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Abstract
In this paper, we give a natural braiding on the universal central extension of a Lie crossed
module with a given braiding in the category of Lie crossed modules. We also construct
the universal central extension of a braided Lie crossed module in the category of braided
Lie crossed modules, showing that, when one of these constructions exists, both of them
exist and coincide.
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1. Introduction
The concept of central extension of groups or Lie algebras is highly relevant in mathe-

matics, and it plays a fundamental role in several areas of physics as well. This notion was
extended to crossed modules of groups or Lie algebras. The study of central extensions in
the categories of crossed modules was initiated in [13] for groups and in [2] for Lie algebras,
and it remains a current research topic, as shown by the different literature tackling this
issue.

Crossed modules of groups (Lie algebras) are algebraic objects equivalent to strict 2-
groups, or equivalently categorical groups (strict 2-Lie algebras or categorical Lie algebras),
and also simplicial objects with associated Moore complex of length 1. Since crossed
modules of groups and Lie algebras are a generalisation of groups and Lie algebras, it is
natural to search, in the category of crossed modules of groups or Lie algebras, extensions
of classical results in the theory of groups or Lie algebras.

Joyal and Street defined in [12] the concept of braiding for monoidal categories as a
natural isomorphism τA,B : A⊗B −→ B⊗A, generalising the idea of the usual tensor product
of vector spaces. The notion of braiding for categorical groups provides an equivalent
category to the category of braided crossed modules of groups (see [4, 12]).

The concept of braiding in Lie crossed modules was introduced in [14] (see also [6]). In
[6], it is proved that the category of categorical Lie algebras is equivalent to the category
of braided Lie crossed modules.
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In [8], Fukushi gave a braided version of the results on universal central extensions of
crossed modules of groups provided by Norrie in [13]. He found a natural braiding on
the universal central extension of a crossed module of groups which behaves well with one
braided crossed module. However, it is not the archetype of universal central extension
in the category of braided crossed modules since, in this category, it is necessary to add
additional restrictions including the braiding on the notions of centre and commutator.

In this paper, we will devise a braided version of the results given by Casas and Ladra
in [2] for braided crossed modules of Lie K-algebras; more precisely, we will study univer-
sal central extensions in the category of braided Lie crossed modules BXLie. For that
purpose, we will need the definition of centre and commutator given by Huq in [9] in the
braided context.

This text is organised as follows. In the first section, we provide some definitions such
as braiding, central extensions in the category of Lie crossed modules XLie, B-central
extensions in BXLie, and the non-abelian tensor product of Lie algebras, necessary for
developing the work. In Section 3, we construct the universal B-central extension for
a B-perfect braided Lie crossed module and prove that a braided Lie crossed module
admits a universal B-central extension if and only if it is B-perfect. In Section 4, we
construct the universal U-central extension for a perfect braided Lie crossed module, where
U : BXLie −→ XLie is the forgetful functor. In Section 5, we study the relation between
the universal B-central extension and the universal U-central extension of a braided Lie
crossed module. Finally, we prove that both universal extensions exist and coincide for a
B-perfect braided Lie crossed module.

Note that the framework of this paper is different from that given in [3], since the
category XLie is not a Birkhoff subcategory of BXLie.

2. Preliminaries
Throughout this paper, we will suppose that K is a field.

Definition 2.1. A Lie crossed module is a pair (M ∂−→ N, ·) where:
• M and N are Lie algebras, together with a Lie left-action · of N on M , i.e. a

K-bilinear map · : N × M → M , (n, m) 7→ n · m, satisfying

[n, n′] · m = n · (n′ · m) − n′ · (n · m),
n · [m, m′] = [n · m, m′] + [m, n · m′], m, m′ ∈ M, n, n′ ∈ N ;

• ∂ : M −→ N is a Lie K-homomorphism that satisfies the following properties:
– ∂ is an N -equivariant Lie K-homomorphism:

∂(n · m) = ad(n)(∂(m)) = [n, ∂(m)],

– ∂ satisfies the Peiffer identity:

∂(m) · m′ = ad(m)(m′) = [m, m′].

Example 2.2.

(1) The identity map M
IdM−−→ M with the adjoint action, m · m′ = [m, m′], is a Lie

crossed module.
(2) Any central extension of Lie algebras M

∂−→→ N is a crossed module, with the
action ∂(m) · m′ = [m, m′]. Conversely, a simply connected crossed module (i.e. ∂
is surjective) is a central extension.

In particular, M
ad−→→ IDer(M), m 7→ ad(m), with the action, ad(m) · m′ =

[m, m′], is a Lie crossed module, where IDer(M) are the inner derivations of a Lie
algebra M .



Universal central extensions of braided crossed modules of Lie algebras 1015

Definition 2.3. Let (M ∂−→ N, ·) and (L δ−→ H, ∗) be two Lie crossed modules. A morphism
of Lie crossed modules is a pair of Lie K-homomorphisms (f1, f2), f1 : M −→ L and f2 : N −→
H, such that:

f1(n · m) = f2(n) ∗ f1(m), for all m ∈ M, n ∈ N, (XLieH1)
δ ◦ f1 = f2 ◦ ∂. (XLieH2)

The category of Lie crossed modules is a semi-abelian category in the sense of [11], and
it will be denoted by XLie.

The notion of the centre of an object was defined in [9], in a category with specific
properties. This construction only needs that the category has finite products and zero
object.

The category XLie has centres in the sense of Huq [9], and they were constructed in
[2].

Definition 2.4. The centre of a Lie crossed module M = (M ∂−→ N, ·) is the crossed

submodule Z(M) = (MN
∂|

MN−−−→ stN (M) ∩ Z(N), ·Z), where:
• MN = {m ∈ M | n · m = 0, n ∈ N},
• Z(N) = {n ∈ N | [n, n′] = 0, n′ ∈ N} is the centre of the Lie K-algebra N ,
• stN (M) = {n ∈ N | n · m = 0, m ∈ M},

and ·Z is the induced action, which means that it is the zero action by the definition of
MN .

The notions of commutator of a Lie crossed module and a perfect Lie crossed module
were introduced in [2]. This notion of commutator coincides in the category XLie with
the idea of commutator given by Huq in [9] in a category with products, zero objects,
kernels and cokernels.

If L is a Lie K-algebra and S ⊂ L, we denote ⟨S⟩L the Lie subalgebra of L generated
by S, that is, the intersection of all subalgebras containing S.

Definition 2.5. Let M = (M ∂−→ N, ·) be a Lie crossed module. The commutator crossed

submodule is [M,M] = (DN (M)
∂|DN (M)−−−−−→ [N, N ], ·C), where ·C is the induced action, and

• DN (M) = ⟨{n · m | n ∈ N, m ∈ M}⟩M ,
• [N, N ] = ⟨{[n, n′] | n, n′ ∈ N}⟩N is the commutator of the Lie K-algebra N .

Definition 2.6. We will say that a Lie crossed module M = (M ∂−→ N, ·) is perfect if it
coincides with its commutator crossed submodule M = [M,M], i.e. M = DN (M) and
N = [N, N ].

Definition 2.7. An extension in XLie is a regular epimorphism, i.e. a surjective mor-
phism.

Following the theory in [10], we have three kinds of extensions: trivial, normal and
central.

An extension Φ: X −→→ M is trivial if the induced square

X M

Xab Mab

Φ

Φab

is a pullback in XLie, where Mab = M
[M,M] .

