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 Abstract 

In this study, the free vibration analysis of a functionally graded (FG) microbeam with tapered 

cross-section was carried out theoretically. The beam has material distribution according to the 

power law throughout the thickness. The governing equation was reduced to an ordinary 

differential equation for a tapered beam with cross-sectional geometry whose width varies 

exponentially. Vibrations of a FG tapered microbeam was analyzed analytically in the elastic 

variation range based on the modified stress couple theory. Motion equations and boundary 

conditions were derived from the Hamilton principle. Analytical results of natural frequencies 

were calculated for cantilever exponential FG beams. Solutions for natural frequencies were 

obtained as the ratio of the beam's characteristic size to the material internal length parameter and 

according to the FGM distribution function characteristics. 

Fonksiyonel Derecelendirilmiş Konik Kesitli Bir Mikro Kirişin 

Serbest Titreşim Analizi  

Öz 

Bu çalışmada, konik kesitli fonksiyonel derecelendirilmiş (FD) bir mikro kirişin serbest titreşim 

analizi teorik olarak gerçekleştirilmiştir. Kiriş, kalınlık boyunca güç yasasına göre malzeme 

dağılımına sahiptir. Yönetici denklem, genişliği üstel olarak değişen bir enine kesit geometrisine 

sahip konik kiriş için sıradan bir diferansiyel denkleme indirgenmiştir. Fonksiyonel 

derecelendirilmiş konik bir mikro kirişin titreşimleri, modifiye edilmiş gerilim çifti teorisine 

dayalı olarak elastik varyasyon aralığında analitik olarak analiz edilmiştir. Hareket denklemleri 

ve sınır koşulları Hamilton ilkesinden türetilmiştir. Doğal frekansların analitik sonuçları, konsol 

üstel FD kiriş için hesaplanmıştır. Doğal frekanslar için çözümler, kirişin karakteristik boyutunun 

malzeme iç uzunluk parametresine oranı olarak ve FDM dağılım fonksiyonu özelliklerine göre 

elde edilmiştir. 
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1. INTRODUCTION 

Functionally graded material is a type of composite material produced to use the toughness property of 

metal and high thermal resistance of ceramic. In recent years, FD materials are widely used in micro and 

nanostructured systems such as thin films of shape memory alloys [1], micro and nano-electromechanical 

systems (MEMS and NEMS) [2-3] biosensors, actuators  [4-5], and atomic force microscopes (AFM) [6]. 

Devices such as MEMS, NEMS, and AKM are formed from beams. Beams can be of fixed or variable 

cross-section. Analysis of the material's static and dynamic behavior plays a vital role in structures 

consisting of beams. To determine the operating range of the systems, it is necessary to determine the 

natural frequencies of the beams.  
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Researchers have conducted many studies on the bending, vibration, and static properties of macro-sized 

FDM beams in the literature. In these studies, classical continuous media theory was used, and solutions 

were made by considering the change of material properties throughout the thickness [7-10]. There are 

fewer studies, as the solutions to problems occurring in axially graded beams are problematic due to the 

multivariate coefficient main equations [11-12]. Elishakoff et al. carried out a study to obtain the more 

accurate results of beams' natural frequencies with different end support structures by using the semi-

inverse approach. The semi-inverse method gives a closed-form solution, and this method yield results 

similar to some special polynomials for a given bending stiffness and bulk density. The authors reported 

that this method is not suitable for determining higher-order natural frequencies. Huang and Li [13] aimed 

to determine an FDM beam's natural frequencies by converting the variable coefficient motion equation 

into the Fredholm equation. With this method, the authors could only estimate the approximate values of 

natural frequencies. Murin et al. [14] developed an analytical method for beams with variable material 

properties. Linear beam theory has been used in the formation of the equations; the effect of the moment 

of inertia, shear force, and mass distribution is considered. In the study, it was assumed that the beam has 

a constant cross-sectional area. The results were compared with the finite element results and found to be 

compatible. 

The first work on microstructures, R.D. Mindlin [15], carried out on micro-structures with linear elasticity. 

