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Abstract. In the biological systems, Monte Carlo approaches are used to provide the stochastic simulation
of the chemical reactions. The major stochastic simulation algorithms (SSAs) are the direct method, also known
as the Gillespie algorithm, the first reaction method and the next reaction method. While these methods give
accurate generation of the results, they are computationally demanding for large complex systems. To increase the
computational efficiency of SSAs, approximate SSAs can be option. The approximate methods rely on the leap
condition. This condition means that the propensity function during the time interval t to [t + τ] should not be
altered for the chosen time step τ. Here, to proceed with the system’s history axis from one time step to the next,
we compute how many times each reaction can be realized in each small time interval τ so that we can observe
plausible simultaneous reactions. Hence, this study aims to generate a realistic and close confidence interval for
the parameter which denotes the underlying numbers of simultaneous reactions in the system by satifying the leap
condition. For this purpose, the poisson τ-leap algorithm and the approximate Gillespie algorithm, as the extension
of the Gillespie algorithm, are handled. In the estimation for the associated parameters in both algorithms, we
derive their maximum likelihood estimators, moment estimators and bayesian estimators. From the derivations, we
theoretically show that our novel confidence intervals are narrower than the current confidence intervals under the
leap condition.
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1. Introduction

In the activation of biological systems, many reactions can happen simultaneously. These reactions can be nu-
merically and exactly simulated in the time evolution by the help of the stochastic simulation algorithms (SSAs)
[1, 11–13, 15, 21]. The direct method (i.e., Gillespie algorithm), the first reaction method and the next reaction method
are the main methods in this field [10, 13]. Although the SSAs are successful in generating the biological systems,
their calculations are computationally inefficient. Therefore, they are not preferable for the simulation of realistically
complex systems. Hence, the approximate SSAs are suggested to reduce the computational time by loosing accuracy
regarding the exact SSAs. Mainly, the approximate SSAs are based on the leap condition [16, 17]. This condition
implies that the time step τ should be limited so that there can be no serious difference in the values of the propensity
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https://orcid.org/0000-0002-1394-8621
https://orcid.org/0000-0002-3913-9005
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function during the time difference between initial time t and time after the time step τ, [t + τ] [13, 20]. This condition
is mathematically shown as below [19].

|h j(Y + λ̄(Y, τ)) − h j(Y)| ≤ ϵh0(Y),

where h j(Y) is the hazard of jth reaction at the state Y for j = 1, . . . , r, i.e, the propensity function and h0(Y) =∑r
j=1 h j(Y) is the sum of all hazard functions. Moreover, ϵ stands for the error control parameter. In this expression, j

is the indicator of the reaction for a system composed of r reactions, i.e, j = 1, 2, ..., r and λ̄ is computed as below.

λ̄(Y, τ) =
r∑

j=1

[h j(Y)τ]v j = τξ(Y).

Hence, this statement represents that the expected net change in the state Y for the given time interval τ with r numbers
of reactions in the system. Also, v j denotes the stoichiometric coefficients of the reaction j which corresponds to the
jth row of the net effect matrix V .

Generally, finding Ŷ , which is the reasonable value of an unknown population parameter by the observations on
having data about the population, can be possible by the estimators. To estimate Ŷ , different methods are used. In
this work, we apply the maximum likelihood estimators (MLE), moment estimator (ME) and bayesian estimators to
infer the parameters, namely, the number of simultaneous reactions k, which are occuring at the same time in the same
system, and the associated time interval to realize k number of reactions, i.e., τ.

In these calculators, we initially define the following equality;

Ln(θ) = Ln(θ, y) = fn(y; θ),

where the observed data set is denoted by y = (y1, y2, . . . , yn), associated with a vector θ = [θ1, θ2, . . . , θk]T of parame-
ters that index the probability distribution within a parametric family { f (· ; θ) | θ ∈ Θ}. Hence, this expression is called
the parameter space and fn(y; θ) is defined as the product of univariate density functions. Consequently, MLE aims to
derive the values of the model parameter that enlarge the likelihood function over the parameter space, i.e,

θ̂ = arg max
θ∈Θ

L̂n(θ ; y).

On the other hand, in order to define the ME expressions, we think the problem of estimation as the following way:
Let k denote the unknown parameters θ1, θ2, . . . , θk characterizing the distribution fW (w; θ) of the random variable W.
Accordingly, considering that the first m moments of the true distribution Wm (m = 1, 2, . . .) exist, we can denote these
moments as the function of θ’s by
µ1 ≡ E[W] = g1(θ1, θ2, . . . , θm),

µ2 ≡ E[W2] = g2(θ1, θ2, . . . , θk),

...

