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Abstract 

In this paper, a finite element implementation of a recently proposed phenomenological constitutive model for rubber-like materials is 

represented based on the fundamentals of continuum mechanics and rubber elasticity. The phenomenological model is first fitted to 

the hyperelastic behavior of an unfilled silicon rubber subjected to five different uniform deformations. Then, a subroutine is written 

to import the model into the finite element software and an unfilled silicon rubber sheet is numerically modeled in the commercial 

finite element software. As performed in the experiments by Meunier et al (Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008)., the 

rubber sheet is deformed 57.2 mm along the vertical axes in the simulations. Good agreement between the numerical model and 

experimental data is obtained.  
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Bir Fenomenolojik Yapısal Modelin Kauçuk Tipi Malzemeler İçin 

Sonlu Elemanlar Yöntemi Uygulaması 

Öz 

Bu makalede, kauçuk tipi malzemelerin yapısal olarak modellenmesi için yakın zamanda önerilmiş olan bir fenomenolojik model 

sürekli ortamlar mekaniği ve kauçuk elastisitesi temellerine dayanarak sonlu elemanlar yöntemi içerisine adapte edilmiştir.  Model, ilk 

önce saf silikon kauçuğun beş farklı yükleme altında gösterdiği hiperelastik davranışlara göre kalibre edilmiştir. Sonrasında modeli 

sonlu elemanlar yöntemi yazılımına adapte etmek için altprogram yazılmış ve üzerinde delikler olan saf silikon kauçuk levha yazılım 

içerisinde nümerik olarak modellenmiştir. Meunier ve diğerlerinin (Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008) deneylerde 

yaptığı gibi kauçuk levha simülasyon içerisinde 57.2 mm dikey deplasmana maruz bırakılmıştır. Yapılan ölçümlerde nümerik modelin 

ve deneysel verilerin örtüştüğü görülmüştür. 
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1. Introduction 

Rubber-like materials are a class of polymers having a wide 

range of industrial applications ranging from tires to electronics, 

textile to isolation systems. Due to their application capability, 

their physical and mechanical characterization is crucial. 

However, rubber-like materials, such as carbon-black rubber, 

soft tissues, hydrogels, exhibit nonlinear inelastic features under 

large deformation. As such materials can sustain strain up to 20 

times of initial length (Sun, et al., 2012), their mechanical 

characterization is complicated. Although, in literature, there 

have been many constitutive models in different scales proposed 

to describe the non-linearity and inelasticity of rubber-like 

materials (Boyce & Arruda, 2000), (Diani, Fayolle, & Gilormini, 

2009), (Steinmann, Hossain, & Possart, 2012), the background 

of their complicated mechanical behavior is still indefinable. 

Therefore, since the beginning of the 1900s, there have been 

many studies carried out to identify structural properties of such 

materials during the course of deformation. 

Constitutive modeling based on the fundamentals of 

continuum mechanics and rubber elasticity is a powerful tool to 

characterize behaviors of the materials, which can sustain large 

deformation. In general, constitutive modeling of rubber-like 

materials can be split into two parts: micro-mechanical and 

phenomenological. Despite higher computational costs and some 

idealization approaches, micro-mechanical models get more 

attention since they have interpreted the macroscopic material 

behavior with the change of the physical properties during 

deformation. This property is an important benefit compared to 

phenomenological models. Some of the micro-mechanical 

constitutive models for rubber-like materials are the 3-chain, 4-

chain, 8-chain, and unit sphere models (Steinmann, Hossain, & 

Possart, 2012). However, in commercial applications, 

phenomenological models are broadly chosen due to 

computational cost. The commercial software, i.e., ANSYS®, 

ABAQUS®, also contains some of the very important 

phenomenological constitutive models ready to use. 

The phenomenological models describe the macro-

mechanical behavior based on the fundamentals of continuum 

mechanics and can be classified into two approaches: principal 

stretch- and invariant-based models. Ogden (Ogden, 1972) 

proposed a principal stretch-based model. The model is very 

flexible and can describe the mechanical behavior of various 

materials. Early strain invariant-based models are Mooney-

Rivlin type (Mooney, 1940). The simplest expression is known 

as the neo-Hookean model that describes the material behavior 

for moderate deformations. Among the strain invariant-based 

models, Yeoh (Yeoh O. H., 1990), Gent (Gent, 1996), Yeoh and 

Fleming (Yeoh & Fleming, 1997), Carroll (Carroll, 2011) 

models are widely used in the literature. Recently, Blaise et al. 

(Blaise, Bien-aimé, Betchewe, Marckman, & Beda, 2020), 

Mansouri & Darijani (Mansouri & Darijani, 2014), and Darijani 

& Naghdabadi (Darijani & Naghdabadi, 2010) proposed 

successful phenomenological constitutive models.  

In the present paper, the predictive capability of the model 

proposed by Külcü (Külcü, 2020) for complicated finite element 

simulations is examined. Firstly, the experimental data of five 

different loading modes are reproduced by the model having a 

constant value of material parameters for each deformation type. 

