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INTRODUCTION
Recent years there is a big interest in the develop-
ment and pharmacological evaluation of heter-
oaromatic organic compounds, such as benzimi-
dazoles, because of their varied biological activi-
ties as antibacterial (1, 2), antifungal (3, 4), antimi-
crobial (5, 6), antiviral (7), anti-inflammatory (8), 
vasodilator (9), anticancer (10, 11). Substituted 
benzimidazole derivatives are also inhibitors of 
type I DNA topoisomerase (12-15).

The benzimidazole nucleus is found in a variety of 
naturally occurring compounds such as vitamin 
B12 and its derivatives, and it is structurally simi-
lar to purin bases. The substituents on position 1 
and/or position 2 of the benzimidazole ligands 
can induce notable changes in the electronic, ster-
ic, and hydrophobic properties of the compounds. 
The benzimidazole ligands having hydroxyl and/
or free N1-H moiety which would have hydrogen 
bound donor and/or acceptor properties, could 
facilitate novel types of lesions with cellular DNA, 
and might exhibit sequence selectivity.

Investigating the interactions between DNA and 
small molecules is an important field of molecu-
lar biology for understanding the biological roles 
of these molecules against biological compo-
nents. The identification of interaction types be-

tween DNA and these molecules lead important 
biological studies in drug discovery and pharma-
ceutical development process. Several studies 
have been performed for detecting the interac-
tion (16-18) and the mechanism (19, 20). 

There are various types of interaction mecha-
nisms between DNA and drug molecules includ-
ing non-covalent groove binding, covalent bind-
ing / cross-linking, DNA cleaving and intercala-
tion (20-23). Intercalator molecules accumulate in 
hydrogen bounds of double stranded DNA (dsD-
NA) due to their planar aromatic rings structure 
and are stacked themselves between bases (24).

Many biosensor investigations in the concerning 
interaction between DNA and drug molecules 
have been performed including various methods 
(such as NMR, raman, electrochemical, etc.) for 
the identification of interaction mechanisms. 
Electrochemical biosensors introduce a conven-
ient, rapid and efficient way for determining, 
monitoring and diagnosing; using biological in-
teractions (25, 26). Electrochemical DNA sensors 
(genosensors) provide a simple method for ex-
pecting changes in the DNA structure. 

The DNA biosensor simply based on a recogni-
tion surface covered with DNA molecule, a sig-
nal transducer and amplifier that determines and 
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amplifies the biological interaction between two DNA strands 
and a user interface that shows the data from interaction (27-
29).

In this work seven 1H-benzimidazole derivatives were investi-
gated for potential DNA damage agents. The interactions be-
tween drug and DNA were analyzed by using drug’s signals 
with DPV. The voltammetric peak currents were obtained 
from ssDNA and dsDNA shows the mechanism of drug inter-
acting with DNA.

RESULTS AND DISCUSSION
Chemistry
A synthetic route for the 1H-benzimidazole derivatives 1-7 is 
outlined in the Figure 1. In this work we synthesized seven 
benzimidazole derivatives bearing different substitutions at 
position 2- and 5/6- (Figure 1). In the initial step of the syn-
thetic process, the reaction of 4-hydroxybenzaldehyde with 
sodium bisulfide solution afforded sodium hydroxy(4-hy-
droxyphenyl) methan  sulfonate salt, while the condensation 
reaction of this salt with nonsubstituted or 5/6-substituted o-
phenylenediamine analogs were achieved in the second step 
(12). Following the reaction of 4-(1H-benzimidazol-2-yl)phe-
nol (1) with substituted alkyl derivatives in the presence of 
sodium hydroxide, the reaction mixture were refluxed for two 
hours at 95 0C after adding aminoalkylhalogenates. The struc-
tures of the synthesized compounds were elucidated by melt-
ing point, IR, 1H NMR, 13C NMR and mass spectral data. 