µk ≡ E[Wk] = gk(θ1, θ2, . . . , θk),
in which E[.] presents the expectation of the given function and gi(i = 1, . . . , k) shows the functions of θi.

Finally, the bayesian estimator can be defined as follows: Let RT (θ) be the risk function, i.e., RT (θ) = E[L(T ; θ)].
Here, L(T ; θ) is a loss function such that L(t; θ) ≥ 0 for every t and L(t; θ) = 0 when t = τ(T (θ)) if T is an estimator of
τ(θ). Then, the bayesian estimator T ∗ relative to the risk function RT (θ) and the associated distribution function p(θ)
are the estimator with a minimum expected risk via

Eθ[RT ∗ ] ≤ Eθ[RT ]

for every estimator T . Here, p(θ) is usually defined as the prior density for the parameter θ. In other words, p(θ)
represents the prior knowledge or belief about the true value of the parameter. Additionally, the bayesian approach
selects a suitable prior belief by comparing the risk functions and then, finds the best estimator of the parameter [2], [6].

In addition to MLE, ME and bayesian estimator as the point estimator, it is also possible to gain an estimated range
of values containing the unknown population parameter with the help of the confidence interval.

Hereby, this work aims to generate the confidence interval for the population parameters k and τ by using MLE,
ME and bayesian estimators under two approximate SSAs, namely, the poisson τ-leap, which is the most well-known
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approximate SSAs, and its extension, called, the approximate Gillespie algorithm. Therefore, we reproduce the leap
condition and construct one-sided confidence interval for k and τ under a given significance level α. By this way, we
can generate confidence intervals for both parameters by controlling α. Generating confidence intervals based on α
and estimating the model parameters via distinct inference approaches are two major outcomes of this study. With the
help of these novelties, we can obtain narrow confidence intervals for the plausible values of k and τ. Accordingly,
in the organization of the study, we present the general idea of approximate SSAs and the mathematical details of the
poisson τ-leap and approximate Gillespie approach in Section 2. We introduce our confidence intervals in Section 3
and in Section 4, we conclude our results.

2. Approximate Stochastic Simulation Algorithms

The stochastic simulation algorithms SSAs are preferable since they can exactly generate the biological systems’
activation. However, as they are computationally costly, they are not suggested for large systems. To overcome this
problem, the common way is to use the approximate SSAs. In other words, applying the approximate SSAs can gain
from the computational demand. In this way, it is possible to progress with one step to the next step, rather than the
reaction to the next in the history axis of the system, by controlling how many times each reaction can be realized in
each sub-interval, i.e, the leap. When the smaller time interval is selected, then the more accurate results are obtained.
However, when the larger time interval is chosen, the approximated results can be obtained with high computational
cost [13], [18]. In this part, we initially present the poisson τ-leap method as a common approximate SSA and then,
we represent the approximation Gillespie algorithm as the extension of it.

2.1. Poisson τ-leap Method. In this algorithm, under the leap condition, a random value k j is generated from a
poisson distribution via Poi(h j(Y)τ) for each reaction channel in the time interval [t, t + τ] [13]. Here, Y(t) = Y is a
state vector. Then, an admissible τ is found by inserting it into the following inequality;

|h j(Y + ¯λ(Y)) − h j(Y)|,

where λ̄(Y) =
∑r

j=1 k jv j denotes the net change in the state of the system in [t, t + τ]. Since k j ∼ Poi(h j(Y)τ),
E(k j) = h j(Y)τ and

λ̄(Y, τ) =
r∑

j=1

[h j(Y)τ]v j = τξ(Y), (2.1)

which is the expected net change in the state for the given time interval. Here, v j is the stochiometric coefficients of the
reaction j corresponding to the jth row of the net effect matrix V as stated beforehand and h j(Y) is the hazard function
of the jth reaction that is found by the product of the rate constant c j and the distinct molecular reactant combination
of the underlying reaction. Then , ξi(Y) =

∑r
j=1 h jvi j can be shown as the mean or the expected state change in a unit

of time by an n-dimensional vector where each ith component, ξi(Y), corresponds to the expected change of the ith
species in a unit of time. Then, the following expression is obtained;

|h j(Y + λ̄(Y, τ)) − h j(Y)| ≤ ϵh0(Y) (2.2)

by using λ̄(Y, τ) in Equation (2.1). It can be inferred that the expected changes in a hazard functions in the time τ are
limited by a fraction ϵ, error control parameter lying (0 < ϵ < 1) and the sum of all hazard functions h0(Y) =

∑r
j=1 h j(Y).