Then, the model is implemented into finite element simulation 

via subroutines. Lastly, the results of the numerical model have 

competed against the experimental data. 

2. Modeling 

2.1. The Fundamentals of Continuum Mechanics 

The continuum mechanics approach is an effective tool, 

which does not consider discontinuities of microscopic systems. 

It is frequently used to develop mathematical models of material 

behavior to estimate the material deformation and motion. In the 

following, basic terms of the continuum mechanics used in this 

study are shown. 

Let 𝐅 be the deformation gradients that maps a material 

point 𝑿 in the reference configuration to a point 𝒙 in current 

configuration and shown as 

𝒙 = 𝐅𝑿 (1) 

Also, let Ψ = Ψ(𝑪, ξ) be the strain energy function per unit 

volume of a rubber-like material, with 𝜉 being some internal 

variables. Now, considering that the rubber-like material is 

nearly incompressible, the strain energy function can be 

additively decomposed into volumetric and isochoric parts 

(Flory, 1961) such as 

Ψ(𝑪, ξ) = U(𝐽) + Ψ𝑖𝑠𝑜(𝑪
′, ξ) (2) 

where the first term on the right-hand side is taken into account 

for the volumetric response of the material, whereas the second 

term is for the distortional deformation. In Eq. (2), 𝑪 is the right 

Cauchy Green tensor, 𝐽 is the volume change and 𝑪′ is the 

unimodular tensor describing the distortional deformation. 

 𝑪 and 𝑪′ can be written as follows 

𝐂 = 𝐅𝑻𝐅, (3) 

𝑪′ = 𝐽−2/3𝑪. (4) 

2.2. The Constitutive Model 

In practice, to appraise the accuracy and applicability of a 

particular constitutive model, a simple experiment is performed 

and the results are compared with the data reproduced by the 

model. To the best of our knowledge, an ideal phenomenological 

constitutive model should contain the following requirements:  

1. Include few material parameters as possible, 

2. Describe different relatively complicated deformation 

behavior, 

3. Reproduce the behavior of different materials. 

 However, the macro-mechanical models found in literature 

often suffer one or two of the above-mentioned requirements. 

Some of them contain more material parameters, some of them 

are not able to characterize the material behavior under different 

loading modes (see (Steinmann, Hossain, & Possart, 2012)). 

Such drawbacks result in difficulties in the structural analysis, 

which is carried out in the finite element simulations. 

Recently, Külcü (Külcü, 2020) proposed a 

phenomenological constitutive model that represents material 
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behavior with a constant material parameter for the classical 

Treloar experimental data (Treloar, 1944). Also, experimental 

data of rubber by Sasso et al. (Sasso, Palmieri, Chiappini, & 

Amodio, 2008) is successfully reproduced by the model. Lastly, 

experimental data of different materials, such as collagen and 

fibrin (Storm, Pastore, MacKintosh, Lubensky, & Janmey, 

2005), is utilized to check the model accuracy.  

This model is represented as 

Ψ = μ [𝑓(𝐼1, α) + 𝑓 (𝐼2, −
α

16
) + ln (

1

α
𝑓(𝐼1,1) + 1)], (5) 

where 𝐼1 and 𝐼2 are the first and second strain invariants of right 

Cauchy-Green tensor, respectively, 𝜇 is the shear modulus, 𝛼 is 

the scalar material parameter and 

f(𝑥, 𝑦) =
α

𝑦
[𝑒𝑦[𝑥−3] − 1].  (6) 

The strain invariants can be calculated as 

𝐼1 = λ1
2 + λ2

2 + λ3
2,   (7) 

𝐼2 = λ1
2λ2

2 + λ1
2λ3

2 + λ2
2λ3

2, (8) 

where λ𝑖   (𝑖 = 1,2,3) is the principal stretch. The principal 

stretches can be written for different uniform deformation modes 

as shown in Table 1. 

Table 1. Principle stretches 

 𝝀𝟏 𝝀𝟐 𝝀𝟑 

Uniaxial λ λ0.5 𝜆0.5 

Equibiaxial 𝜆 𝜆 λ0.5 

Pure shear 𝜆 λ−1 1 

Finally, by considering the incompressibility condition for 

rubber-like materials, the first Piola-Kirchhoff stress is written as 

𝑃𝑖 =
∂Ψ

∂λ𝑖
−
1

λ𝑖
p   (𝑖 = 1,2,3),  (9) 

where 𝑝 is the Lagrange multiplier. The first Piola-Kirchoff 

stress for the uniaxial, equibiaxial, and pure shear deformations 

are represented as 

𝑃𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = 2𝜇 (𝜆 −
1

𝜆2
) (𝛼 𝑒(𝛼[𝐼1−3]) + 𝛼

1

𝜆
𝑒
(
−𝛼[𝐼2−3]

16
)
+ 1), (10) 

𝑃𝑒𝑞𝑢𝑖𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = 2𝜇 (𝜆 −
1

𝜆5
) (𝛼 𝑒(𝛼[𝐼1−3]) + 𝛼𝜆2𝑒

(
−𝛼[𝐼2−3]

16
)
+ 1), (11) 

𝑃𝑝𝑢𝑟𝑒𝑠ℎ𝑒𝑎𝑟 = 2𝜇 (𝜆 −
1

𝜆3
) (𝛼 𝑒(𝛼[𝐼1−3]) + 𝛼 𝑒

(
−𝛼[𝐼2−3]

16
)
+ 1). (12) 

To implement the model into finite element application, 

Abaqus® is utilized. The model is coded for user subroutine 

UHYPER. 