An extension is normal if one of the projections of the kernel pair is trivial.
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An extension Φ: X −→→ M is central if there exists another extension Ψ: Y −→→ M such
that π2 (also denoted Ψ∗(Φ)) in the pullback

X ×M Y X

Y M,

π1

π2 Φ

Ψ

is trivial.
In our semi-abelian context, the concepts of normal and central extension are equivalent,

and a more practical characterization is the following:
An extension X = (X δ−→ S, ∗) f=(f1,f2)−−−−−−→→ M = (M ∂−→ N, ·) is central if and only if

ker(f) = (ker(f1)
δ|ker(f1)−−−−−→ ker(f2), ∗ker) is a crossed submodule of the centre of X, Z(X).

The central extensions in XLie of an object M constitute another category, whose
morphisms are the morphisms of Lie crossed modules Θ: X −→ Y making commutative
the diagram

X Y

M.

Θ

Φ Ψ

A central extension U −→→ M is said to be universal (of M) if it is the initial object in
the category of central extensions of M. From the definition, it is clear that the universal
central extension is unique up to isomorphisms.

The universal central extension is entirely related to the concept of the non-abelian
tensor product. In the case of groups, Brown and Loday in [1] defined the non-abelian
tensor product of groups and proved that the universal central extension is the non-abelian
tensor product G⊗G with the epimorphism G⊗G −→→ G sending g1⊗g2 to its commutator
[g1, g2]. The same happens in Lie algebras’ case with the non-abelian tensor product of
Lie algebras introduced by Ellis in [5].

In the cases of crossed modules of groups [13] and Lie crossed modules [2], the notions
of the non-abelian tensor products are also needed.

For the case of non-abelian tensor product of Lie K-algebras, the definition introduced
by Ellis in [5] is the following one:

Definition 2.8. Let M and N be two Lie K-algebras such that M acts on N by · and N
acts on M with ∗.

The non-abelian tensor product, denoted by M ⊗ N , is defined as the Lie K-algebra
generated by the symbols m ⊗ n with m ∈ M , n ∈ N and the relations:

λ(m ⊗ n) = λm ⊗ n = m ⊗ λn, (T1)
(m + m′) ⊗ n = m ⊗ n + m′ ⊗ n, (T2)
m ⊗ (n + n′) = m ⊗ n + m ⊗ n′,

[m, m′] ⊗ n = m ⊗ (m′ · n) − m′ ⊗ (m · n), (T3)
m ⊗ [n, n′] = (n′ ∗ m) ⊗ n − (n ∗ m) ⊗ n′,

[m ⊗ n, m′ ⊗ n′] = −(n ∗ m) ⊗ (m′ · n′), (T4)

where m, m′ ∈ M , n, n′ ∈ N , λ ∈ K.

When we talk about M ⊗M we will assume that M acts on itself by the adjoint action.
Now we will consider braidings in Lie crossed modules, whose definitions were introduced

in [6, 7, 14] (the notions of [6] and [14] coincide for a field K with char(K) ̸= 2).
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Definition 2.9. A braiding (or Peiffer lifting) on the Lie crossed module M = (M ∂−→ N, ·)
is a K-bilinear map {−, −} : N × N −→ M satisfying:

∂{n, n′} = [n, n′], (BLie1)
{∂m, ∂m′} = [m, m′], (BLie2)

{∂m, n} = −n · m, (BLie3)
{n, ∂m} = n · m, (BLie4)

{n, [n′, n′′]} = {[n, n′], n′′} − {[n, n′′], n′}, (BLie5)
{[n, n′], n′′} = {n, [n′, n′′]} − {n′, [n, n′′]}, (BLie6)

for m, m′ ∈ M , n, n′, n′′ ∈ N .
If {−, −} is a braiding on M we will say that (M ∂−→ N, ·, {−, −}) is a braided Lie crossed

module.

Example 2.10.
(1) There is a canonical braiding on (M IdM−−→ M, [−, −]), given by {m, m′} = [m, m′].
(2) There is a canonical braiding on the crossed module (M ⊗ M

∂−→ M, ·), with
∂ : m⊗m′ 7→ [m, m′], m·(m1⊗m2) = m⊗[m1, m2]. It is given by {m, m′} = m⊗m′.

(3) Let (M ∂−→→ N, ·) be a simply connected Lie crossed module. There is a canonical
braiding on (M ∂−→→ N, ·), given by {∂(m), ∂(m′)} = [m, m′].
In particular, M

ad−→→ IDer(M), with the braiding {ad(m), ad(m′)} = [m, m′], is a
braided crossed module.

Definition 2.11. A morphism of braided Lie crossed modules
f = (f1, f2) : (M ∂−→ N, ·, {−, −}) −→ (M ′ ∂′

−→ N ′, ·′, ⦅−, −⦆)
is a homomorphism of Lie crossed modules that preserves the braiding, i.e.

f1({n, n′}) = ⦅f2(n), f2(n′)⦆, for n, n′ ∈ N. (BXLieH3)

We will denote the category of braided Lie crossed modules by BXLie. We have a
faithful forgetful functor U : BXLie → XLie.

In the case of the braiding category BXLie, the idea of braiding changes a little the con-
cepts of centre and commutator from the category of Lie crossed modules XLie, appearing
the following subobjects using the definition given by Huq [9] in the general case.

Definition 2.12. The B-centre of a braided Lie crossed module M = (M ∂−→ N, ·, {−, −})

is the braided crossed submodule ZB(M) = (MN
∂|

MN−−−→ ZB(N), ·Z , {−, −}Z), where
ZB(N) = {n ∈ N | {n, n′} = 0 = {n′, n}, n′ ∈ N},

·Z is the induced action and {−, −}Z is the induced braided, i.e. the zero action and the
zero braiding by the definition of MN and ZB(N).

The B-centre is the centre [9] in the category BXLie.

Remark 2.13. It is easy to show that the following inclusions of subalgebras are true:
MN ⊂ Z(M), ZB(N) ⊂ Z(N) ∩ stN (M).

Besides, if we use the properties (BLie3) and (BLie4), then we have that MN = {m ∈
M | ∂(m) ∈ ZB(N)}.

Definition 2.14. Let M = (M ∂−→ N, ·, {−, −}) be a braided Lie crossed module. The
B-commutator braided crossed submodule is given by

[M,M]B =
(
BN (M)

∂|BN (M)−−−−−→ [N, N ], ·C , {−, −}C

)
,
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where ·C and {−, −}C are the induced operations, and BN (M) =
⟨{

{n, n′} | n, n′ ∈ N
}⟩

M
.

The B-commutator is the commutator [9] in the category BXLie, and therefore it is a
crossed ideal (see [2]).
Remark 2.15. BN (M) is an ideal of M , and we have the following inclusion of subalge-
bras:

[M, M ] ⊂ DN (M) ⊂ BN (M).

Definition 2.16. We will say that a braided Lie crossed module Lie M = (M ∂−→
N, ·, {−, −}) is B-perfect if it coincides with its B-commutator braided crossed submodule
M = [M,M]B, i.e. M = BN (M) and N = [N, N ].

Definition 2.17. An extension of braided Lie crossed modules is a morphism X
(f1,f2)−−−−→→ Y

in BXLie such that f1 and f2 are surjective morphisms.
Besides, we will say that it is B-central (central extension in the category BXLie)

if ker(f1, f2) is a braided crossed submodule of ZB(X), i.e. the kernel is “inside” the
B-centre.