Indeed, this inequality (2.2) gives the leap condition. Consequently, after the expansion of the first order Taylor formula
and its application on Equation (2.2), the followings equality is found;

h j(Y + λ̄(Y, τ)) ≈ λ̄(Y, τ)h′j(Y) =
n∑

i=1

τξi(Y)
∂h j(Y)
∂Yi

.

Then, letting b ji(Y) = ∂h j(Y)
∂Yi

(i = 1, ..., n; j = 1, ..., r), the below inequality can be obtained;

τ|

n∑
i=1

ξi(Y)b ji(Y)| ≤ ϵh0(Y).

As a result, the largest value of τ satisfying the leap condition for the given Y and the pre-selected ϵ is computed by
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τ = min
{

ϵh0(Y)
|
∑n

i=1 ξi(Y)b ji(Y)|

}
. (2.3)

It can be accessible that using the exact SSA from Equation (2.3) is more feasible since the reached value of τ is
proper for the leap size. The obtained τ in Equation (2.3) would not be chosen if τ ≤ 1

h0(Y) as τ = 1
h0(Y) is gained from

SSA. Regardless of the computational cost, the time interval in the poisson τ-leap method is more preferable than the
time of SSA. Actually, there is an incremental difference between them.

The final step is to update the current state in the poisson τ-leap method by replacing t by t := t + τ. Also, for Y ,
there is a requirement to decide the largest value of τ and to be appropriate with the leap condition.

From the application of this method in various systems, it is seen that the poisson τ-leap approach can bring negative
molecular populations in the long-run simulations. In order to solve this problem, some alternative solutions are
proposed. The binomial τ-leap is one of the these approaches. This method can unravel the negativity problem,
whereas, it is not accurate enough to obtain smooth approximation of exact SSAs [3–5, 18, 21].

2.2. Approximate Gillespie Algorithm. There are different alternatives of the poisson τ-leap apporach in the liter-
ature. Among them, in this study we use the approximate Gillespie algorithm since it is one of the closer approach
of poisson τ-leap in distribution sense. Basically, the approximate Gillespie algorithm [19], which is based on the
extension of the exact Gillespie method, states that k numbers of reactions, obtained from the Gamma distribution with
a parameter

∑r
j=1 h j(Y), where each of them occurs in an exponential time step t, is performed rather than a single

reaction at a time. Hence, we can present τ ∼ Γ(k, h0(Y)), where τ denotes the time interval of k reactions in the total
hazard, h0(Y), h0(Y) :=

∑r
j=1 h j(Y). In this case, the system is updated by replacing t by t := t + τ and by changing the

current state Y by Y := Y + λ(Y), where the net change in the state is found via λ(Y) =
∑r

j=1 k jv j. In this expression
v j is the net effect of the jth reaction by showing the jth row of the net effect matrix V as used previously. By this
way, we assume that the essential time for every reaction is corresponding to that of Gillespie. Under this assump-
tion, the total number of reactions during the interval τ is determined by controlling k in each time interval. For this
purpose, we initially identify a k satisfying the leap condition in each time step. Then, the change in hazard function
∆h j(Y), ( j = 1, ..., r) is approximated by the first order Taylor expansion in the time interval [t, t+ τ], in a such way that
the following equality can be obtained as performed in the poisson τ-leap approach.

∆h j(Y) = h j(Y + ¯λ(Y, τ)) − h j(Y) ≈ ¯λ(Y, τ)h j(Y) =
n∑

i=1

¯λ(Y, τ)
∂hi j(Y)
∂Yi

(2.4)

in which the expected change in the state by regarding k simultaneous reaction is computed by

¯λ(Y, τ) = Y(t + τ) − Y(t) =
r∑

j=1

k jv j.

In the above expression, k j shows the number of times of the jth reaction fired in [t, t + τ] and v j is the net effect of the
jth reaction by denoting the jth row of the net effect matrix V as before. Hence, by using a gamma distribution, we can
represent τ ∼ Γ(k, h0(Y)) where k = E(τ).h0(Y). In this expression, E(τ) illustrates the expected τ on average.

