frequency Estimates 

Bayes Ağları ile Tüp Bebek Tedavi Sürecinde Blastosist Skoru Tahmini 

ÖZ  Tüp bebek tedavisinde embriyo transferi bölünme aşamasında (gün 2-3) veya 

blastosist aşamasında (gün 5) gerçekleştirilebilir. Transfer öncesi tek embriyo seçimi 

ve transferi gebelik olasılığını arttırırken çoklu gebelik sayısını da düşürür. Diğer 

taraftan, laboratuvar ortamında uzayan embriyo kültürleme zamanı beşinci güne 

kadar yüksek kaliteli blastosist gelişmediği takdirde transferin iptal olmasına sebep 

olabilir. Blastosist skorlarının tahminlenmesi klinisyenlere her bir embriyonun 

laboratuvar ortamında kültürlenmeye devam edilip edilmeyeceği konusunda destek 

sağlayabilir.  

Bu çalışmada Bayes Ağları kullanarak, tüp bebek tedavi sürecinde embriyo morfolojik 

gelişim değerleri modellenerek blastosist skorları tahminlenmiştir. Çalışmada 

koşullu olasılık tablosundaki frekans tahminlerini ayarlamak için ağırlıklı en yakın 
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komşu yaklaşımı önerilmiştir. Sonuçlar önerilen modelin tüp bebek tedavisinde 

doğruluğu önemli ölçüde artırırken yanlış pozitif oranının frekans tahmini 

yöntemine göre düşük olduğunu göstermektedir. Bunun yanında model düşük 

kaliteli blastosist gelişimini %77.3 oranıyla doğru negatif tahmin etmektedir.  Bu da 

modelin kullanılmasının tüp bebek tedavisinde embriyo gelişimsel başarısızlığını 

ciddi ölçüde önlemeye yardımcı olacağını göstermektedir. 

 

Anahtar 

Kelimeler 

: Tüp Bebek Tedavisi, Blastosist Gelişim Tahminlemesi, Bayes Ağlar, Parametre 
Öğrenimi, Frekans Tahminleri 

1. INTRODUCTION 

In-vitro fertilization (IVF) has been a common infertility treatment method since 1978 

(Steptoe & Edwards, 1978). In the IVF process, female germ cells (oocytes) are inseminated by 

sperm in IVF laboratories and embryos are cultured during a period of 2 to 6 days. Embryonic 

growth is observed and recorded by embryologists. Finally, selected embryo(s) is (are) 

transferred into the woman’s womb. IVF embryos may be transferred either at the cleavage 

stage (day 2-3) or at the blastocyst stage (day 5-6). 

Extended culture until the blastocyst stage allows for the self-selection of the most 

viable embryos since not all embryos can reach this stage in in-vitro conditions. Delaying the 

transfer until day 5 increases the implantation probability. On the other hand, it also increases 

the risk of developmental failure. Consequently, the prediction of blastocyst development is 

an important research question in the IVF domain. 

In this research, we use Bayesian networks for modeling the morphological evolution 

of IVF embryos and predicting blastocyst development. We aim to encode statistical relations 

between the variables of interest throughout the stages of embryonic growth. 

Learning a Bayesian network from data involves two subtasks, structure learning, 

which is required to identify the topology of the network, and parameter learning, which 

identifies the statistical parameters (conditional probabilities) for a given network topology. 

Here we construct the topology of the network using a mutual-information-based 

preconditioning, and we propose a nearest-neighbor-based approach for adjusting the 

frequency estimates in the parameter learning stage. Experimental results show that the 

proposed approach significantly improves the classification performance in our IVF dataset. 

Such a model can be used as part of the clinical procedure in order to prevent the 

wasting of embryos due to a possible developmental failure when they are further cultured in 

the laboratory. If embryos are predicted to result in low quality blastocysts on day 5, clinicians 

may decide to transfer or freeze them earlier on day 3. 

https://doi.org/10.5824/ajite.2021.02.001.x
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2. PROBLEM STATEMENT 

Obtaining many embryos is possible at each cycle of the IVF treatment; however, 

generally, the three highest quality embryos are transferred to the woman’s uterus. Multiple 

embryo transfers increase the pregnancy probability, but they also increase potential 

complications of multiple pregnancies (Gerris & De Neubourg, 2005; Irmawati et al., 2019; 

Martikainen et al., 2004; Thurin et al., 2004; Veleva et al., 2006) Thus, it is aimed to maximize 

success rates with single embryo transfers by improving embryo selection (Zhan et al., 2020). 