Fleck and Hutchinson [16] reformulated the macro-dimensional classical coupled-stress theory for analysis 

of microstructures. Yang F. et al. [17] developed the modified couple stress (strain gradient) theory using 

the stress pair theory. Park and Gao [18] developed a new model using the Euler-Bernoulli beam method 

and the modified stress pair theory. They showed that this new model includes an internal material length 

scale parameter and that the size effect is significantly useful in solutions. They found that the beam has 

greater flexural stiffness than the classical beam theory, thanks to the newly developed modeling. The 

difference between the deflections in these two models increased as the beam thickness decreased. It was 

observed that as the thickness of the beam increased, similar results were obtained in both methods. This 

modeling is best suited for micro-beam structures. 

Akgöz and Civalek [19] combined the Euler-Bernoulli beam and modified stress couple theory to analyze 

tapered micro-beams' vibration behavior with the axial material distribution. The micro-beam analysis 

whose material properties change in the axial direction was carried out for the boundary condition with one 

fixed end and the other free end. The method developed by Rayleigh-Ritz provided an approximate solution 

to the free transverse vibration problem. The effects of taper and material properties on the natural 

frequency of the axially functionally graded micro-beam were explained in detail. 

Asghari et al. [20] analyzed the size-dependent static and vibration behaviors of microbeams made of FD 

material analytically in the elastic region, based on the modified coupled-stress theory. The governing 

equation of motion and boundary conditions are derived based on Hamilton's principle. They obtained the 

closed-form solution for natural frequency and static deviation depending on the ratio function of the beam's 

characteristic size to the internal material parameter and the distribution function of the material properties. 

These results show that when the ratio of the beam's characteristic size to the internal material length 

parameter is small, the static deflection and natural frequencies obtained from the Modified Coupled-Stress 

Theory differ significantly compared to the classical beam theory. 

This study, it is aimed to adapt the traditional modeling theories used in the vibration analysis of elastic 

structured macro dimensional beams to micro dimensional functionally graded beams and to obtain free 

vibration of the material by analytical methods. The motion equations of microbeam having cross-sectional 

area along their length have been obtained based on the modified coupled-stress theory and Hamilton's 

principle. The governing equations of the tapered FGM microbeam are solved analytically by regarding the 

beam's boundary conditions, the cross-sectional area's geometry, the distribution function, and the direction 

of the material properties. 

2. MATHEMATICAL MODEL  

Functionally graded materials are produced by combining materials inert in a volumetric ratio. A FGM 

beam seen in Figure 1 has material distribution along the direction of the beam thickness. 
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Figure 1. Functional graded beam with material properties varying across thickness (TFGM) 

The variations of the beam's material properties according to the z  point selected in the thickness direction 

might be expressed by using power-law distribution functions as follows. 
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The equations (1), (2) and (3) are defined the density, elasticity module and shear modulus between the 

base and the top of the beam, respectively. In the last three equations, n  shows the material distribution 

index. FGM beam forming materials are generally selected as Germanium-Silicon (Ge-Si) elements used 

in MEMS production [3]. Mechanical properties of Germanium and Silicon materials are given in Table 1. 

Table 1. Material properties of Germanium and Silicon 

 Germanium Silicon 

Shear modulus ( )  41 GPa 79.9 GPa 

Possion ratio ( )  0.28 0.26 

Density ( )  5.33 g/cm3 2.33 g/cm3 

Elasticity modulus ( )E  102.7 GPa 131 GPa 

 
 

The micro-beam's height, width, length and internal length scale range are 
6

0 10h m−= , 02b h= , 

020L h=  and 0 / 10h l   respectively. It is assumed that the upper surface of the beam is germanium 

and the lower surface is silicon. 

Yang et al. expressed the modified coupled-stress theory by obtaining the strain energy density in terms of 

the curvature tensor and the function of the strain tensor. The strain energy (U) occurring in the volume of 

the beam with linear elastic isotropic material property was written using the modified stress couple theory 

[21] as follows. 