Definition 2.18. We will say that an extension X
(f1,f2)−−−−→→ Y in BXLie of braided Lie

crossed modules is a U-central extension if U(X) U(f1,f2)−−−−−→→ U(Y) is central in XLie, i.e.
ker

(
U(f1, f2)

)
is a crossed submodule of the centre of U(X), Z

(
U(X)

)
.

It is immediate that every B-central extension in the category BXLie is a U-central
extension. The next example shows that not every U-central extension is a B-central
extension. Furthermore, it manifests that the concepts of B-centre and B-commutator of
a braided crossed module are different from the notions of centre and commutator.
Example 2.19. Let M ̸= 0 be an abelian K-Lie algebra of finite dimension n, i.e. M is
isomorphic to Kn.

Using Example 2.10 (2), we have that (M ⊗ M
∂−→ M, ·), with ∂ = 0, m · (m1 ⊗ m2) =

m ⊗ [m1, m2] = m ⊗ 0 = 0 and {m, m′} = m ⊗ m′ is a braided Lie crossed module.
Note that, since M is abelian, we have that M ⊗ M is isomorphic to the usual tensor

product as vector spaces.
(i) Let X = (M ⊗ M

0−→ M, 0, − ⊗ −) be the braided Lie crossed module, where the
tensor product is the usual one. It is easy to show that the correspondent subalgebras are
the following ones:

• (M ⊗ M)M = M ⊗ M , stM (M ⊗ M) = M , Z(M) = M , and ZB(M) = 0.
• DM (M ⊗ M) = 0, BM (M ⊗ M) = M ⊗ M , and [M, M ] = 0.

So, the centre Z
(
U(X)

)
= (M ⊗M

0−→ M) and the B-centre ZB(X) = (M ⊗M
0−→ 0, −⊗−)

are different in XLie, i.e. Z
(
U(X)

)
̸= U(ZB(X)). On the other hand, the commutator

[U(X),U(X)] = (0 0−→ 0) and the B-commutator [X,X]B = (M ⊗ M
0−→ 0, − ⊗ −) are also

different in XLie, i.e. [U(X),U(X)] ̸= U([X,X]B).
(ii) Now, we will show a U-central extension that is not a B-central extension.
In particular, we have for M = K3 and M = K2, the braided Lie crossed modules

Y = (K3 ⊗ K3 0−→ K3, 0, − ⊗ −) and Z = (K2 ⊗ K2 0−→ K2, 0, − ⊗ −).
By taking the projection K3 π−→ K2, (x, y, z) 7→ (x, y), we have that π ⊗ π : K3 ⊗ K3 −→

K2 ⊗ K2 is surjective and Y
(π⊗π,π)−−−−−→→ Z is an extension of braided Lie crossed modules.

It is immediate that ker(π ⊗ π) ⊂ (K3 ⊗ K3)K3 = K3 ⊗ K3 and ker(π) ⊂ Z(K3) ∩
stK3(K3 ⊗ K3) = K3, i.e. ker(π ⊗ π, π) ⊂ Z

(
U(Y)

)
, and so the extension is a U-central

extension.
However 0 ̸= ker(π) = {(x, y, z) ∈ K3 | x = y = 0} * ZB(K3) = 0, and therefore the

extension Y
(π⊗π,π)−−−−−→→ Z is not B-central.
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3. The universal B-central extension for B-perfect braided Lie crossed
modules

Similar to Lie crossed modules we have the following definition of the universal central
extension of braided Lie crossed modules.

A B-central extension U
u−→→ M of M in BXLie is universal if it is the initial object

in the category of B-central extensions of M, i.e. if for any other B-central extension
Z

f−→→ M in BXLie, there is a unique morphism h : U −→ Z such that u = f ◦ h.
In this section, we will find the expression of this universal initial object when it exists,

and we will try to characterize this fact.

Lemma 3.1. If M = (M ∂−→ N, ·, {−, −}) is a braided Lie crossed module, then N ⊗N
Φ1−→

M defined by n ⊗ n′ 7→ {n, n′}, and N ⊗ N
Φ2−→ N defined by n ⊗ n′ 7→ [n, n′], are Lie

K-homomorphisms.
Besides, Φ1 and Φ2 are simultaneously surjective if and only if the braided Lie crossed

module M is B-perfect.

Proof. Since Φ1 and Φ2 are determined by generators, we only need to prove that they
are well defined to prove that they are Lie K-homomorphisms.

First, we will prove that the two morphisms preserve the relations (T1)–(T4).
(T1) and (T2) are preserved because [−, −] and {−, −} are K-bilinear.
Since the two actions on N ⊗ N are the Lie bracket of N , [−, −], we can rewrite the

relations (T3) and (T4) to obtain the following ones:

[n1, n2] ⊗ n3 = n1 ⊗ [n2, n3] − n2 ⊗ [n1, n3], (T3)
n1 ⊗ [n2, n3] = [n3, n1] ⊗ n2 − [n2, n1] ⊗ n3,

[(n1 ⊗ n2), (n3 ⊗ n4)] = [n1, n2] ⊗ [n3, n4]. (T4)

Starting with (T3) we have:

Φ1([n1, n2] ⊗ n3) = {[n1, n2], n3} = {n1, [n2, n3]} − {n2, [n1, n3]}
= Φ1(n1 ⊗ [n2, n3]) − Φ1(n2 ⊗ [n1, n3]) = Φ1(n1 ⊗ [n2, n3] − n2 ⊗ [n1, n3]),

where we have used (BLie6).
We will see now the second relation in (T3):

Φ1(n1 ⊗ [n2, n3]) = {n1, [n2, n3]} = {[n1, n2], n3} − {[n1, n3], n2}
= Φ1([n1, n2] ⊗ n3 − [n1, n3] ⊗ n2) = Φ1(−[n2, n1] ⊗ n3 + [n3, n1] ⊗ n2)
= Φ1([n3, n1] ⊗ n2 − [n2, n1] ⊗ n3),

where we have used (BLie5).
For Φ2 is true using a similar argument together with the Jacobi identity in both

equalities.
The proof of (T4) for Φ2 follows since both equalities are [[n1, n2], [n3, n4]] after applying

Φ2.
For Φ1 we have the following equalities:

Φ1([n1 ⊗ n2, n3 ⊗ n4]) = Φ1([n1, n2] ⊗ [n3, n4]) = {[n1, n2], [n3, n4]} = {∂{n1, n2}, ∂{n3, n4}}
= [{n1, n2}, {n3, n4}] = [Φ1(n1 ⊗ n2), Φ1(n3 ⊗ n4)]

where we have used (T4), (BLie1) and (BLie2).
So, Φ1 and Φ2 are well defined and are Lie K-homomorphisms.
For the second part, we have that Im Φ1 = BN (M) and Im Φ2 = [N, N ]. Therefore,

Φ1 and Φ2 are simultaneously surjective if and only if the braided Lie crossed module is
B-perfect. �
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Lemma 3.2. Let (M ∂−→ N, ·, {−, −}) be a braided Lie crossed module, and the braided
Lie crossed module (N ⊗ N

IdN⊗N−−−−→ N ⊗ N, [−, −], [−, −]) (see Example 2.10 (1)). Then
(Φ1, Φ2) : (N ⊗ N

IdN⊗N−−−−→ N ⊗ N, [−, −], [−, −]) −→ (M ∂−→ N, ·, {−, −}) is a morphism in
BXLie, with Φ1 and Φ2 defined in Lemma 3.1,.