Elective single embryo transfer (eSET) has been favored as a solution to the IVF 

multiple pregnancy problem. Clinicians perform eSET at blastocyst stage in a much safer way 

because extended culture until the blastocyst stage allows the self-selection of the most viable 

embryos since not all embryos can reach this stage in in-vitro conditions. 

2.1. Blastocyst Stage Transfer 

The transfer of blastocyst-stage embryos on day 5 is thought to yield embryos with 

high implantation potential, increasing implantation and pregnancy rates in IVF treatment. 

When equal number of embryos are transferred, it is suggested that the probability of live birth 

is significantly higher after blastocyst-stage embryo transfer on Day 5 as compared to 

cleavage- stage embryo transfer on Day 2 or Day 3 (Papanikolaou et al., 2008). It is also 

recommended that in patients with a top-scoring blastocyst, the transfer of a single blastocyst 

should be considered (Gardner et al., 2000) preventing possible complications of multiple 

pregnancies. However, an extended culture of IVF embryos may result in transfer cancelation 

if no blastocyst develops. 

2.2.Prediction of Blastocyst Score 

When a further culture of embryos until Day 5 with the expectation of good quality 

blastocyst development is considered, a tradeoff exists between the higher probability of 

implantation success and the risk of transfer cancelation. If the development of blastocysts is 

predicted, the risk of transfer cancelation can be minimized. Different scoring systems for 

blastocysts-stage variables are developed for the selection of the best embryo in the 

development stage(Blank et al., 2020). 

A cycle based model has been applied to predict blastocyst transfer cancelation 

(Dessolle et al., 2010). In a cohort of at least 5 good quality embryos, the authors have proposed 

a model to predict if any blastocyst would develop or not. This model is useful in preventing 

transfer cancelation; however, there are limitations related to the requirements of the model 

since it can be applied to specific cycles only. 
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Clinicians need reliable models to predict blastocyst development for individual 

embryos considering the tradeoff between increasing pregnancy rate and the possibility of 

transfer cancelation. It is necessary to model the entire embryo growth process in order to 

determine the relationships between the daily morphological variations of embryos. 

2.3. Embryo Growth Process 

Figure 1 represents the developmental stages of IVF embryos day by day.  The initial 

state is considered to be the ICSI insemination process.   A fertilization check is performed at 

16-18 hours after ICSI process. Early cleavage morphology is observed on Day 1. The number 

of cells, nucleus characteristics, the fragmentation rate, the equality of blastomeres, and the 

appearance of the cytoplasm are graded on Day 2 and Day 3. Finally, if the embryo is decided 

to be cultured until Day 5, the morphology of the blastocyst is evaluated by using the Gardner 

scoring system (Gardner et al., 2004). 

3. PROPOSED SOLUTION 

The researchers are still investigating the statistical properties of the morphological 

evolutions of embryos and the interdependency of embryo development and patient 

characteristics. The literature presents conflicting results concerning predictive factors and 

their correlations. Therefore, as a starting point, we need to construct a model to analyze all 

available features and their statistical relations to blastocyst morphology. 

A Bayesian Network is a graphical model that encodes conditional dependencies 

among variables of interest (Heckerman, 2020). In this study, we use Bayesian networks in 

analyzing the statistical relationships between the sequential observations of embryo 

morphology and predicting the blastocyst score. We consider the prediction of the IVF 

blastocyst score as a binary supervised classification problem to discriminate blastocysts into 

two classes as high quality (having a Gardner’s score ≥ 3AA) and low quality ones. We 

construct an embryo-based dataset including daily morphological observations and patient 

and cycle characteristics. 

https://doi.org/10.5824/ajite.2021.02.001.x
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Figure 1: Demonstration of embryo growth process together with related embryo 

morphological variables. Time stamps correspond to the routine morphological observations 

performed in the IVF laboratory. 

4. DATASET 

Due to social, ethical and financial reasons some legislative rules have been defined for 

assisted reproduction process in every country. The restrictions usually apply to donation, 

embryo manipulation, the number of embryos to be transferred in each cycle etc. 