    ( ) ( )
1

, 1,2,3
2

ij ij ij ij

v

U m dv i j  = + =     4
 

( ) 2ij ij ijtr I   = +  5 
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22ij ijm l =  6 
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Using the Euler-Bernoulli based beam theory, the displacement functions given in the last 5 equations might 

be arranged as 
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The elasto-dynamic behavior of an anisotropic linear elastic beam is defined by the expanded Hamilton 

principle. In this principle, the virtual work of the forces acting on the system in a certain time interval and 

the kinetic and potential energy changes occurring in the system move so that the integral is zero. Based on 

this approach, by deriving the dynamic equation of motion of the beam with the extended Hamilton 

principle and disregarding external forces, Equation (4) is arranged as  

( ) ( )( )
( )

( )
( )2 22

2

2 2 2

, ,
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w x t w x t
EI x l A x A x

x x t
 
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+ + = 
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.   15 

The moment of inertia and cross-sectional area along the length direction of the tapered beam might be 

defined as  

( ) ( )0I x I i x=  16 

( ) ( )0A x A a x= .  17 

For the purpose of non-dimensional the beam motion equation, ,
x

L
 =

0

,
t

t
 =

w
y

L
=  terms are 

defined. Eq. 15 is rearranged with last two equations and non-dimensional terms as follow 
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where ( )i  and ( )a   denote inertia shape function and area shape function. In the last equation, inertia 

moment of the beam is defined as ( )0I I i =  and the components of inertia are expressed as 

3

0 0 0iI c b h=  19 

( ) ( ) ( )3i y z  = .  20 

In Eq. 19  represent cross section width, cross section height and cross-sectional shape function constant 

respectively. In Eq. 20 ( )y  and  ( )z   denote dimensionless width and height of the beam and are in 

( )0 1y    and ( )0 1z    ranges. The ( )0A A a =  given in the Eq.17 cross-sectional area equation 

was rearranged similar to definition of moment of inertia as follows 

0 0 0aA c b h=  21 

( ) ( ) ( )a y z  =  22 

where ac  presents  cross-sectional shape function constant. For the cross section of the beam with varying 

exponentially, dimensionless width and dimensionless height of the beam might be expressed as 
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For a beam having constant height and exponential variable width, the functions of inertia and cross section 

might be represented as  

( ) ( )1ei e
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where e  denotes taper index of the beam. 

Eq. 18 is rearranged by considering the ( ) ( )i a = as follow 
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The last equation is a function of spatial and time. In order to obtain a solution with time-indepented, last 

equation is discretized by using the equation of ( ) ( ) ( ),y W F   =  as follows 
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By considering the terms of
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the Eq. 28 is expressed as 
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and time-depended component of the Eq. 28 is obtained as 

( ) ( )2 0F F   + = .   30 

The inertia and cross section area functions given in Eqs. 25 and 26 respectively, the motion equation of 

the tapered beam with exponentially are rearranged with Eq. 29 as follow 
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Solution of the last equation is obtained as 
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The following equations are used to calculate the natural frequency of the beam. 
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The 
2  symbol indicates the natural frequency of the beam and is only due to the taper structure of the 

beam. 

 
Figure 2. The coordinates and neutral axis of FDM [20] 

To calculate the frequency of the FGM beam, the FGM properties of the beam must be defined. During the 

movement of the beam, there is a neutral axis on the beam that is not subjected to any elongation or 

shortening. The cz  in Figure 2 represents the distance from the bottom of the beam to the neutral axis. To 

determine the position of the neutral axis, force balance is expressed as 
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Elastic modulus expression given in the last equation is defined as 
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A A

E z zdA E z z z dA= − =    35 
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The distance from the bottom of the beam to the neutral axis is indicated as 