Besides, ker(Φ1) ⊂ (N ⊗ N)(N⊗N) and ker(Φ2) ⊂ ZB(N ⊗ N).

Proof. For the proof, we will denote the action [−, −] of N ⊗ N
IdN⊗N−−−−→ N ⊗ N as ∗, and

its braiding as ⟦−, −⟧.
First, we will show (XLieH1). Let n ⊗ n′, n′′ ⊗ n′′′ ∈ N ⊗ N .
Φ1((n ⊗ n′) ∗ (n′′ ⊗ n′′′)) = Φ1([n ⊗ n′, n′′ ⊗ n′′′]) = Φ1([n, n′] ⊗ [n′′, n′′′])

= {[n, n′], [n′′, n′′′]} = {[n, n′], ∂{n′′, n′′′}} = [n, n′] · {n′′, n′′′}
= Φ2(n ⊗ n′) · Φ1(n′′ ⊗ n′′′),

where we have used (BLie1) and (BLie4).
Now, we will show (XLieH2).

∂ ◦ Φ1(n ⊗ n′) = ∂{n, n′} = [n, n′] = Φ2(IdN⊗N (n ⊗ n′)),
where we have used (BLie2).

Now, we will prove (BXLieH3).
Φ1(⟦n ⊗ n′, n′′ ⊗ n′′′⟧) = Φ1([n ⊗ n′, n′′ ⊗ n′′′]) = Φ1([n, n′] ⊗ [n′′, n′′′])

= {[n, n′], [n′′, n′′′]} = {Φ2(n ⊗ n′), Φ2(n′′ ⊗ n′′′)}.

So, (Φ1, Φ2) is a morphism in BXLie. We will now prove that the inclusions hold.
If n ⊗ n′ ∈ ker(Φ1) then {n, n′} = 0. Using (BLie1) we have that 0 = ∂{n, n′} = [n, n′].
Since (N ⊗N)(N⊗N) = {x ∈ N ⊗N | (n′′ ⊗n′′′)∗x = 0, n′′ ⊗n′′′ ∈ N ⊗N} (it is enough

to work on generators), we have for generators x = n ⊗ n′

(n′′ ⊗ n′′′) ∗ (n ⊗ n′) = [n′′ ⊗ n′′′, n ⊗ n′] = [n′′, n′′′] ⊗ [n, n′] = [n′′, n′′′] ⊗ 0 = 0.

Therefore, we have that n ⊗ n′ ∈ (N ⊗ N)(N⊗N) and ker(Φ1) ⊂ (N ⊗ N)(N⊗N).
For the second inclusion, we take n ⊗ n′ ∈ ker(Φ2), i.e. [n, n′] = 0.
Since it is enough to work on generators, we have that
ZB(N ⊗ N) = {x ∈ N ⊗ N | ⟦x, n′′ ⊗ n′′′⟧ = 0 = ⟦n′′ ⊗ n′′′, x⟧, n′′ ⊗ n′′′ ∈ N ⊗ N}.

Taking into account that for generators x = n ⊗ n′⟦n′′ ⊗ n′′′, n ⊗ n′⟧ = [n′′ ⊗ n′′′, n ⊗ n′] = [n′′, n′′′] ⊗ [n, n′] = [n′′, n′′′] ⊗ 0 = 0,⟦n ⊗ n′, n′′ ⊗ n′′′⟧ = [n ⊗ n′, n′′ ⊗ n′′′] = [n, n′] ⊗ [n′′, n′′′] = 0 ⊗ [n′′, n′′′] = 0,

we deduce n ⊗ n′ ∈ ZB(N ⊗ N), which proves that ker(Φ2) ⊂ ZB(N ⊗ N). �
Corollary 3.3. The morphism given in Lemma 3.2 is a B-central extension if and only
if (M ∂−→ N, ·, {−, −}) is a B-perfect braided Lie crossed module.
Proof. It will be a B-central extension if and only if (Φ1, Φ2) is an extension, since
Lemma 3.2 establishes the two inclusions and they have the restricted operations as a
braided Lie crossed module.

Moreover, (Φ1, Φ2) is an extension if and only if Φ1 and Φ2 are simultaneously surjective,
and by Lemma 3.1 that it happens if and only if the braided Lie crossed module (M ∂−→
N, ·, {−, −}) is B-perfect. �

Proposition 3.4. If (X1
δ−→ X2, ∗, ⦅−, −⦆) f=(f1,f2)−−−−−−→→ (M ∂−→ N, ·, {−, −}) is a B-central

extension, then we have a morphism in BXLie, h = (h1, h2) : (N ⊗ N
IdN⊗N−−−−→ N ⊗

N, [−, −], [−, −]) −→ (X1
δ−→ X2, ∗, ⦅−, −⦆), defined by:
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• h1 : N ⊗N −→ X1, n⊗η 7→ ⦅n, η⦆, where n, η ∈ X2 are elements such that f2(n) = n
and f2(η) = η;

• h2 : N ⊗N −→ X2, n⊗η 7→ [n, η], where n, η ∈ X2 are elements such that f2(n) = n
and f2(η) = η.

Besides, f ◦h = Φ = (Φ1, Φ2), i.e. h is a morphism between the extensions Φ = (Φ1, Φ2)
and f = (f1, f2) if (M ∂−→ N, ·, {−, −}) is B-perfect (see Lemmas 3.1 and 3.2).

Proof. We need to prove that h1 and h2 are well defined.
We will start with h1. We will take n, ñ, η, η̃ ∈ X2 such that f2(n) = f2(ñ) = n and

f2(η) = f2(η̃) = η and prove that ⦅n, η⦆ = ⦅ñ, η̃⦆.
Since f2(n) = f2(ñ) and f = (f1, f2) is a B-central extension, we have that n − ñ ∈

ker(f2) ⊂ ZB(X2). By the definition of ZB(X2) we get that ⦅n − ñ, η⦆ = 0 and so⦅n, η⦆ = ⦅ñ, η⦆.
Using an analogue reasoning, we have that η−η̃ ∈ ker(f2) ⊂ ZB(X2), and, ⦅ñ, η−η̃⦆ = 0.

So ⦅ñ, η⦆ = ⦅ñ, η̃⦆.
With both equalities, we have that ⦅n, η⦆ = ⦅ñ, η⦆ = ⦅ñ, η̃⦆, and h1 is independent of

the choice.
Since ZB(X2) ⊂ Z(X2) we can change the proof for h1 taking the equalities for [−, −]

instead of ⦅−, −⦆ which proves that h2 is independent of the choice.
We can use an analogue argument as in Lemma 3.1 to prove that h1 and h2 are well

defined, i.e. they preserve the relations. So, they are Lie K-homomorphisms since they
are determined on generators.

To prove that h = (h1, h2) is a morphism of braided Lie crossed modules, we also use
similar reasoning as the one done in Lemma 3.2, since we can make the changes in the
choice inside the braidings and brackets.

To finish, if n ⊗ η ∈ N ⊗ N , then

f1 ◦ h1(n ⊗ η) = f1(⦅n, η⦆) = {f2(n), f2(η)} = {n, η} = Φ1(n ⊗ η),
f2 ◦ h2(n ⊗ η) = f2([n, η]) = [f2(n), f2(η)] = [n, η] = Φ2(n ⊗ η).