 

3. Results and Discussion  

The aim to constitute a material model is to predict material 

behavior under complicated deformations. Implementing a 

material model into the finite element simulations is significant 

to perform such analysis. In this contribution, the Külcü model is 

implemented by writing a code and importing the code into a 

commercial finite element software. Experimental data of 

unfilled silicon rubber by Meunier et al. (Meunier, Chagnon, 

Favier, Orgéas, & Vacher, 2008) is utilized to check the accuracy 

of the model in finite element simulations. Therefore, the model 

is first fitted to the five different uniform deformations. In Figure 

1, the fitting of the model against uniaxial tension/compression, 

equibiaxial tension, and tensile/compressive pure shear tests are 

represented. The model is able to reproduce all of the 

deformations with constant values of material parameters. 

 

Figure 1. Comparison of the Külcü model against the 

experimental data of unfilled silicon rubbers by Meunier et al. 

(Meunier, Chagnon, Favier, Orgéas, & Vacher, 2008) (𝜇 =
0.1, 𝛼 = 0.28) a. tensile tests, b. compressive test 

The error margin of the model for this particular comparison 

is calculated as 

Error2 =
1

𝑁
∑ [𝑃𝑚𝑜𝑑𝑒𝑙(𝜆𝑖) − 𝑃𝑒𝑥𝑝(𝜆𝑖)]

2𝑁
𝑖=1 , (13) 

where 𝑁 is the number of experimental data. In Table 2, the 

mean error margin of the model in comparison to the 

experimental data shown in Figure 1 is represented. A relatively 

small error margin is achieved for the model comparison. 
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Table 2. The mean error margin of the model compared to 

experimental data by Meunier et al. (Meunier, Chagnon, Favier, 

Orgéas, & Vacher, 2008) 

Deformation Error (MPa) 

Uniaxial 0.027 

Equibiaxial 0.051 

Pure shear 0.040 

Compressive uniaxial 0.097 

Compressive pure shear 0.022 

 

Further, an unfilled silicon rubber specimen is accounted for 

in the finite element simulations. Figure 2 represents the 

dimensions of the rubber sheet tested in the experiments, 

whereas Table 3 shows the locations of the holes placed on the 

rubber sheet (Khiêm & Itskov, 2016). There is a cut between C3 

and C5.  

Table 3. Location of the holes on the rubber sheet 

 X(mm) Y(mm) 

C1 47.5 21.2 

C2 14.0 23.0 

C3 31.5 40.5 

C4 47.5 59.0 

C5 14.5 58.0 

 

The rubber specimen discretized by 6566 linear hexahedral 

elements of type C3D8H is fixed at the bottom and subjected to 

the vertical deformation of 57.2 mm as performed in the 

experiment (Meunier, Chagnon, Favier, Orgéas, & Vacher, 

2008). Figure 3 shows the deformed configuration of the rubber 

specimen in the experiment and simulation. In the simulation, a 

deformed configuration that is similar to one obtained in the 

experiment is captured. This fact indicates that the model 

qualitatively describes the experimental data. 

In Figure 4, a comparison of the numerical model and the 

experimental data taken from the measured path shown in Figure 

2 is illustrated. In the numerical model, the values of the material 

parameters are considered to be 𝜇 = 0.1, 𝛼 = 0.28 as in Figure 

1. The deformation along the measured path in the numerical 

model and the experimental data shows a good match. 

Therefore, the results of the finite element simulation show 

Figure 4. Comparison of the numerical model with the 

experimental data taken from the measured path 

Figure 3. A rubber specimen simulated using the finite element 

method: a) experiment, b) simulation 

Figure 2. A rubber specimen simulated using the finite element 

method 
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quantitatively good agreement with the experimental data as 

well. 

4. Conclusions and Recommendations 

Rubber-like materials are commercially widely-used, and 

the characterization of their properties is therefore significant. In 

this contribution, the numerical implementation of a 

phenomenological model proposed by Külcü (Külcü, 2020) is 

studied. The model is first fitted to the experimental data of five 

different uniform deformations by Meunier et al. (Meunier, 

Chagnon, Favier, Orgéas, & Vacher, 2008). Then, the model is 

utilized in the finite element simulation by writing a user-defined 

subroutine. A silicon rubber specimen having five holes, in 

which two of them have a cut in between, is accounted for in the 

numerical analysis. The model is discretized by the 

approximately 6500 elements and loads are applied as done in 

the experiments. Qualitatively and quantitatively good 

agreement between the numerical model and experimental data 

is obtained. Further, the predictive capability of the model may 

be checked on the fiber-reinforced rubber-like materials.  
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