Along with the legal procedures effect in different countries, each IVF clinic, including 

those in the same country, applies different technologies and methodologies. Because of this 

variety, each clinic has distinctive IVF databases. In this research, we analyze the dataset that 

has been used in a previous study (Uyar et al., 2010). 
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Figure 2: Distribution of transferred frozen and discarded embryos. 

The raw dataset includes a total of 81371 oocytes. Among 62800 fertilized oocytes, 

12185 embryos have been transferred and 9858 embryos have been frozen (Figure 2). The 

remaining 40757 embryos, which constitute 64.9% of the fertilized oocytes, have been 

discarded due to developmental failure. This rate can be reduced by using accurate prediction 

models supporting the decision concerning the extended culture of embryos although the 

degeneration of the embryos cannot be totally prevented. 

Table 1: Selected dataset features for each blastocyst feature vector 

Dataset Features   Data Type  

Patient and Cycle Characteristics   

 Woman age Continuous 

 Gravidity Categorical 

 Infertility factor Categorical 

 Treatment protocol Categorical 

 Duration of stimulation Continuous 

 Follicular stimulating hormone dosage Continuous 

 Peak Estradiol level Continuous 

 Endometrium thickness Continuous 

  Sperm quality Categorical 

Embryo Related Data   

 Early cleavage morphology Categorical 

 Early cleavage inspection time Continuous 

 Number of cells (day 2-3) Categorical 

 Nucleus characteristics (day 2-3) Categorical 

 Fragmentation (day 2-3) Categorical 

 Blastomeres (day 2-3) Categorical 

  Appearance of cytoplasm (day 2-3) Categorical 

 

A total of 9043 embryos have been cultured until the blastocyst stage. We have 

eliminated the records including missing values. Finally, a total of 7735 blastocysts have been 

https://doi.org/10.5824/ajite.2021.02.001.x
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analyzed where 1779 blastocysts have been developed with a Gardner’s score ≥3AA (23.0%) 

(Gardner et al., 2004). 

We have included the available features based on the literature and expert judgement. 

The list of features is provided in Table 1. 

5. METHODOLOGY 

In this section, we briefly summarize the methods we used in our experiments. 

5.1. Bayesian Networks 

The structure of the Bayesian network is used to characterize a probability distribution 

for each node depending on its parents and posterior probabilities are computed in the form 

of local conditional distributions. A brief definition of Bayesian networks and Bayesian 

network classifiers (Friedman et al., 1997) is given below: 

A Bayesian network is represented by B = (G, Ө), where G is a directed acyclic 

graph. The nodes of the graph correspond to the random variables X1, ...Xn which are 

the dataset features and edges represent the direct dependencies between the associated 

variables. The graph G encodes the independence assumption where each variable  Xi 

is independent of its non-descendants given its parents ΠXi in G. The second component 

Ө represents the conditional probability distribution that quantifies the dependency between 

the nodes. 

A Bayesian network defines a unique joint probability distribution over the set of 

random variables Xi in the network given by: 

𝑃(𝑋1,…… ,𝑋𝑛) = ∏ 𝑃(𝑋𝑖|∏𝑋𝑖
𝑛
𝑖=1 )   

 (1) 

where ΠXi denotes the set of parents of Xi in the network. 

In practice, the components of the Bayesian networks are generally unknown and must 

be inferred from the data. Learning a Bayesian network from data involves two subtasks: 

structure learning, which is required to identify the topology of the network, and parameter 

learning, which identifies the statistical parameters (conditional probabilities) for a given 

network topology. 

Most studies concentrate on structure learning which is a complex procedure when 

there are lots of input features (Cheng et al., 2002; Csató & Reiz, 2008; Meloni et al., 2009). 

Learning the parameters in conditional probability tables is recognized as a trivial task based 

on frequency counts of data points when the observed frequencies are optimal in a sufficiently 

large database (Cheng et al., 2002). Here, we review the main approaches for construction of 
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the network structure and estimation of parameters when learning Bayesian networks from 

data. 

5.1.1.  Structure Learning 

Structure learning is a search for encoding appropriate dependencies between the 

features of a given a dataset. It has been argued that Bayesian network structure learners are 

computationally expensive and require an exponential number of conditional independence 

tests (Cheng et al., 2002). There are two main approaches to learning the network structure 

from data efficiently through reducing the search space: constraint-based methods and 

methods that maximize a selected score. 

