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Abstract

In this paper, we prove the existence, unbounded continuity of positive set for a multivalued equation
containing a parameter of the form x ∈ A ◦ F (λ, x) and give applications in the control problem with
multi-point boundary conditions and second order derivative operator

u′′(t) + g(λ, t)f(u(t)) = 0, t ∈ (0, 1),
g(λ, t) ∈ F (λ, u(t)) a.e. on J
u(0) = 0, u(1) =

∑m
i=1 αiu(ηi)

(1)

Keywords: multivalued operator, multivalued equation, �xed point index, control problem.

1. Introduction

The single-valued equation of the form x = F (λ, x) in ordered spaces has been studied for a long time
by many mathematician researchers and has found many successful results (see [2, 3, 4, 11, 13, 17]). It was
naturally generalized to multivalued form

x ∈ F (λ, x). (2)

There are many good methods approaches available, among them are principal eigenvalue - eigenvector
method (see impressive results of J. R. L. Webb and K. Q. Lan in [17], Guy Degla in [2]), monotone
minorant method [7, 8], the method of using the de�nition of topological degree (the �xed point index) for
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single-valued/multivalued mappings [1, 5, 9, 12, 14, 15, 16] and the method of combining two latter methods
[8].

The solution set of (2) is well-known in two following forms

S = {(λ, x) : x ∈ F (λ, x)}, (3)

or
S = {x : ∃λ, x ∈ F (λ, x)}. (4)

In this paper, we prove the existence, unbounded continuity of the solution set S of the form (4), with
the equation x ∈ A ◦ F (λ, x), where F is a multivalued function containing a parameter λ and A is a linear
mapping. We establish su�cient conditions for the set S to be unbounded continuous branch and emanating
from zero, i.e., it contains the elements of S on the boundary of any set Ω, which is open, bounded, and
contains zero.

Our method is to combine the method of using the de�nition of topological degree for multivalued mapping
and the method of evaluating solutions. The others authors using only one. This is the fundamental di�erence
between our work and the authors mentioned above.

By the abstract result obtained, we apply for the control problem with second order derivative and multi-
point boundary conditions. The such problem has attracted the increasing attention of many researchers.
We will solve this problem to illustrate the method.

The paper is organized as follows. In Section 2, we recall some notations and useful lemma. In Section
3, the main results are stated. In Section 4, we present the existence of solutions to the control problem.

2. Preliminaries

Let (E,K, ‖.‖) be a real Banach space ordering by the cone K, i.e., K is a closed convex subset of E
such that λK ⊂ K for λ ≥ 0, K ∩ (−K) = {0}, and x ≤ y i� y− x ∈ K for x, y ∈ X. For nonempty subsets
A,B of E we write A <2 B (or, B 42 A) i� for every x ∈ A, there exists y ∈ B satisfying x ≥ y (or, y ≤ x)
and we also write A 41 B i� for every x ∈ A, there exists y ∈ B such that x ≤ y. The cone K is said to be
normal if there exists a constant N > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. Throughout this article
we always assume that K is normal cone with N = 1. For A ⊂ E, the all nonempty closed convex (resp.,
closed) subsets of A is denoted by cc(A) (resp., c(A)). Let Ω be an open subset of E, denote ΩK = K ∩ Ω,

∂KΩ = K∩∂Ω and
�
K = K\{0}, where ∂Ω is the boundary of Ω in E. A mapping T : K∩Ω→ cc(K) is said

to be compact i� T (B) is relatively compact for any bounded subset B of K ∩Ω, where T (B) = ∪x∈BT (x).
T is called upper semicontinuous (in short, u.s.c.) if {x ∈ K ∩ Ω : T (x) ⊂ W} is open in K ∩ Ω for every
open subset W of K. Further, if x /∈ T (x) for all x ∈ ∂KΩ, the �xed point index of T in Ω with respect to K
is de�ned which is an integer denoted by iK(T,Ω) (see e.g. [5]). The following lemma on the computation
of the index were taken in [5, proof of Theorem 3.2].

Lemma 2.1. [8, 5, proof of Theorem 3.2] Let T : K ∩Ω→ cc(K) be an u.s.c. compact multivalued operator.

Then

1. iK(T,Ω) = 0 if there exists u ∈
�
K such that x /∈ T (x) + ku for all x ∈ ∂KΩ and k ≥ 0.

2. iK(T,Ω) = 1 if kx /∈ T (x) for all k ≥ 1.