Then, by inserting this k into Equation (2.4), we can get

∆h j(Y) ≈
r∑

j=1

f j j′ (Y)τh0(Y),

where the total change in hazard of reaction j′ is described in terms of f j j′ (Y) via

f j j′ (Y) =
∑
i=1

∂h j(Y)
∂Yi

vi j

for the execution of the reaction j′. Finally, in order to obtain the confidence interval, the following expression is
written as

∆h j(Y) ≈ E(∆h j(Y)) ±
√

Var(∆h j(Y)),

where Var(.) denotes the variance of the given random variable. Then, the statistics for ∆h j(Y) can be shown by
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E(∆h j(Y)) ≈
r∑

j=1

f j j′ (Y)E(τ)h0(Y) =
r∑

j=1

f j j′ (Y)
k

h0(Y)
h0(Y) = k

r∑
j=1

f j j′ (Y) (2.5)

and

Var(∆h j(Y)) ≈
r∑

j=1

f 2
j j′ (Y)Var(τ)h0(Y) =

r∑
j=1

f 2
j j′ (Y)

k
h0(Y)

h0(Y) = k
r∑

j=1

f 2
j j′ (Y). (2.6)

By substituting Equation (2.5) and (2.6) into the required leap condition, the below expression can be found;

|k|
r∑

j′=1

f j j′ (Y) ≤ ϵh0(Y)

and √√(
k

r∑
j′=1

f 2
j j′ (Y)

)
≤ ϵh0(Y).

Accordingly, the optimal k is computed from

k = min
j∈[1,r]

⌊ ∣∣∣∣∣∣ ϵh0(Y)∑r
j′=1 f j j′ (Y)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣ ϵ

2h2
0(Y)∑r

j′=1 f 2
j j′ (Y)

∣∣∣∣∣∣∣
⌋
. (2.7)

Indeed, inserting the distributions feature of k and τ into the leap condition and finding a conservative confidence inter-
val has been derived for the poisson distribution too [14]. But in both studies, the confidence intervals are constructed
one-sided and by taking a fixed significance level αwhich roughly sets the tabulated value to 1. Moreover, they produce
large intervals which decreases the accuracy of the approximate algorithms. Hereby, the following part introduce our
proposal confidence intervals which can generate accurate results regarding previous studies.

3. Confidence Intervals for Leap Condition

In order to improve the performance of the underlying approximate SSAs, we have derived the MLE and ME
estimators of the parameters in the underlying approach in the study of Demirbüken and Purutçuoğlu [7]. In this study,
we insert these estimators by including their bayesian version in the construction of the confidence intervals and extend
the derivations. Hence, under the assumption that τ ∼ Γ(k, h0(Y)), the MLE of k is found as τ

nh0(Y) , where τ =
∑n

i τi.
Then, by plugging it into ∆h j(Y), the following is

∆h j(Y) =
∑
j=1

f j j′ (Y)
τ

nh0(Y)
.

Then, with the knowledge of the value of zα/2 = 1, where zα/2 is in the general formula of the confidence interval,
similar to Equation (2.5),

∆h j(Y) ≈ E(∆h j(Y)) ±
√

Var(∆h j(Y)).

Since τ ∼ Γ(k, h0(Y)), the mean of the value τ is E(τ) = k
h0(Y) and the variance of the value τ is found as

Var(τ) = k
h2

0(Y) . Thus, the following equalities for the approximate values of E(∆h j(Y)) and Var(∆h j(Y)) can be
reached, respectively;

E(∆h j(Y)) ≈
r∑

j=1

f j j′ (Y)
E(τ)

nh0(Y)
=

k
nh2

0(Y)

r∑
j=1

f j j′ (Y), (3.1)

Var(∆h j(Y)) ≈
r∑

j=1

f 2
j j′ (Y)

Var(τ)
n2h2

0(Y)
=

k
n2h4

0(Y)

r∑
j=1

f 2
j j′ (Y). (3.2)

After inserting Equation (3.1) and (3.2) into the leap condition in Equation (2.2), a suitable k can be derived as
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k = min
j∈[1,r]

⌊ ∣∣∣∣∣∣ ϵh3
0(Y)n∑r

j′=1 f j j′ (Y)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣ ϵ

2h6
0(Y)n2∑r

j′=1 f 2
j j′ (Y)

∣∣∣∣∣∣∣
⌋
. (3.3)