The simple learning algorithm (SLA) and three-phase dependency analysis (TPDA) are 

examples of constraint based methods that make use of the information theory concept in 

order to reduce the computational complexity of the structure learning procedure (Cheng et 

al., 2002). Csató and Reiz also propose a mutual information based approach where direct 

causal relations encoded by the Bayesian network are interpreted as the maximal conditional 

mutual information between nodes (Csató & Reiz, 2008). 

The algorithms that maximize the selected score search for the optimum structure by 

evaluating how well a given network matches the data. Meloni et al. propose a variation of the 

standard search-and-score approach that computes a square matrix containing the mutual 

information among all pairs of variables (Meloni et al., 2009). The matrix is binarized to find 

out which relationships must be suppressed in order to prevent the inference of too many 

connections. 

Furthermore, Naive Bayesian network, which assumes mutual independence of the 

feature variables given the class variable, and the Tree Augmented Network (TAN), which 

represents a tree-like dependency structure over the feature variables, are well-known 

Bayesian network structures (Lucas, 2004). 

In our experiments, we construct a constraint-based Naive Bayesian network structure 

using the mutual information between nodes. 

Information Gain Feature Weighting: Information Gain represents the average amount 

of information about the class value C contained in the feature value F (Mladenić & Grobelnik, 

2003). Information Gain is also known as mutual information between F and C. 
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𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐹) = 𝐼(𝐶, 𝐹) = 𝐻(𝐶) − 𝐻(𝐶|𝐹) 

 (2) 

where 

𝐻(𝐶) = ∑ 𝑃(𝐶𝑖) log2 𝑃(𝐶𝑖)
𝑖

 

 (3) 

is the Shannon’s entropy. 

Higher Information Gain means a higher predictor effect of the feature individually. 

The Information Gain values of features provide reasonable knowledge required to reduce the 

search space for feature subset selection. 

The features with an Information Gain value less than a pre-defined threshold are 

selected as the input parameters in the structure learning phase. For example, the threshold 

can be defined as the average of the Information Gain of all of the features, µIG(F ). Then, 

add Fi to S if InfoGain(Fi) < µIG(F ) 

5.1.2. Parameter Learning 

Parameter learning in Bayesian networks is often based on Frequency Estimate (FE) 

which determines the conditional probabilities by computing the frequencies of instances from 

the data. The FE method is efficient since it counts each data point in the training set only once. 

The parameters estimated using the FE method maximize the likelihood of the model given 

the data and thus FE is known as a generative learning method (Su et al., 2008). 

The relative frequencies in the conditional probability table (CPT) are obtained as 

follows: 

�̂�(𝑋𝑖 = 𝑥|∏𝑋𝑖 = �⃗� ) =
𝑐𝑜𝑢𝑛𝑡 (𝑋𝑖 = 𝑥|∏𝑋𝑖 = �⃗� )

𝑐𝑜𝑢𝑛𝑡(∏𝑋𝑖 = �⃗� )
 

  (4)  

In our case, Xi denotes the class label as the child node that is the blastocyst score 

and �⃗�  denotes a vector of parent nodes ΠXi  representing the predictor factors affecting the 

blastocyst score. 
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The classification capability of FE method is debated because of its generative property. 

Grainer and Zhou proposed a gradient descent based discriminative parameter learning 

method, which significantly outperforms the FE method with a high computational 

cost(Greiner et al., 2005). 

A Discriminative Frequency Estimate (DFE) is proposed to maximize the 

generalization accuracy of classification rather than likelihood (Su et al., 2008). The authors 

compared the DFE and FE methods based on the Naive Bayesian network structure and 

showed that the DFE significantly improved the performance of classification in terms of 

accuracy. However, it has been widely accepted that accuracy is not an appropriate 

performance measure especially for imbalanced datasets. On the other hand, the training time 

of the DFE method is significantly higher than the FE method. Consequently, an efficient and 

effective method for parameter learning in Bayesian networks is still an open question. 

We propose a method for parameter learning from data taking advantage of the 

efficient FE method and handling the insufficiencies in the data. 

5.1.3. Proposed Nearest Neighbor Based Approach for Adjusting Frequency 

Estimates 

When the frequencies of each possible combination of feature values are computed, we 

can identify the samples that occur less than a predefined threshold of the sample size. Then, 

finding the nearest neighbors of those samples constitutes a cluster in the neighborhood of the 

infrequent sample. In this case, rather than computing the conditional probabilities for each 

feature vector, we can compute a common conditional probability entry for the cluster of 

feature value combinations. 