We review the results using to prove our abstract results.

Lemma 2.2. [6, Proposition 2.22] Assume that T : D ⊂ E → c(E) is an u.s.c. multivalued operator and a

net (xε, yε)→ (x, y) with yε ∈ T (xε). Then y ∈ T (x).

Lemma 2.3. [5, Theorem 2.1] Assume that multivalued operator H : [0, 1]×K∩Ω→ cc(K) is u.s.c. compact

satisfying x /∈ H(t, x) for all (t, x) ∈ [0, 1]× ∂KΩ. Then, iK(H(0, .),Ω) = iK(H(1, .),Ω).
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3. Abstract results

Lemma 3.1. Let T : [0,∞)×K → cc(K) be an u.s.c compact operator and Ω 3 0 be an open bounded subset

of E. Assume that the following conditions are satis�ed

1. tx ∈ T (0, x) for some x ∈
�
K implies t < 1,

2. there exists λ0 > 0 such that ik(T (λ, .),Ω) = 0 for all λ ≥ λ0.

Then the set {x ∈ ∂KΩ : ∃λ > 0, x ∈ T (λ, x)} is nonempty.

Proof. We de�ne
α = sup{λ > 0 : iK(T (λ, .),Ω) 6= 0}

It is clear that α > 0. Indeed, assume that the following assertion holds

∀ε > 0, ∃(tε, xε) ∈ [0, 1]× ∂KΩ : xε ∈ (1− tε)T (ε, xε) + tεT (0, xε). (5)

Since T is compact, without loss of generality we may assume that tε → t, xε → x when ε→ 0. From (5) by
Lemma 2.2 it follows that

x ∈ (1− t)T (0, x) + tT (0, x) ⊂ T (0, x).

This contradicts the �rst condition. Thus, there exists ε > 0 such that (t, x) /∈ H(t, x) for all (t, x) ∈
[0, 1]× ∂KΩ, where

H(t, x) = (1− t)T (ε, x) + tT (0, x).

Using Lemma 2.3 we have
iK(T (0, .),Ω) = iK(T (ε, .),Ω).

By Lemma 2.1 from the �rst condition it follows iK(T (0, .),Ω) = 1. Thus iK(T (ε, .),Ω) = 1, we deduce
λ0 > α ≥ ε > 0.
Next, for any ε ∈ (0, α), there exists λε ∈ (α− ε, α] with iK(T (λε, .),Ω) 6= 0. Consider multivalued operator
Hε de�ned by

Hε(t, x) = (1− t)T (λε, x) + tT (α+ ε, x).

Now, we prove
{x ∈ ∂KΩ : ∃λ > 0, x ∈ T (λ, x)} 6= ∅.

Assume on the contrary, that
{x ∈ ∂KΩ : ∃λ > 0, x ∈ T (λ, x)} = ∅. (6)

Then, the �xed point index of T (α+ ε, .) is well de�ned and it is equal 0 from the de�nition of α. If

x /∈ Hε(t, x) for all (t, x) ∈ [0, 1]× ∂KΩ, (7)

by Lemma 2.3 we obtain
iK(T (λε, .),Ω) = iK(T (α+ ε, .),Ω). (8)

This is a contradiction. Therefore (7) is impossible, i.e., there is (tε, xε) ∈ [0, 1]× ∂KΩ satisfying

xε ∈ (1− tε)T (λε, xε) + tεT (α+ ε, xε). (9)

By an argument analogous to the previous one we can �nd x ∈ ∂KΩ with x ∈ T (α, x). This contradicts (6).
The proof is complete. �

Let (Y,KY , ‖.‖Y ) be a Banach space, ordered by normal cone KY . Suppose that E ⊂ Y,K ⊂ KY ∩ E,
embedding (E, ‖.‖) ↪→ (Y, ‖.‖Y ) is continuous, and F : [0,∞)×K → cc(KY ) is u.s.c. compact multivalued
operator. Let A : Y → X be a compact linear operator satisfying A(KY ) ⊂ K.