Therefore, f ◦ h = Φ. �

Lemma 3.5. If N is a perfect Lie K-algebra, i.e. N = [N, N ], then (N ⊗ N
IdN⊗N−−−−→

N ⊗ N, [−, −], [−, −]) is a B-perfect braided Lie crossed module.
In particular, if (M ∂−→ N, ·, {−, −}) is a B-perfect braided Lie crossed module, then

(N ⊗ N
IdN⊗N−−−−→ N ⊗ N, [−, −], [−, −]) is a B-perfect braided Lie crossed module.

Proof. Since the braiding in (N ⊗N
IdN⊗N−−−−→ N ⊗N, [−, −], [−, −]) is the bracket, we have

that [N ⊗N, N ⊗N ] = BN⊗N (N ⊗N), and so it is enough to prove that [N ⊗N, N ⊗N ] =
N ⊗ N .

Moreover, it is enough to prove that the generators [n1, n2] ⊗ [n3, n4] are inside [N ⊗
N, N⊗N ] since N = [N, N ]. Using (T4) we have that [n1, n2]⊗[n3, n4] = [n1⊗n2, n3⊗n4] ∈
[N ⊗ N, N ⊗ N ].

For the second part, if (M ∂−→ N, ·, {−, −}) is B-perfect, then N = [N, N ], and we
conclude using the first part. �

Proposition 3.6. Let (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) Ψ=(Ψ1,Ψ2)−−−−−−−→ (M ∂−→ N, ·, {−, −}) be a morphism

of braided Lie crossed modules such that (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) is B-perfect.

If (X1
ρ−→ X2, ∗, ⦅−, −⦆) f=(f1,f2)−−−−−−→→ (M ∂−→ N, ·, {−, −}) is a B-central extension and

exists (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) h=(h1,h2)−−−−−−→ (X1

ρ−→ X2, ∗, ⦅−, −⦆) such that Ψ = f ◦ h, then h is
the unique that satisfies the equality.
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Proof. Suppose that there are morphisms g = (g1, g2), h = (h1, h2) : (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) −→

(X1
ρ−→ X2, ∗, ⦅−, −⦆) such that Ψ = f ◦ h = f ◦ g, i.e. Ψ1 = f1 ◦ h1 = f1 ◦ g1 and

Ψ2 = f2 ◦ h2 = f2 ◦ g2.
If y ∈ Y2 then f2 ◦ h2(y) = f2 ◦ g2(y), i.e. h2(y) − g2(y) ∈ ker(f2). Then there is

ky ∈ ker(f2) such that h2(y) = g2(y) + ky. Since f is a B-central extension we have that
ker(f2) ⊂ ZB(X2) ⊂ Z(X2). If we take y, z ∈ Y2, and since ky, kz ∈ Z(X2), we have

[ky, g2(z)] = [ky, kz] = [g2(y), kz] = 0.

Using this fact, we have:
h2([y, z]) = [h2(y), h2(z)] = [g2(y) + ky, g2(z) + kz]

= [g2(y), g2(z)] + [ky, g2(z)] + [ky, kz] + [g2(y), kz] = [g2(y), g2(z)] = g2([y, z]).

So, g2 = h2 since (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) is B-perfect.

Besides, since ker(f2) ⊂ ZB(X2), for y, z ∈ Y2, we have that:
h1(⟦y, z⟧) = ⦅h2(y), h2(z)⦆ = ⦅g2(y) + ky, g2(z) + kz⦆
= ⦅g2(y), g2(z)⦆ + ⦅ky, g2(z)⦆ + ⦅ky, kz⦆ + ⦅g2(y), kz⦆ = ⦅g2(y), g2(z)⦆ = g1(⟦y, z⟧),

where we have used that ky, kz ∈ ZB(X2).
Therefore, g1 = h1 because (Y1

ϱ−→ Y2, ⋆, ⟦−, −⟧) is B-perfect, i.e. Y1 = BY2(Y1) is
generated by the images of the braiding. �

Corollary 3.7. If M = (M ∂−→ N, ·, {−, −}) is a B-perfect Lie braided crossed module,
then

U = (N ⊗ N
IdN⊗N−−−−→ N ⊗ N, [−, −], [−, −]) Φ=(Φ1,Φ2)−−−−−−−→→ M = (M ∂−→ N, ·, {−, −}) (UBCE)

is the universal B-central extension of M, where Φ1, Φ2 were defined in Lemma 3.1.

Proof. Since M is B-perfect, Corollary 3.3 states that the morphism U
Φ−→→ M is a B-

central extension.
We need to prove that it is universal.
If we have another B-central extension X

f−→→ M then by Proposition 3.4 there is h such
that Φ = f ◦ h.

The uniqueness of this morphism is given by Proposition 3.6. We can use the previous
proposition since U is B-perfect by Lemma 3.5 and the fact that M is B-perfect. �

Let us see the converse of Corollary 3.7.

Proposition 3.8. Let (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) Ψ=(Ψ1,Ψ2)−−−−−−−−→→ (M ∂−→ N, ·, {−, −}) be an exten-

sion in BXLie such that (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) is B-perfect. Then (M ∂−→ N, ·, {−, −}) is

B-perfect.
Proof. Ψ1 and Ψ2 are surjective maps since Ψ is an extension, and Y1 = BY2(Y1) and
Y2 = [Y2, Y2] because (Y1

ϱ−→ Y2, ⋆, ⟦−, −⟧) is B-perfect.
Since the elements ⟦y, z⟧, with y, z ∈ Y2 are the generators of Y1, we have that Ψ1(⟦y, z⟧)

are the generators of Im Ψ1 = M . Since Ψ1(⟦y, z⟧) = {Φ2(y), Φ2(z)}, we get that the
generators of M are braided elements and M = BN (M).

We know that the elements [y, z], with y, z ∈ Y2, are the generators of Y2. Therefore,
Φ2([y, z]) = [Φ2(y), Φ2(z)] are the generators of Im Φ2 = N , and then N = [N, N ].

So, (M ∂−→ N ·, {−, −}) is B-perfect. �

Lemma 3.9. Let Y = (Y1
ϱ−→ Y2, ⋆, ⟦−, −⟧) Ψ−−→→ M = (M ∂−→ N, ·, {−, −}) be a B-central

extension in BXLie such that Y is not B-perfect. Then exists another B-central extension
X

f−−→→ M and two different morphisms h, g : Y −→ X such that Ψ = f ◦ h = f ◦ g.



Universal central extensions of braided crossed modules of Lie algebras 1023

Proof. Let [Y,Y]B = (BY2(Y1)
ϱ|BY2 (Y1)
−−−−−−→ [Y2, Y2], ⋆C , ⟦−, −⟧C) i=(i1,i2)−−−−−→ (Y1

ϱ−→ Y2, ⋆, ⟦−, −⟧)
be the inclusion morphism of the B-commutator braided crossed submodule.

Since [Y,Y]B is a crossed ideal, it is the commutator [9] in the category BXLie, by
taking the cokernel of i we have the Lie crossed module Y = ( Y1

BY2 (Y1)
ϱ−→ Y2

[Y2,Y2] , ⋆, ⟦−, −⟧).
We will denote in the same way, by abuse of notation, the braidings in Y and in its quotient
Y. We will represent the elements in Y1

BY2 (Y1) as x, x ∈ Y1, and the ones in Y2
[Y2,Y2] as y,

y ∈ Y2.
We take now the product in the category BXLie and we construct M × Y. We denote

as π1 = (π1
1, π1

2) the first projection morphism. Since π1
1 and π2

1 are surjective maps, we
have that M × Y

π1
−→→ M is an extension. We will denote the braiding in the product as⦃−, −⦄.