The idea behind this approach is as follows: any combination of feature values may be 

represented insufficiently in the training data. This fact may shadow the real statistical 

properties of the nodes in the Bayesian Network. By clustering the less frequent samples up to 

a certain level, it may be possible to obtain more accurate conditional probabilities. However, 

it is crucial to avoid the uniformity of conditional probabilities that would lead to information 

loss. Therefore, there are two critical hyper-parameters in the proposed approach: 

tu: which represents the level of insufficiency in terms of the frequency of feature 

vectors, and 

tl: which represents the sufficient number of samples in the neighborhood of less 

frequent samples. 

The thresholds should be determined in training phase using a grid search method that 

utilizes a pre-defined set of values for each threshold parameter. The search space depends on 

the estimated frequencies in the conditional probability table. 

When computing the distance between two instances in the nearest- neighbor 

approaches, all the features may not have equal impact on the similarity measure. Therefore, 

https://doi.org/10.5824/ajite.2021.02.001.x
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identification of relative effects of the features on the distance can improve a nearest neighbor 

learning process (Kohavi et al., 1997; Vivencio et al., 2007). 

Feature weighting algorithms may be used to identify the relative effects of features on 

the outcome. We use Information Gain feature weighting algorithm to rank the features of the 

dataset, and the ranked list of features is then used to define a feature weighting vector 

embedded in the Euclidean distance metric. 

In this research, the nearest-neighbor approach is used for finding the most similar 

cases to samples which were represented less frequently in the training dataset. The weighted 

Euclidean distance between the instances xi and xj, dw(i, j) is: 

𝑑𝑤(𝑖, 𝑗) = 𝑠𝑞𝑟𝑡 (∑(1 𝑤𝑘
⁄ )

𝑛

𝑘=1

∗ (𝑥𝑗𝑘 − 𝑥𝑖𝑘)
2
) 

 (5) 

where, n is the number of features and wk is the pre-evaluated Information Gain 

ranking of the kth feature. 

When the cluster of the nearest neighbors that includes the sufficient size of samples is 

obtained, the conditional probabilities that average the probabilities of the samples in the 

cluster are computed. 

The pseudocode given in Algorithm 1 outlines the structure learning strategy that we 

used in network construction and our proposed approach for the parameter learning. 

Algorithm 1: Pseudocode for adjusted CPT entries 

1: F = [Set of input features] 

2: C = class variable 

3: %Subset selection for Naive Bayesian network structure. 

4: S =ø 

5: for all f in F do 

6: compute IG (f ) = InfoGain(f, C) 

7: if IG(f ) ≥ µIG(F ) then 

8:  S = S Ս f 

9: end if 

10: end for 

11:  %Frequency estimates  n(ΠC   = �⃗�  )  and  adjusted  frequency  estimates �̂�(ΠC = �⃗� ) 

12: %tu upper bound for insufficient frequency and tl lower bound for sufficient number of data points 

in clustered neighborhood 

13:  for all �⃗�  in S do 

14: if n(ΠC = �⃗� ) < tu then 

15:  �̂�(ΠC = �⃗� ) = n(ΠC = �⃗� ) 

16:  while �̂�(ΠC = �⃗� ) < tl do 

17:  �̂�(ΠC = �⃗� ) = �̂�(ΠC = �⃗� ) + n(WeightedNearestNeighbors(�⃗� )) 

18:  end while 

19: end if 
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20: end for 

6. EXPERIMENTAL RESULTS 

The network is visualized using Netica software 

(https://www.norsys.com/netica.html). Initially we have used a feature selection based on the 

Information Gain feature weighting as described in Section 5.1.1. The estimated weights given 

in Figure 3 have been used to define the network structure and to evaluate the weighted 

nearest neighbors in the parameter learning stage. 

The initial network structure is given in Figure 4 where class 2 represents the high-

quality blastocysts. 

In the experiments, the CPT entry of the feature vectors that has less than 50 samples 

(tu) in the trainset have been accepted as insufficient frequency estimates. The proposed nearest 

neighbor based approach has been used to cluster the insufficiently represented CPT feature 

vectors to constitute a cluster of at least 200 samples (tl) in the trainset. The resulting 

probabilities are shown in Table 2. 