It can be seen that the value of ϵh3
0(Y)n∑r

j′=1 f j j′ (Y) is smaller than the value of ϵh0(Y)∑r
j′=1 f j j′ (Y) as presented in Equation (2.7) for

0 < nh0(Y) < 1 . This implies that k found via Equation (3.3) can produce more accurate result.
Then, we apply this idea by using the method of moment estimators (MME) of the parameters. Accordingly, the

estimator of the value k is acquired as k =
∑n

i ( τi−τ
nτ )2 =

[(n−1)n]
τ

S 2, where is S is a sample variance. Thereby, the mean
of ∆h j(Y), E(∆h j(Y)) and the variance of ∆h j(Y), Var(∆h j(Y)) are computed approximately as the following way;

E(∆h j(Y)) ≈
r∑

j=1

f j j′ (Y)E(
(n − 1)n
τ

S 2) (3.4)

=

r∑
j=1

f j j′ (Y)
(n − 1)n

E(τ)
S 2

=
h0(Y)n(n − 1)S 2

k

r∑
j=1

f j j′ (Y),

Var(∆h j(Y)) ≈
r∑

j=1

f j j′ (Y)Var(
(n − 1)n
τ

S 2) (3.5)

=
h2

0(Y)n(n − 1)S 2

k

r∑
j=1

f 2
j j′ (Y).

Then, similar to application of MLE, after inserting Equation (3.4) and (3.5) into the required leap condition, a
favorable k value can be attained from

k ≤ min
j∈[1,r]

⌊ ∣∣∣∣∣∣∣n(n − 1)S 2∑r
j=1 f j j′ (Y)

ϵ

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣h0(Y)n(n − 1)S 2∑r

j=1 f 2
j j′ (Y)

ϵ

∣∣∣∣∣∣∣
⌋
.

In order to find k, the confidence interval can be constructed. Therefore, the formula E(k) ± zα/2
√

Var(k)
n as the

well-known representation of the confidence interval, gives that k ≈ k
nh2

0(Y) ±
zα/2

nh0(Y)

√
k

h0(Y) . In this inequality, z α
2

defines
the tabulated normal value for the significance level α. Then, substituting this expression into the Equation (2.4) of
∆h j(Y), it follows as

∆h j(Y) =
r∑

j′=1

f j j′ (Y)
( k
nh2

0(Y)
±

zα/2
nh0(Y)

√
k

h0(Y)

)
. (3.6)

Again embedding k = τ
nh0(Y) into Equation (3.6), the followings expressions are obtained;

∆h j(Y) ≈
r∑

j′=1

f j j′ (Y)
(
τ

n2h3
0(Y)

±
zα/2

nh0(Y)

√
τ

nh2
0(Y)

)
,

∆h j(Y) ≈
r∑

j′=1

f j j′ (Y)
(
τ

n2h3
0(Y)

±
zα/2

nh2
0(Y)

√
τ

n

)
.

For this statement, we derive the values of E(
√
τ) and Var(

√
τ) (see Appendix). Then, E(∆h j(Y)) and Var(∆h j(Y))

are calculated by using the assumption of E(
√
τ) =

√
k

h0(Y) and Var(
√
τ) =

√
k

h2
0(Y) by
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E(∆h j(Y)) ≈
r∑

j′=1

f j j′ (Y)
( E(τ)
n2h3

0(Y)
± zα/2

E(
√
τ)

nh2
0(Y)
√

n

)
(3.7)

=

r∑
j′=1

f j j′ (Y)
( k
n2h4

0(Y)
± zα/2

√
k

nh2
0(Y)
√

nh0(Y)

)
=

( k
n2h4

0(Y)
± zα/2

√
k

nh2
0(Y)
√

nh0(Y)

) r∑
j′=1

f j j′ (Y),

Var(∆h j(Y)) ≈
r∑

j′=1

f 2
j j′ (Y)

( Var(τ)
n4h6

0(Y)
± z2
α/2

Var(
√
τ)

n3h4
0(Y)

)
(3.8)

=

r∑
j′=1

f 2
j j′ (Y)

( k
n4h8

0(Y)
± z2
α/2

√
k

n3h6
0(Y)

)
=

( k
n4h8

0(Y)
± z2
α/2

√
k

n3h6
0(Y)

) r∑
j′=1

f 2
j j′ (Y).