We will prove that it is a B-central extension, i.e. we need to prove the inclusions
ker(π1

1) ⊂
(
M × Y1

BY2 (Y2)
)(

N× Y2
[Y2,Y2]

)
and ker(π1

2) ⊂ ZB

(
N × Y2

[Y2,Y2]
)
.

If a ∈ ker(π1
1) then a = (0, x) with x ∈ Y1.

If we take (n, y) ∈ N × Y2
[Y2,Y2] then:

(n, y)(· × ⋆)(0, x) = (n · 0, y ⋆ x) = (0, y ⋆ x).
But y ⋆ x = 0 since y ⋆ x ∈ DY2(Y1) ⊂ BY2(Y1).

So ker(π1
1) ⊂

(
M × Y1

BY2 (Y2)
)(

N× Y2
[Y2,Y2]

)
.

If a ∈ ker(π1
2) then a = (0, y) with y ∈ Y2. If we take (n, y1) ∈ N × Y2

[Y2,Y2] then:

⦃(0, y), (n, y1)⦄ = ({0, n}, ⟦y, y1⟧) = (0, ⟦y, y1⟧),⦃(n, y1), (0, y)⦄ = ({n, 0}, ⟦y1, y⟧) = (0, ⟦y1, y⟧).

Moreover, ⟦y, y1⟧ = ⟦y1, y⟧ = 0 since ⟦y1, y⟧, ⟦y, y1⟧ ∈ BY2(Y1). Therefore ker(π1
2) ⊂

ZB

(
N × Y2

[Y2,Y2]
)
, and so π1 is a B-central extension.

If ic : Y −→→ Y is the cokernel of i, then we have two morphisms, induced by the product,
with domain Y and M × Y as codomain. They are h = (Ψ, 0) and g = (Ψ, ic). Since they
are induced by the universal property of the product, we have that Ψ = π1 ◦ h = π1 ◦ g.

To finish the proof, we only must prove that they are different. Since the braided Lie
crossed module Y is not B-perfect and ic

1 and ic
2 are surjective we know that ic

1 ̸= 0 or
ic
2 ̸= 0 (if both were the zero morphisms, then Y would be B-perfect), and so h ̸= g. �

Corollary 3.10. If M is a braided Lie crossed module, then its universal B-central ex-
tension, if it exists, is B-perfect.

Proof. If the universal extension is not B-perfect, then using Lemma 3.9 we have another
B-central extension X −→→ M for which there exist two different morphisms from the
universal B-central extension to X −→→ M, which contradicts the universality. �
Theorem 3.11. A braided Lie crossed module admits a universal B-central extension if
and only if it is B-perfect.

Proof. It is a consequence of Corollary 3.7, Corollary 3.10 and Proposition 3.8. �

4. Braiding on a universal extension of Lie crossed modules
Universal central extensions of braided crossed modules of groups are not studied in [8].

However, the author constructed a canonical braiding on the universal central extension
of a crossed module of groups [13], when the given crossed module is braided as well, and
showed that it was universal in a sense that we will explain in this section.
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In this part of the paper, we will consider braided Lie crossed modules extensions, but
unlike the previous section, we will construct a braiding on the universal central extension
of a braided Lie crossed module though as Lie crossed module and with the centre in
XLie, which we have called U-central extension. In this sense, we will obtain similar
results given by Fukushi in [8] for crossed modules of groups in the category BXLie.

Casas and Ladra in [2] proved that the universal central extension of a perfect Lie
crossed module (M ∂−→ N, ·) in XLie is given by:

(N ⊗ M
IdN ⊗∂−−−−→ N ⊗ N, ∗) c=(c1,c2)−−−−−−→→ (M ∂−→ N, ·), (UCE)

where N ⊗ M is given by the actions · of N on M and m ⋆ n = [∂(m), n] of M on N ; the
action of N ⊗N on N ⊗M is given by (n⊗n′)∗(n′′ ⊗m) = [[n, n′], n′′]⊗m+n′′ ⊗ [n, n′] ·m
for n, n′, n′′ ∈ N, m ∈ M ; and the morphisms are c1(n⊗m) = n ·m and c2(n⊗n′) = [n, n′].

Proposition 4.1. If (M ∂−→ N, ·, {−, −}) is a braided Lie crossed module then ⦃−, −⦄ : (N⊗
N) × (N ⊗ N) −→ N ⊗ M , defined on generators by ⦃n ⊗ n′, n′′ ⊗ n′′′⦄ = [n, n′] ⊗ {n′′, n′′′},
is a braiding for the Lie crossed module (N ⊗ M

IdN ⊗∂−−−−→ N ⊗ N, ∗).

Proof. The braiding ⦃−, −⦄ is well defined since it preserves the relations (T1) and (T2)
using the K-bilinearity of [−, −] and {−, −}, and (T3) and (T4) are fulfilled too since
{−, −} and [−, −] satisfy it.

It is sufficient to prove the axioms of braidings. Let n, n, n′, n′′ ∈ N , m, m′ ∈ M . Then

(IdN ⊗∂)(⦃n ⊗ n′, n′′ ⊗ n′′′⦄) = (IdN ⊗∂)([n, n′] ⊗ {n′′, n′′′}) = [n, n′] ⊗ ∂{n′′, n′′′}
= [n, n′] ⊗ [n′′, n′′′] = [n ⊗ n′, n′′ ⊗ n′′′] (BLie1),

⦃(IdN ⊗∂)(n ⊗ m), (IdN ⊗∂)(n′ ⊗ m′)⦄ = ⦃n ⊗ ∂(m), n′ ⊗ ∂(m′)⦄ = [n, ∂(m)] ⊗ {n′, ∂(m′)}
= −(m ⋆ n) ⊗ (n′ · m′) = [n ⊗ m, n′ ⊗ m′] (BLie2),

⦃(IdN ⊗∂)(n ⊗ m), n′ ⊗ n′′⦄ = ⦃n ⊗ ∂(m), n′ ⊗ n′′⦄ = [n, ∂(m)] ⊗ {n′, n′′} = −(m ⋆ n) ⊗ {n′, n′′}
= n ⊗ [m, {n′, n′′}] − {n′, n′′} ⋆ n ⊗ m = n ⊗ {∂(m), ∂({n′, n′′})} − [∂({n′, n′′}), n] ⊗ m

= −n ⊗ [n′, n′′] · m − [[n′, n′′], n] ⊗ m = −(n′ ⊗ n′′) ∗ (n ⊗ m) (BLie3),

where we have used the second relation of (T3) in the third equality.

⦃n′ ⊗ n′′, (IdN ⊗∂)(n ⊗ m)⦄ = ⦃n′ ⊗ n′′, n ⊗ ∂(m)⦄ = [n′, n′′] ⊗ {n, ∂(m)}
= [n′, n′′] ⊗ (n · m) = n ⊗ [n, n′] · m + [[n′, n′′], n] ⊗ m = (n′ ⊗ n′′) ∗ (n ⊗ m) (BLie4),

where we have used the first relation of (T3) in the third equality.