Random two-thirds of the dataset is used for training and the remaining one-third is 

used for testing. Stratified random splitting of the data into training and test sets is repeated 

10 times in order to avoid sampling bias. Stratified random splitting ensures that the 

proportion of positive and negative instances are the same in training and test sets.  
 

 

 

Figure 3: Information Gain feature weights. Number of cells in day 3 has the highest feature 

weights among all data features. 

Day3Cell: Number of cells in day 3, ECMorp: Early cleavage morphology, Day2Cell: Number of cells 

in day 2, Day2Nuc: Nucleus characteristics on day 2, Day3Nuc: Nucleus characteristics on day 3, Day3Blast: 

Blastomeres on day 3, Day2Blast: Blastomeres on day 2, ECHours: Early cleavage hours, Day3Frg: 

Fragmentation on day 3, Day2Cyt: Appearance of cytoplasm on day 2, Day2Frg: Fragmentation on day 2, 

InffFactor: Infertility factor, E2: Estradiol hormone, Day3Cyt: Appearance of cytoplasm on day 3, FSH: Follicle-

https://doi.org/10.5824/ajite.2021.02.001.x
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Stimulating Hormone, P-S: Primer/Seconder, SQ: Sperm Quality, End: Endometrium thickness, Stim: 

Duration of stimulation 

 

Figure 4: Bayesian Network structure for blastocyst score prediction. 

ECMorp: Early cleavage morphology, Day2Cell: Number of cells in day 2, Day2Nuc: Nucleus 

characteristics on day 2, Day3Nuc: Nucleus characteristics on day 3, Day3Cell: Number of cells in day 3 

 

Table 2: Initial probabilities in the CPT*(Prob.) and the updated probabilities (UProb.) 

ECMorp D2Cell D2Nuc D3Nuc D3Cell Freq. C1 C2 Prob Uprob 

1 1 1 1 1 98 98 0 1 1 

1 1 1 1 2 8 8 0 1 0,921 

1 1 1 1 3 3 3 0 1 0,759 

1 1 1 1 4 7 6 1 0,857 0,738 

1 1 1 1 5 3 3 0 1 0,705 

1 1 1 2 1 39 38 1 0,974 0,947 

1 1 1 2 2 48 47 1 0,978 0,924 

1 1 1 2 3 13 12 1 0,923 0,87 

1 1 1 2 4 2 2 0 1 0,792 

1 1 1 2 5 2 2 0 1 0,774 

1 1 1 3 1 1 1 0 1 0,919 

1 1 1 3 2 1 1 0 1 0,89 

1 1 1 3 3 0 0 0 0,5 0,866 

1 1 1 3 4 0 0 0 0,5 0,789 

1 1 1 3 5 0 0 0 0,5 0,767 

1 1 1 4 1 4 4 0 1 0,798 

1 1 1 4 2 1 1 0 1 0,796 

1 1 1 4 3 2 2 0 1 0,777 

1 1 1 4 4 0 0 0 0,5 0,765 

1 1 1 4 5 0 0 0 0,5 0,758 

1 1 2 1 1 51 51 0 1 0,981 

1 1 2 1 2 46 45 1 0,978 0,924 

* Conditional Probability Table 
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Table 3: Comparison of the initial network (Network1) using FE** and the network with 

updated CPT* (Network2) using our proposed approach for parameter learning 

 

 

Network Accuracy (%) TP Rate (%) FP Rate (%) 

Network 1 69.1 ± 2.9 59.4 ± 7.5 29.4 ± 6.6 

Network 2 72.6 ± 1.7 58.7 ± 4.8 22.7 ± 1.4 

* Conditional Probability Table 

** Frequency Estimate 

The results are given in Table 3 in terms of accuracy, true positive (TP) rate (sensitivity) 

and false positive (FP) rate. Since the dataset represents an imbalanced distribution of the two 

classes of blastocysts, the decision threshold is optimized to handle the imbalance problem 

and decided as 0.7, mapping to the point closest to the upper left corner on the ROC curve. 

Paired t-tests indicate that the networks produce significantly different results in terms 

of accuracy and FP rate (p < 0.05). Network 2 with updated CPT reduce the false positive 

predictions as required in clinical procedure. This would result in reducing the number of 

degenerated embryos at blastocyst stage. 

7. CONCLUSION 

In this paper we modeled the embryo growth process using Bayesian Networks with 

the aim of predicting the blastocyst score. The results of the FE method were relatively lower 

that motivated us to analyze the data and the methods. We recognized that although we have 

a sufficiently large dataset, the observed frequency estimates are not optimal and we proposed 

a nearest- neighbor approach to cluster the insufficient data points. 