By the help of IR spectra data, the bands between 2400-3200 
cm–1, are attributed to N-H--N type hydrogen bonds, which 
are characteristic for benzimidazole derivatives. Moreover, the 
N–H,  C=C and C=N stretching bands were observed at 3390-
3460 cm–1, 1650-1500 cm–1 and 1500-1400 cm–1, respectively 
(30). Also, asymmetric and symmetric C-O-C stretching were 
studied at 1200-1275 cm–1 and 1020-1075 cm–1 (31). 
1H NMR results were interpreted in experimental section. The 
aromatic proton signals of p-hydroxyphenyl substituent at po-
sition 2- of 1H-benzimidazole ring were observed within pro-
spective chemical shift values and divisions as 1,4-disubsti-
tuted benzene system (as two protons doublets H-3′, H-5′ at δ 
6.87-6.95 and H-2′, H-6′ at δ 7.90-7.98) while the hydrogen at-
oms at positions 4- and 7- were not detected at the prospective 
divisions (32). The compounds substituted with the terminal 

of ethoxy chain at position 4- of phenyl group gave rise to sim-
ilar chemical shift values and divisions at the ring of the benz-
imidazole nucleus as 1-3. 

The lack of the signal belonging to 3a, 4, 7 and 7a C in 13C NMR 
are noteworthy that may suggest a proton exchange due to 1, 
3-tautomerization (32). All the other aliphatic and aromatic 
carbons were observed at expected regions.

Electrochemical Detection
The genosensor relied on the electrochemical transduction of 
interaction between DNA and 1H-benzimidazole derivatives 
for the detection of interaction mechanism. DGE surfaces were 
modified with ds and ssDNA by adsorption and accumulation 
was performed with various concentrations of drug solutions. 
The detection of interaction between DNA (dsDNA and ssD-
NA) and drugs were monitored by using the oxidation signals 
of 1, 2, 4, 5, 6, 7 and reduction signal of 3 where electrochemical 
responses had led to significant different voltammetric signals 
after interaction.

Typical DPV behaviors of 1H-beznimidazole derivatives in the 
absence and presence of ds / ss DNA were studied. The 
changes in the peak currents of 1H-benzimidazole derivatives 
such as A) 1, B) 3, C) 6, D) 2, E) 7, F) 5, G) 4 at bare (a), drug 
modified (b) and after interaction with dsDNA (c) and single 
stranded DNA (ssDNA) (d) are shown in Figure 2.

Electrochemical responses of 1H-benzimidazole derivatives 
have been evaluated due to their accumulation magnitude. It 
was observed that compounds 1 (A), 3 (B) and 6 (C) have sig-
nificant higher signals in the presence of dsDNA in the com-
parison with in the presence of ssDNA. Significantly decrease 
in the signals in the absence of DNA at bare electrodes shows 
the adsorption characteristic of these drugs, furthermore ob-
taining relatively higher decreases in the presence of ssDNA 
supports intercalation characteristic of compounds 1, 3 and 6 
(33). Besides in the presence of ssDNA, significant higher re-
sponses obtained from compounds 2 (D), 5 (F) and 4 (G) when 
compared within the dsDNA due to their guanine interaction. 
On the other hand, the electrochemical responses of com-
pound 7 (E), no significantly differences were observed be-
tween in the presence of ss and dsDNA.

FIGURE 1: The preparation of substituted benzimidazoles.
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For the detection of optimum drug concentration, the electro-
chemical responses of various concentrations of 1H-benzimi-
dazole derivatives solutions were studied in Figure 3. 

Optimum drug concentrations relied on their stable voltam-
metric signal, were found as, 2 μg / mL of compound 1, 10 μg 
/ mL of 3, 2.4 μg / mL of 6, 10 μg / mL of 2, 10 μg / mL of 7,  
18.20 μg / mL of 5, and 30 μg / mL of 4 at the detection limits 
of 0.62 nM, 1.26 nM, 0.69 nM, 1.23 nM, 0.42 nM, 1.13 nM, and 
1.08 nM of respectively.

Figure 4 represents the histammograms of DPV signals of A) 1, 
B) 3, C) 6, D) 2, E) 7, F) 5, G) 4, at bare (a), drug modified (b) 
and after interaction with dsDNA (c) and ssDNA (d).