⦃n1 ⊗ n′
1, [n2 ⊗ n′

2, n3 ⊗ n′
3]⦄ = ⦃n1 ⊗ n′

1, [n2 ⊗ n′
2] ⊗ [n3 ⊗ n′

3]⦄ = [n1, n′
1] ⊗ {[n2, n′

2], [n3, n′
3]}

= [n1, n′
1] ⊗ [{n2, n′

2}, {n3, n′
3}] = ({n3, n′

3} ⋆ [n1, n′
1]) ⊗ {n2, n′

2} − ({n2, n′
2} ⋆ [n1, n′

1]) ⊗ {n3, n′
3}

= [∂({n3, n′
3}), [n1, n′

1]] ⊗ {n2, n′
2} − [∂({n2, n′

2}), [n1, n′
1]] ⊗ {n3, n′

3}
= [[n3, n′

3], [n1, n′
1]] ⊗ {n2, n′

2} − [[n2, n′
2], [n1, n′

1]] ⊗ {n3, n′
3}

= −[[n1, n′
1], [n3, n′

3]] ⊗ {n2, n′
2} + [[n1, n′

1], [n2, n′
2]] ⊗ {n3, n′

3}
= −⦃[n1, n′

1] ⊗ [n3, n′
3], n2 ⊗ n′

2⦄ + ⦃[n1, n′
1] ⊗ [n2, n′

2], n3 ⊗ n′
3⦄

= ⦃[n1 ⊗ n′
1, n2 ⊗ n′

2], n3 ⊗ n′
3⦄ − ⦃[n1 ⊗ n′

1, n3 ⊗ n′
3], n2 ⊗ n′

2⦄ (BLie5),
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⦃[n1 ⊗ n′
1, n2 ⊗ n′

2], n3 ⊗ n′
3⦄ = ⦃[n1, n′

1] ⊗ [n2, n′
2], n3 ⊗ n′

3⦄ = [[n1, n′
1], [n2, n′

2]] ⊗ {n3, n′
3}

= [n1, n′
1] ⊗ [n2, n′

2] · {n3, n′
3} − [n2, n′

2] ⊗ [n1, n′
1] · {n3, n′

3}
= [n1, n′

1] ⊗ {[n2, n′
2], ∂({n3, n′

3})} − [n2, n′
2] ⊗ {[n1, n′

1], ∂({n3, n′
3})}

= [n1, n′
1] ⊗ {[n2, n′

2], [n3, n′
3]} − [n2, n′

2] ⊗ {[n1, n′
1], [n3, n′

3]}
= ⦃n1 ⊗ n′

1, [n2, n′
2] ⊗ [n3, n′

3]⦄ − ⦃n2 ⊗ n′
2, [n1, n′

1] ⊗ [n3, n′
3]⦄

= ⦃n1 ⊗ n′
1, [n2 ⊗ n′

2, n3 ⊗ n′
3]⦄ − ⦃n2 ⊗ n′

2, [n1 ⊗ n′
1, n3 ⊗ n′

3]⦄ (BLie6).

In all equalities, we have used the properties of {−, −} and relations of the tensor product.
�

Proposition 4.2. If M = (M ∂−→ N, ·, {−, −}) is a braided Lie crossed module such that
U(M) is perfect, then (N ⊗ M

IdN ⊗∂−−−−→ N ⊗ N, ∗,⦃−, −⦄) c=(c1,c2)−−−−−−→→ (M ∂−→ N, ·, {−, −}) is
a U-central extension, where c1(n ⊗ m) = n · m and c2(n ⊗ n′) = [n, n′], and ⦃−, −⦄ is
defined in Proposition 4.1.

Proof. Since U(M) = (M −→ N, ·) is a perfect Lie crossed module we have the central
extension (N ⊗ M

IdN ⊗∂−−−−→ N ⊗ N, ∗) c=(c1,c2)−−−−−−→→ (M ∂−→ N, ·) in XLie (see [2]).
Now, we will prove that c respects the braiding.

c1(⦃n1 ⊗ n′
1, n2 ⊗ n′

2⦄) = c1([n1, n′
1] ⊗ {n2, n′

2}) = [n1, n′
1] · {n2, n′

2}
= {[n1, n′

1], ∂({n2, n′
2})} = {[n1, n′

1], [n2, n′
2]} = {c2(n1 ⊗ n′

1), c2(n2 ⊗ n′
2)}.

So, c is a U-central extension. �
Now, we will provide a result similar to what was given by Fukushi in [8] for the case of

central extensions of braided crossed modules of groups. A U-central extension V
v−→→ M of

M in BXLie is universal if it is the initial object in the category of U-central extensions
of M.

Proposition 4.3. If M = (M ∂−→ N, ·, {−, −}) is a braided Lie crossed module such that
U(M) is perfect, then

V = (N ⊗ M
IdN ⊗∂−−−−→ N ⊗ N, ∗,⦃−, −⦄) c=(c1,c2)−−−−−−→→ M = (M ∂−→ N, ·, {−, −}), (UUCE)

is the universal U-central extension of M.
Moreover, the universal initial morphism is the same as in the universality of the non-

braiding case.

Proof. Let (X1
δ−→ X2, ⋄, ⦅−, −⦆) f=(f1,f2)−−−−−−→→ (M ∂−→ N, ·, {−, −}) be a U-central extension

of braided Lie crossed modules.
Since U(M) is perfect, we have that U(V) c=(c1,c2)−−−−−−→→ U(M) is the universal central exten-

sion in XLie (UCE). Therefore, there exists a unique morphism in XLie

(N ⊗ M
IdN ⊗∂−−−−→ N ⊗ N, ∗) h=(h1,h2)−−−−−−→ (X1

δ−→ X2, ⋄),
defined as h1(n ⊗ m) = n ⋄ m and h2(n ⊗ n′) = [n, n′] where f1(m) = m, f2(n) = n and
f2(n′) = n′, which satisfy c = f ◦ h.

We check that h is a morphism in BXLie showing that preserves the braidings ⦃−, −⦄
and ⦅−, −⦆.

Let n1, n2, η1, η2 ∈ N . Then
h1(⦃n1 ⊗ η1, n2 ⊗ η2⦄) = h1([n1, η1] ⊗ {n2, η2}) = [n1, η1] ⋄ {n2, η2}

= [n1, η1] ⋄ ⦅n2, η2⦆ = ⦅[n1, η1], δ(⦅n2, η2⦆)⦆
= ⦅[n1, η1], [n2, η2]⦆ = ⦅h2(n1 ⊗ η1), h2(n2 ⊗ η2)⦆,
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since f2([n1, η1]) = [n1, η1] = [f2(n1), f2(η1)] = f2([n1, η1]) being f2 a Lie K-homomorphism,
and f1({n2, η2}) = {n2, η2} = {f2(n2), f2(η2)} = f1(⦅n2, η2⦆) being f a morphism of
braided Lie crossed modules.

So, the unique morphism h = (h1, h2) in XLie, in the non-braiding case, that satisfies
c = f ◦h also satisfies it in the braiding case, i.e in BXLie. Therefore, the uniqueness of h
in BXLie is a consequence of that the forgetful functor U : BXLie → XLie is faithful. �

Let M = (M ∂−→ N, ·, {−, −}) be a braided Lie crossed module. In the next, we will
prove that the universal U-central extension of M exists if and only if U(M) is perfect in
XLie.

Proposition 4.4. Let Y
Ψ−→→ M be an extension of braided Lie crossed modules such that

U(Y) is perfect in XLie. Then U(M) is perfect.