Theorem 3.1. Assume that the following conditions are satis�ed
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1. kx ∈ A ◦ F (0, x) for some x ∈
�
K implies k < 1;

2. there are positive numbers a, b, c and a linear function L : Y → R+ with L(y) 6= 0 for some y ∈ K such

that

(a) LAx <2 {aLx} and LAx <2 {a.‖Ax‖Y } for all x ∈ KY ,

(b) L(F (λ, x)) <2 {bλLx− c} for all x ∈ K, and

(c) there exists a function h : R+ × R+ → R increasing on the second variable with

lim
λ→∞

h(λ,
c

abλ− 1
) = 0 (10)

such that (k, λ, x) ∈ [0, 1]× [0,∞)×K with

x ∈ kA ◦ F (λ, x) + (1− k)bλAx (11)

implies

‖x‖ ≤ h(λ, ‖x‖Y ). (12)

Then, S = {x ∈
�
K : ∃λ > 0, x ∈ A ◦ F (λ, x)} is unbounded continuous branch emanating from 0.

Proof. Let Ω 3 0 be an open bounded subset of E. We will apply Lemma 3.1 with T (λ, x) = A ◦ F (λ, x) to
prove S ∩ ∂KΩ 6= ∅. Clearly, the condition 1. of the lemma holds. Assume that (k, λ, x) ∈ [0, 1]× [0,∞)×K
satis�ed (11), it is obvious that x ∈ A[kF (λ, x) + (1 − k)bλx], hence x = A[kyλ + (1 − k)bλx] for some
yλ ∈ F (λ, x). From 2(a) and 2(b) applying the operator L we have

Lx ≥ aL(kyλ + (1− k)bλx) ≥ a(bλLx− c), (13)

Lx ≥ a‖A[kyλ + (1− k)bλx]‖Y = a‖x‖Y . (14)

We always assume λ is su�ciently large, from (13) and (14) if follows that

‖x‖Y ≤
c

abλ− 1

which together with (12) gives

‖x‖ ≤ h(λ,
c

abλ− 1
). (15)

If x ∈ ∂KΩ, b‖x‖ > ε > 0 for some ε. From (15), (11) and (12) it follows that

x /∈ H(k, x) for all (k, x) ∈ [0, 1]× ∂KΩ, (16)

where H(k, x) = kA ◦ F (λ, x) + (1− k)bλAx, partially, x 6= bλAx.

Applying Lemma 2.3 we obtain iK(T (λ, .Ω)) = iK(λbA,Ω). Choose u ∈
�
K with Lu > 0. We now prove that

x 6= bλAx+ su for all (s, x) ∈ [0,∞)× ∂KΩ. (17)

Assume on the contrary, that exists (s, x) ∈ [0,∞)× ∂KΩ satisfying

x = bλAx+ su. (18)

This implies s > 0. Acting the operator L to both sides of (18) from the condition 2(b) we obtain (1 −
abλ)Lx ≥ su, this is impossible. Therefore, from Lemma 2.1 it follows iK(bλA,Ω) = 0. We deduce
iK(T (λ, .),Ω) = 0. The proof is complete. �
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4. Applications

Let F : [0,∞) × R+ → cc(R+) be an u.s.c. compact multivalued operator and f : R+ → R+ be a
continuous function. Denote J = [0, 1]. We consider control problem which contains a parameter of the form

u′′(t) + g(λ, t)f(u(t)) = 0, t ∈ (0, 1),
g(λ, t) ∈ F (λ, u(t)) a.e. on J
u(0) = 0, u(1) =

∑m
i=1 αiu(ηi)

(19)

where, 0 < ηi < 1, αi ≥ 0,
∑m

i=1 αiηi < 1.
Denote Λ =

∑m
i=1 αiηi. for every (t, s) ∈ [0, 1]× [0, 1], we de�ne

h(t, s) =

{
s(1− t), s ≤ t,
t(1− s), s > t.

G(t, s) =
t

1− Λ

m∑
i=1

αih(ηi, s) + h(t, s);

Let C(J) and C1(J), resp., be the Banach spaces of all continuous and continuous di�erentiable function
on J . Denote E =

{
x ∈ C1(J) : x(0) = 0

}
, and Y = {x ∈ C(J) : x(0) = 0}. Let A : Y → E be a compact

linear operator de�ned by

A(u)(t) =

∫ 1

0
G(t, s)u(s)ds, t ∈ J (20)

Instead of solving problem (20) we shall consider its equivalent form

x ∈ A ◦ T (λ, x), (21)

where the multivalued operator T is de�ned by

T (λ, x)(t) = F [λ, x(t)]f [x(t)], t ∈ J.