Then, by inserting Equation (3.7) into the required leap condition, the following inequality is derived;

∣∣∣∣∣∣∣∣
 k

n2h4
0(Y)

± zα/2

√
k

nh2
0(Y)
√

nh0(Y)

 r∑
j′=1

f j j′ (Y)

∣∣∣∣∣∣∣∣ ≤ ϵh0(Y)∣∣∣∣∣∣∣∣
 k

n2h4
0(Y)

± zα/2

√
k

nh2
0(Y)
√

nh0(Y)
+

z2
α

4nh0(Y)
−

z2
α/2

4nh0(Y)

 r∑
j′=1

f j j′ (Y)

∣∣∣∣∣∣∣∣ ≤ ϵh0(Y)∣∣∣∣∣∣∣∣

√

k
nh2

0(Y)
±

zα/2
2
√

nh0(Y)

2 − z2
α/2

4nh0(Y)

 r∑
j′=1

f j j′ (Y)

∣∣∣∣∣∣∣∣ ≤ ϵh0(Y)

∣∣∣∣∣∣∣

√

k
nh2

0(Y)
±

zα/2
2
√

nh0(Y)

2 − z2
α/2

4nh0(Y)


∣∣∣∣∣∣∣ ≤ ϵh0(Y)
|
∑r

j′=1 f j j′ (Y)|
.

Then , this inequality for the value of k can be found as

k ≤


√√

ϵh0(Y)
|
∑r

j=1 f j j′ (Y)|
+

z2
α/2

4nh0(Y)
∓

zα/2
2
√

nh0(Y)


2

n2h4
0(Y).

Applying the same process for Equation (3.8), a suitable k can be computed by

k ≤ min
j∈[1,r]

⌊ ∣∣∣∣∣∣∣∣∣

√√

ϵh0(Y)
|
∑r

j=1 f j j′ (Y)|
+

z2
α/2

4nh0(Y)
∓

zα/2
2
√

nh0(Y)


2

n2h4
0(Y)

∣∣∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣∣∣

√√

ϵh0(Y)
|
∑r

j=1 f 2
j j′ (Y)|

+
z4
α/2

4n2h4
0(Y)

∓
z2
α/2

2nh2
0(Y)


2

n4h8
0(Y)

∣∣∣∣∣∣∣∣∣
⌋
.

In addition to these confidence intervals obtained by MLE and MME, it can be possible to obtain appropriate value
of k by using the bayesian estimator. For this purpose, we take τ ∼ Poi(k) and k ∼ Γ(α, β), where α and β are the given
parameters [2]. Then, the conditional posterior of τ|k is derived as the gamma distribution due to the conjugate relation
between the poisson and the gamma. Hence, the expectation of the conditional posterior is found as
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E(τ|k) =
∑
τi + β

n + 1
α

. (3.9)

By inserting Equation (3.9) into the function ∆h j(Y), the following expression is obtained;

∆h j(Y) =
∑
j=1

f j j′ (Y)
∑
τi + β

n + 1
α

.

Then, it can be seen the following equality by taking E(τ) = k and Var(τ) = k as the property of the Poisson
distribution τ ∼ Poi(k);

E(∆h j(Y)) ≈
∑

f j j′ (Y)
E(τ) + β

n + 1
α

=
k + β
n + 1

α

∑
f j j′ (Y),

Var(∆h j(Y)) ≈
∑ f 2

j j′ (Y)(
n + 1

α

)2 Var(τ)

=
k(

n + 1
α

)2 ∑ f 2
j j′ (Y).

Later, similar to previous derivations, by substituting them into the leap condition, the coming inequalities can be
derived as

k ≤
(n + 1

α
)ϵh0(Y)

|
∑

f j j′ (Y)|
− β.

k ≤
(n + 1

α
)2ϵ2h2

0(Y)

|
∑

f 2
j j′ (Y)|

.

As a result, an appropriate value of k can be reached by the inequality below.

k ≤ min
j∈[1,r]

⌊ (n + 1
α

)ϵh0(Y)
|
∑

f j j′ (Y)|
− β,

(n + 1
α

)2ϵ2h2
0(Y)

|
∑

f 2
j j′ (Y)|

⌋
.

By this way, we can produce more flexible and narrower confidence intervals for k due to the controlable significance
level α and appropriate estimation techniques, respectively.