( )
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The Eq. 36 is rearranged with magnitudes of the distance cz , power law distribution index n  and elastic 

modulus of the upper tE  and lower bE  materials of the beam, as follows. 
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The moment resultant of the FGM beam is expressed as 
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The ( )0 eq
EI expression in the Eq. 38 is defined as  
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By substituting equation (37) into above equation, the elastic modulus of the beam for a selected point in 

the thickness direction is expresed as follows 
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only as a function of the material distribution index.  Couple moment of FGM beam is expressed as  
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The ( )0 eq
A expression in the Eq. (41) is defined as 
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where b  and t  are shear modulus of the bottom and top surface materials of the beam. The ( )0 eq
A

expression in the Eq. (18) is defined as 
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1
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Natural frequency of tapered FGM beam is indicated as 
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Two kinds of deformation occur at two different levels during vibration. These are micro rotations at the 

particle level and macro-deformations at the molecular level. For particle level micro-deformation, the 

internal length scale determines the micro properties of the particle. It is often referred to as the inner length 

parameter. The commonly used internal length parameter is one of the main factors in determining the 

average particle size required to obtain the length scale size. As the average particle size increases / 

decreases, the size of the length scale will increase/decrease. The inner length scale was defined by 

Vardoulakis and Sulem [22] as follows 

M
l

G
=  45 

where G  and M  denote shear modulus and moment of force respectively. The 0  symbol presents the 

frequency for the beam with uniform cross section 1 =  and inside length parameter equal to zero 0l =

[21].  The frequency of the tapered FGM beam might be calculated with equation given below [20].  
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2. NATURAL FREQUENCY OF TFGM BEAM 

 
Figure 3. Cantilever FGM beam 

Figure 3 indicates the cantilever tapered FGM beam and coordinate position. Boundary conditions for a 

cantilever beam are expressed as follows. 

( ) ( ) ( ) ( )1 0, 1 0, 0 0, 0 0W W W W  = = = = .  47 

When the boundary conditions given in the last equation are arranged with Equations (32) and (33), a matrix 

is obtained as follows.  
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From the solution of the last equation, the natural frequency of the beam due to its conical structure is 

obtained. Considering the material distribution of the FGM beam, the frequency values obtained by 

Equation (46) are given in Table 2. While h0 /l is equal to 2, the frequency ratio approaches 1; that is, it 

gives similar result to the classical Euler-Bernoulli theory. 

Table 2. Frequency ratios  

Beta ( )  Power law index ( )n  0/ 
 

0 / 0.2h l =
 0 / 0.5h l =

 0 / 1h l =
 0 / 2h l =

 

 

0.2 

0 17.586 7.185 3.850 2.372 

0.5 19.242 7.835 4.155 2.497 

1 20.057 8.156 4.307 2.560 

2 20.848 8.467 4.454 2.623 

 

0.5 

0 13.533 5.529 2.963 1.825 

0.5 14.807 6.029 3.197 1.921 

1 15.434 6.276 3.314 1.970 

2 16.043 6.515 3.428 2.018 

 

0.8 

0 11.762 6.515 2.575 1.586 

0.5 12.869 5.240 2.779 1.670 

1 13.414 5.454 2.880 1.712 

2 14.548 5.663 2.979 1.754 

 

Figure 4 indicates the variations of frequency ratio by concerning tapered index   for 0 / 0.5h l = .  When 

the beta is increasing from 0 to 1, the frequency ratio decreases with the same trend for all power law 

indices. It is predicted that the frequency ratios values not change for the same taper index values when the 

value of n is 2 or more. For tapered index values between 0 and 0.3, beam should be designed more 

precisely, as the frequency rates change rapidly. 

 

 
Figure 4. Variations of 0/    for 0 / 0.5h l =  
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3. CONCLUSIONS 

Except to design parameters of beam taper index and power-law index, the ratio of beam maximum 

thickness 0h  to inner length scale l  is determined as an additional parameter. With the additional parameter 

0 /h l , the shear modulus of the materials is considered for the frequency calculations. The frequency 

variations of the beam, which depend on the parameter used in the calculations, are presented as the 

frequency of the tapered beam to the uniform beam. In this study, frequency calculations are carried out for 

a cantilever TGFM tapered beam made of Germanium and silicon materials. As a result, for all power law 

indices, effect beam taper index variations on the frequency has the same trend. It is determined that the 

fastest variation from the frequency of the uniform beam occurs when the taper index is between 0 and 0.3. 

While the parameter 0 /h l  is increasing from 0 to 2, the frequency of the tapered beam approaches to the 

frequency of uniform beam.  
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