There are two hyper-parameters of the proposed model: threshold-1 that indicates the 

lower bound for insufficient frequencies and threshold-2 that indicates the upper bound for 

the sufficient number of training instances in the neighborhood of the infrequently represented 

data points. The optimum values of these two parameters depend on the distribution of 

training instances in the conditional probability table and size of the dataset. Adjustment of 

the thresholds is critical for the success of the proposed model. 

The main assumption underlying our proposed model is that infrequent or missing 

data points in training set can be clustered in a neighborhood to produce a more accurate 

collective frequency estimate for all of the instances in the associated cluster. The proposed 

model will work well, but if this assumption does not hold, the prediction performance of the 

frequency estimate will not change significantly.  

Experimental results show that our model can predict a potential low quality blastocyst 

development at 77.3% True Negative rate. This can be interpreted as follows: If clinicians use 

such a model in the laboratory, 77.3% percent of the developmental failure of embryos from 

Day 3 to Day 5 can be prevented. 

https://doi.org/10.5824/ajite.2021.02.001.x
https://doi.org/10.5824/ajite.2021.02.001.x
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As a future work, the algorithm represented in this study can be replicated in 

additional datasets in biomedical field and other fields to improve prediction performance in 

Bayesian Network classification. Varying distribution of data points in different datasets 

would help optimizing the clustering approach to better represent conditional probabilities in 

network construction.     

REFERENCES 

Blank, C., DeCroo, I., Weyers, B., van Avermaet, L., Tilleman, K., van Rumste, M., de Sutter, 

P., Mischi, M., & Schoot, B. C. (2020). Improvement instead of stability in embryo 

quality between day 3-5: A possible extra predictor for blastocyst selection. European 

Journal of Obstetrics and Gynecology and Reproductive Biology, 253, 198–205. 

https://doi.org/10.1016/j.ejogrb.2020.08.027 

Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks from 

data: An information-theory based approach. Artificial Intelligence, 137(1–2), 43–90. 

https://doi.org/10.1016/S0004-3702(02)00191-1 

Csató, L., & Reiz, B. (2008). Tree-like Bayesian Network classifiers for surgery survival chance 

prediction. In Article in International Journal of Computers: Vol. III. 

https://www.researchgate.net/publication/228634935 

Dessolle, L., Fréour, T., Barrire, P., Daraï, E., Ravel, C., Jean, M., & Coutant, C. (2010). A cycle-

based model to predict blastocyst transfer cancellation. Human Reproduction, 25(3), 598–

604. https://doi.org/10.1093/humrep/dep439 

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine 

Learning, 29(2–3), 131–163. https://doi.org/10.1023/a:1007465528199 

Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., & Schoolcraft, W. B. (2000). Blastocyst score 

affects implantation and pregnancy outcome: towards a single blastocyst transfer. 

Fertility and Sterility, 73(6), 1155–1158. https://doi.org/10.1016/S0015-0282(00)00518-5 

Gardner, D. K., Surrey, E., Minjarez, D., Leitz, A., Stevens, J., & Schoolcraft, W. B. (2004). Single 

blastocyst transfer: A prospective randomized trial. Fertility and Sterility, 81(3), 551–555. 

https://doi.org/10.1016/j.fertnstert.2003.07.023 

Gerris, J., & De Neubourg, D. (n.d.). Single embryo transfer after IVF/ICSI: present possibilities and 

limits. 

Greiner, R., Su, X., Shen, B., & Zhou, W. (2005). Structural extension to logistic regression: 

Discriminative parameter learning of belief net classifiers. Machine Learning, 59(3), 297–

322. https://doi.org/10.1007/s10994-005-0469-0 

Heckerman, D. (2020). A Tutorial on Learning With Bayesian Networks. Studies in 

Computational Intelligence, 156, 33–82. http://arxiv.org/abs/2002.00269 



 

Bilişim Teknolojileri Online Dergisi 

Academic Journal of Information Tecnology 

2021 Spring/Bahar – Cilt/Vol: 12 ‐ Sayı/Issue: 45 

 

10.5824/ajite.2021.02.001.x 

 

 

 

 

 

27 

Irmawati, Basari, & Gunawan, D. (2019). Automated Detection of Human Blastocyst Quality 

Using Convolutional Neural Network and Edge Detector. 2019 1st International 

Conference on Cybernetics and Intelligent System, ICORIS 2019, 181–184. 

https://doi.org/10.1109/ICORIS.2019.8874925 

Kohavi, R., Langley, P., & Yun, Y. (n.d.). The Utility of Feature Weighting in Nearest-Neighbor 

Algorithms. 