4. Conclusion

It can be possible to simulate the reaction of biological systems. To do this, SSAs play important roles. But, they are
not computationally efficient to generate large systems. To reduce computational cost for these approaches, approxi-
mate SSAs are the alternative choice. The major aim of these methods depends on the leap condition which implies
the time step τ does not alter very much along the time interval [t, t + τ].
In this work, we have used the properties of the gamma and poisson distribution to obtain distinct estimators as per-
formed in the approximate Gillespie and Poisson τ-leap approach in order to produce confidence intervals for the
parameters under a controllable significance level. By this way, we have derived theoretically narrower confidence
level which can increase the accuracy of the algorithms without losing computational efficiency. Because we have
obtained closed form from each derivation.

In the extension of this study, we aim to show whether any other estimators, such as robust estimators, can produce
narrower confidence interval for the parameters. Moreover, we consider to evaluate the performance of our theoretical
result in a real system via simulation. In addition to this idea, as a future work, we consider to include the approximate
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simulation of the system via leap condition into the modeling part as well. From the study of Gebert et al. [8], a system
of differential equation model is used to present the time-series gene expression patterns. The proposal approach
uses the system of differential equations in modelling. Hence, if we refer a wider step in the leap condition which
implies the change in the approximation of the stochastic steps to the approximation of the deterministic steps, it
can be possible to conduct a semi parametric model in place of totally deterministic differential equation models in
modeling of gene expression data. Moreover in the study of Weber et al. [23], the system parameters of differential
equations are estimated by Chebychevian approximation and generalized semi-infinite optimization approaches which
depend on the nonparametric inference. Furthermore, in the study of Uğur et al. [22], the Euler and Runge- Kutta
type of approximations are performed to discretize the time so that the differential equation model can be applied to
represent the genetic networks whose model parameters are estimated by the least square approximation. In the study
of Gebert et al. [9], the suggested model of the same data type is the piecewise linear differential equations whose model
parameters are estimate by the discretizated approximation of the least square method. Hence, if we obtain a large step
of the leap condition and the investigation of convergence in distribution for the leap condition may help to conduct
a semi-parametric method, in place of fully non-parametric approaches, in parameter estimation. Additionally, a long
run simulated data via the leap condition can help us to view the deterministic pattern of the system which enables us
to observe the system behaviour easily and suggest a more realistic model for genetic networks.
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Appendix

Let g(τ) =
√
τ be a smooth function for τ ≥ 0 with τ ∼ Poi(k). Then, by the Taylor expansion around the mean

µ = E(τ), the following expression can be obtained.

g(τ) = g(µ) + g′(µ)(τ − µ) +
g′′(µ)(τ − µ)2

2!
+

g′′′(µ)(τ − µ)3

3!
+ · · · +

gt(µ)(τ − µ)t

t!
+ . . . .

Then, the mean can be derived as

E(g(τ)) = g(µ) + g′(µ)E(τ − µ) +
g′′(µ)E(τ − µ)2

2!
+

g′′′(µ)E(τ − µ)3

3!
+ · · · +

gt(µ)E(τ − µ)t

t!
+ . . .

= g(µ) + g′(µ)m1 +
g′′(µ)m2

2!
+

g′′′(µ)m3

3!
+ · · · +

gt(µ)mt

t!
+ . . . ,

where mt is t-th central moment. In this case, considering just up to third order Taylor expansion, m1 = 0 and
m2 = m3 = µ. So, we have

E[g(τ)] =
√
µ + 0 +

1
8
µ−

1
2 −

1
16
µ−

3
2 .

Then, E[g(τ)] = E[µ] ≈
√
µ =
√

E(τ) =
√

k for µ >> 1. Thus,
√

E(τ) ≈
√

k.
Similarly, we apply these processes for the gamma distribution with τ ∼ Γ(k, h0(Y)) and by this way, t-th moment for
the gamma distribution is defined as E(τt) = (k+t−1)...(1)

ht
0(Y) . Then, we can obtain E(τ) as below.

E(τ) =

√
k

h0(Y)
+

1
8

( 1
√

k.h0(Y)
−

1

h4
0(Y).k

√
k

)
,
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with E[τ − µ] = 0, E[(τ − µ)2] = Var(τ) = k
h2

0(Y) and E[(τ − µ)3] = 2k
h3

0(Y) . If k × h0(Y) << 1, then it is possible to reach

that E[
√
τ] =

√
k

h0(Y) . Similarly, the equality Var(
√
τ) =

√
k

h2
0(Y) can be obtained.
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