Theorem 4.1. Let ρ =
{

supt∈J
∫ 1
0 G(t, s)ds

}−1
. Assume that there exist numbers α > 0, β > 0, γ ∈ (0, ρ)

and r ∈ (0, 2) such that

1. F (0, x)f(x) 41 γx ∀x > 0,

2. αλx− β 42 F (λ, x)f(x),

3. F (λ, x) 41 1 + λ
r
2 |x|r for all (λ, x) ∈ (0,+∞)× R+.

Then, the set S of positive solutions for (21) is unbounded continuous in C1(J), emanating from 0.

Proof. We shall apply Theorem 3.1 with the cone

K = {x ∈ E : x(t) ≥ 0 ∀t ∈ J},

the cone
KY = {x ∈ Y : x(t) ≥ 0 ∀t ∈ J}.

Then, Y and E, resp., are Banach spaces with the norms

‖x‖Y = sup
t∈J
|x(t)|

and
‖x‖ = ‖x′‖Y .
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Suppose x ∈
�
K and k satis�es kx ∈ A ◦ T (0, x), we can �nd u(s) ∈ F (0, x(s)) such that

|kx(t)| =
∣∣∣∣∫ 1

0
G(t, s)u(s)f(x(s))ds

∣∣∣∣ ,
≤ γ‖x‖Y

∣∣∣∣∫ 1

0
G(t, s)ds

∣∣∣∣
≤ ‖x‖Y ∀t ∈ J.

This implies k < 1. From the well-known results in [17], the compact linear operator A has an eigen-
value µ0 > 0 with respect to a positive eigen-function u0. We de�ne the linear operator L on Y , by
Lx =

∫ 1
0 x(s)u0(s)ds. From the condition 2, we have

L(T (λ, x)) <2

∫ 1

0
(αλx(s)− β)u0(s)ds

≥ αλLx− c,

where c = β
∫ 1
0 u0(s)ds. If y is non-negative continuous concave function on J satisfying y(0) = 0 and

y(1) ≥ 0, there exists number ξ > 0 such that y(t) ≥ ξ‖y‖Y u0(t) on J . For x ∈ KY , Ax is concave function
with Ax(0) = 0 and Ax(1) ≥ 0, we have Ax(t) ≥ ξ‖Ax‖Y u0(t). From Fubini's Theorem it follows that

L(Ax) =

∫ 1

0

(∫ 1

0
G(t, s)x(s)ds

)
u0(t)dt

=

∫ ∫
J×J

G(t, s)x(s)u0(t)dsdt

=

∫ 1

0

(∫ 1

0
G(t, s)u0(t)dt

)
x(s)ds

=

∫ 1

0
Au0(s)x(s)ds

= µ0

∫ 1

0
u0(s)x(s)ds

= µ0Lx.

Consequently, there is constant a > 0 satisfying

L(Ax) ≥ aLx and L(Ax) ≥ a‖Ax‖Y . (22)

Now, assume (k, λ, x) ∈ [0, 1]× [0,∞)×K with

x ∈ kA ◦ T (λ, x) + (1− k)αλAx. (23)

This implies
− x′′ ∈ kT (λ, x) + (1− k)αλx. (24)

In the following the numbers mj , j = 0, 1, 2, .., 6 and m are constant numbers, not depending on λ, x and
t ∈ J . By a similar argument as the proof of Theorem 3.1 we obtain

‖x‖Y ≤
c

aαλ− 1
. (25)

Therefore we can choose m1 such that
λ‖x‖Y ≤ m1 (26)
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From (26), the well-known inequality

‖x′‖2Y ≤ m2‖x‖Y .‖x′′‖Y . (27)

and (24) we obtain

‖x′′‖Y ≤ m3(1 + λ
r
2 ‖x‖rY ) + αm1 (28)

≤ m4(1 + λ
r
2 ‖x‖rY ). (29)

Further, for x ∈ K, we have ‖x‖Y ≤ m0‖x′‖Y . Combining this inequality, (26), (27), (29) and (29) we have

‖x′′‖Y ≤ m5(1 + ‖x′′‖
r
2
Y ) ≤ m6. (30)

From (27) we can choose m such that ‖x′‖Y ≤ m‖x‖
1
2
Y . Since ‖x‖ = ‖x′‖Y , the condition (2c) of Theorem

3.1 are satis�ed with function h(λ, t) = mt
1
2 . �

5. Conclusion

In this paper, the unbounded continuity of positive solution set for a multivalued equation containing
a parameter has established and given the application in the control problem with multi-point boundary
conditions.
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