Lucas, P. J. F. (2004). Restricted Bayesian Network Structure Learning (pp. 217–234). Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39879-0_12 

Martikainen, H., Orava, M., Lakkakorpi, J., & Tuomivaara, L. (2004). Day 2 elective single 

embryo transfer in clinical practice: Better outcome in ICSI cycles. Human Reproduction, 

19(6), 1364–1366. https://doi.org/10.1093/humrep/deh197 

Meloni, A., Ripoli, A., Positano, V., & Landini, L. (2009). Mutual information preconditioning 

improves structure learning of bayesian networks from medical databases. IEEE 

Transactions on Information Technology in Biomedicine, 13(6), 984–989. 

https://doi.org/10.1109/TITB.2009.2026273 

Mladenić, D., & Grobelnik, M. (2003). Feature selection on hierarchy of web documents. 

Decision Support Systems, 35(1), 45–87. https://doi.org/10.1016/S0167-9236(02)00097-0 

Papanikolaou, E. G., Kolibianakis, E. M., Tournaye, H., Venetis, C. A., Fatemi, H., Tarlatzis, B., 

& Devroey, P. (2008). Live birth rates after transfer of equal number of blastocysts or 

cleavage-stage embryos in IVF. A systematic review and meta-analysis. Human 

Reproduction, 23(1), 91–99. https://doi.org/10.1093/humrep/dem339 

Steptoe, P. C., & Edwards, R. G. (1978). Birth after the reimplantation of a human embryo. In 

Lancet (Vol. 2, Issue 8085, p. 366). Lancet. https://doi.org/10.1016/s0140-6736(78)92957-

4 

Su, J., Zhang, H., Ling, C. X., & Matwin, S. (2008). Discriminative parameter learning for 

Bayesian networks. Proceedings of the 25th International Conference on Machine Learning, 

1016–1023. https://doi.org/10.1145/1390156.1390284 

Thurin, A., Hausken, J., Hillensjö, T., Jablonowska, B., Pinborg, A., Strandell, A., & Bergh, C. 

(2004). Elective Single-Embryo Transfer versus Double-Embryo Transfer in in Vitro 

Fertilization. New England Journal of Medicine, 351(23), 2392–2402. 

https://doi.org/10.1056/nejmoa041032 

Uyar, A., Bener, A., Ciray, H. N., & Bahceci, M. (2010). Bayesian networks for predicting IVF 

blastocyst development. Proceedings - International Conference on Pattern Recognition, 

https://doi.org/10.5824/ajite.2021.02.001.x
https://doi.org/10.5824/ajite.2021.02.001.x


Bayesian Network Modeling of IVF Blastocyst Score Prediction  

Aslı UYAR, Yasemin ATILGAN ŞENGÜL 

 

 

 

  

 

28 

2772–2775. https://doi.org/10.1109/ICPR.2010.679 

Veleva, Z., Vilska, S., Hydén-Granskog, C., Tiitinen, A., Tapanainen, J. S., & Martikainen, H. 

(2006). Elective single embryo transfer in women aged 36-39 years. Human 

Reproduction, 21(8), 2098–2102. https://doi.org/10.1093/humrep/del137 

Vivencio, D. P., Hruschka, E. R., Do Carmo Nicoletti, M., Dos Santos, E. B., & Galvão, S. D. C. 

O. (2007). Feature-weighted k-nearest neighbor classifier. Proceedings of the 2007 IEEE 

Symposium on Foundations of Computational Intelligence, FOCI 2007, 481–485. 

https://doi.org/10.1109/FOCI.2007.371516 

Zhan, Q., Sierra, E. T., Malmsten, J., Ye, Z., Rosenwaks, Z., & Zaninovic, N. (2020). Blastocyst 

score, a blastocyst quality ranking tool, is a predictor of blastocyst ploidy and 

implantation potential. F&S Reports, 1(2), 133–141. 

https://doi.org/10.1016/j.xfre.2020.05.004 

 

 