Proof. Since U(Y) U(Ψ)−−−→→ U(M) is an extension in XLie, by [2, Proposition 2] U(M) is
perfect. �

Lemma 4.5. Let Y = (Y1
ρ−→ Y2, ⋆, ⟦−, −⟧) Ψ−→→ M = (M ∂−→ N, ·, {−, −}) be a U-central

extension of braided Lie crossed modules such that U(Y) is not perfect. Then exists another
U-central extension X

f−→→ M in BXLie and two different morphisms h, g : Y −→ X such
that Ψ = f ◦ h = f ◦ g.

Proof. If (Y1
ρ−→ Y2, ⋆, ⟦−, −⟧) is a braided Lie crossed module, then we know that the Lie

crossed module [Y,Y] = (DY2(Y1)
ρ|DY2 (Y1)
−−−−−−→ [Y2, Y2], ⋆C) is a crossed ideal of (Y1

ρ−→ Y2, ⋆).
But it is itself a braided crossed submodule of (Y1

ρ−→ Y2, ⋆, ⟦−, −⟧) since, if we have
[y, y′], [z, z′] ∈ [Y2, Y2], then:

⟦[y, y′], [z, z′]⟧ = ⟦[y, y′], ρ(⟦z, z′⟧)⟧ = [y, y′] ⋆ ⟦z, z′⟧ ∈ DY2(Y1).

Let us denote i : (DY2(Y1)
ρ|DY2 (Y1)
−−−−−−→ [Y2, Y2], ⋆C , ⟦−, −⟧C) −→ (Y1

ρ−→ Y2, ⋆, ⟦−, −⟧).

Since [Y,Y] is a crossed ideal, we can consider M×coker(i) π1
−→→ M the extension given by

the first projection. This extension is a U-central extension and since U(Y) is not perfect,
there are two morphisms in XLie, h, g : Y −→ M × coker(i) such that Ψ = f ◦ h = f ◦ g
(see [2, Lemma 4]). The product in BXLie is the same as in XLie with induced braiding,
so we have that the morphisms are in BXLie. �

Corollary 4.6. If the universal U-central extension V of a braided Lie crossed module M

exists, then U(V) is perfect in XLie .

Proof. If the universal extension is not perfect, then using Lemma 4.5, we have another
U-central extension and two different morphisms from the universal U-central extension,
which contradicts the universality. �

Corollary 4.7. A braided Lie crossed module admits a universal U-central extension if
and only if it is perfect as Lie crossed module.

Proof. If the braided Lie crossed module is perfect, then using Proposition 4.3, we have
its universal U-central extension.

If the braided Lie crossed module has a universal U-central extension, then using Corol-
lary 4.6, we have that the universal U-central extension is perfect as Lie crossed module.
Since it is an extension, we can use Lemma 4.4 and conclude that our braided Lie crossed
module is perfect as a Lie crossed module. �
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5. Relationship between the universal B-central extension and the uni-
versal U-central extension in the braided case

This section will show the relation between the notions of universal B-central extension
and universal U-central extension in the case of braided Lie crossed modules.
Lemma 5.1. Let M = (M ∂−→ N, ·, {−, −}) be a braided Lie crossed module. Then, M is
B-perfect if and only if U(M) is perfect.
In fact, we have that if N = [N, N ] then BN (M) = DN (M).
Proof. We have N = [N, N ], and we need to check BN (M) = DN (M).

If U(M) = (M ∂−→ N, ·) is perfect, then DN (M) = M . Since DN (M) ⊂ BN (M) ⊂ M ,
we have that BN (M) = M and (M ∂−→ N, ·, {−, −}) is B-perfect.

On the other hand, since (M ∂−→ N, ·, {−, −}) is B-perfect, we have that BN (M) = M .
So, we only need to prove that BN (M) ⊂ DN (M).

If {n, n′} is a generator of BN (M), and since N = [N, N ] by being B-perfect, we have
that on generators {n, n′} = {[n1, n2], [n′

1, n′
2]},

{n, n′} = {[n1, n2], [n′
1, n′

2]} = {[n1, n2], ∂{n′
1, n′

2}} = [n1, n2] · {n′
1, n′

2} ∈ DN (M). �

Lemma 5.2. Let (M ∂−→ N, ·, {−, −}) f=(f1,f2)−−−−−−−→→ (X1
δ−→ X2, ⋄, ⦅−, −⦆) be an extension of

braided Lie crossed modules with (M ∂−→ N, ·, {−, −}) B-perfect. Then, f is a B-central
extension if and only if f is a U-central extension.
In fact, if N = [N, N ] then ZB(N) = Z(N) ∩ stN (M).
Proof. If f is a U-central extension, then ker(f1) ⊂ MN and ker(f2) ⊂ stN (M) ∩ Z(N).
We need to prove that ker(f2) ⊂ ZB(N).

Let n ∈ stN (M) ∩ Z(N) and x = [n1, n2] ∈ N = [N, N ]. We have
{n, x} = {n, [n1, n2]} = {n, ∂{n1, n2}} = n · {n1, n2} = 0,

{x, n} = {[n1, n2], n} = {∂{n1, n2}, n} = −n · {n1, n2} = 0.

So, ker(f2) ⊂ ZB(N) and f is a B-central extension. �

Theorem 5.3. Let M = (M ∂−→ N, ·, {−, −}) be a B-perfect braided Lie crossed module.
Then its universal B-central extension U

Φ−→→ M and its universal U-central extension
V

c−→→ M are isomorphic.
Proof. Since V

c−→→ M is a U-central extension, we know using Lemmas 5.1 and 5.2 (by
hypothesis M is B-perfect) that it is a B-central extension, and using the universality of
U, there is a unique morphism U

h−→ V such that Φ = c ◦ h.
Since U

Φ−→→ M is a B-central extension is also a U-central extension, and so by the
universality of V, there exists a unique morphism V

h′
−→ U such that c = Φ ◦ h′.

Using the universality of U, since Φ ◦ (h′ ◦ h) = c ◦ h = Φ, we get that h′ ◦ h = IdU.
By the same arguments using the universality of V, we have that h ◦ h′ = IdV. �

Corollary 5.4.
(i) Let (M ∂−→ N, ·, {−, −}) be a B-perfect braided Lie crossed module. Then N ⊗M ≃

N ⊗ N .
(ii) If M is a perfect Lie K-algebra, then M ⊗ (M ⊗ M) ≃ M ⊗ M .

Proof. (i) By Theorem 5.3, (UBCE) and (UUCE) are isomorphic. Therefore N ⊗ M ≃
N ⊗ N .

The isomorphism can be described explicitly using Proposition 3.4 and Proposition 4.3,
and it is given by: h1 : N ⊗ N → N ⊗ M, n ⊗ n′ 7→ n ⊗ {n′

1, n′
2}, with n′ = [n′

1, n′
2], and

h−1
1 : N ⊗ M → N ⊗ N, n ⊗ m 7→ n ⊗ ∂(m).
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(ii) If M is perfect, then the braiding Lie crossed module (M ⊗ M
∂−→ M, ·, {−, −}) is

B-perfect (see Example 2.10 (2)), since M ⊗ M is generated by m1 ⊗ m2 = {m1, m2}. By
(i), we have M ⊗ (M ⊗ M) ≃ M ⊗ M .

In this case, the isomorphism is described by: h1 : M ⊗ M → M ⊗ (M ⊗ M), m ⊗ m′ 7→
m⊗ (m′

1 ⊗m′
2), with m′ = [m′

1, m′
2], and h−1

1 : M ⊗ (M ⊗M) → M ⊗M, m⊗ (m′ ⊗m′′) 7→
m ⊗ [m′, m′′]. �
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