Optimum drug concentrations were accumulated at dsDNA 
and ssDNA modified surfaces. It was observed that before in-
teraction, 1H-benzimidazol derivates were highly difused at 

graphite surfaces due to their affinity. But this high diffusion 
could not be observed after DNA coated surfaces.

A resume of interaction types of 1H-benzimidazole derivatives 
with DNA was briefly presented in Table 1.

In conclusion, following the synthesis of 7 different 1H-benz-
imidazole derivatives, their interactions with DNA were mon-
itored by using electrochemical genosensing technique. De-
tecting the voltammetric behavior of several drugs that inter-
act with DNA would be valuable in the design of sequence-
specific DNA binding molecules for application in chemother-
apy and in the development of biotechnological tools for the 
point-of-care tests based on DNA. Determining the interaction 
mechanisms of new drugs with DNA lead new insight into 
rational drug design. These studies can play a key role in de-
veloping novel chemotherapeutic agents that could be pivotal 
in targeting specific genes and thereby provide selective con-
trol of gene expression.

FIGURE 2: DPV signals of 1H-benzimidazole derivatives A) 1, B) 3, C) 6, D) 2, E) 7, F) 5, G) 4 at bare (a), drug modified (b) and after interaction with dsDNA (c) and ssDNA (d).
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EXPERIMENTAL
Chemistry
All melting points were determined with a capillary melting 
points apparatus (Buchi 510, BUCHI, Flawil, Switzerland). The 
IR spectra of compounds were monitored as potassium bro-
mide pellets (FT/IR-430, JASCO, Tokyo, Japan). The NMR 

spectra (400 MHz for 1H and 100 MHz for 13C) were recorded 
in the deuterated solvent indicated with chemical shifts re-
ported in parts per million (δ). δ units downfield from tetram-
ethylsilane (TMS). Coupling constants (J) are reported in hertz 
(Hz) (AS 400 Mercury Plus NMR Varian, Palo Alto, USA). 
Mass spectra were measured in methanol (Merck) solution 

TABLE 1. Interaction types of 1H-benzimidazole derivatives with DNA.

Compounds Electrochemical Behaviour Hypothesis of Interaction Mechanism

1 Oxidation at ~ 0.5 V intercalation

2 Oxidation at ~ 0.75V guanine damage

3 Reduction at ~ 0.30 V intercalation

4 Oxidation at ~ 0.5 V guanine damage

5 Oxidation at ~ 0.95 V guanine damage

6 Oxidation at ~ 0.5 V intercalation

7 Oxidation at ~ 0.8 V no interaction

FIGURE 3: Calibration plot of various dilutions of 1H-benzimidazole derivatives based on drugs electrochemical signals.
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LCMS-2010 High Performance Liquid Chromatograph Mass 
Spectrofotometer, Schimadzu Q-array (quadrupole) for 6 and 
HP 6890 Series GC System Mass spectrometer HP 6890 Mass 
Selective Detector, (Hewlett Packard, Palo Alto, USA) for the 
other derivatives. Analytical thin-layer chromatography (TLC) 
was run on Merck silica gel plates (Kieselgel 60F254) with de-
tection by UV light (254 nm). All starting materials and rea-
gents were high-grade commercial products.

General procedure for the synthesis of N-{2-[4-(1H-benzimida-
zole-2-yl)phenoxy]ethyl}substitutedamine derivatives;

4-(1H-benzimidazole-2-yl)phenol was synthesized with o-phe-
nylenediamine as described (12). After reacting 4-(1H-benzim-
idazole-2-yl)phenol (0.005 mol) and A (Figure 1) (0.01 mol) 
with sodium hydroxide (0.015 mol) in 10 mL ethanol, the mix-
ture was refluxed at 95 0C for 2 h in an oil bath. Ethanol was 
evaporated and the residue was extracted with ether. The 
compounds were obtained by preparative TLC (CHCl3/C6H6/
CH3OH/25% NH4OH solution, 5:1:0.5:0.05) and crystalliza-
tion with methanol/water.

4-(1H-Benzo[d]imidazol-2-yl)phenol (1). 

C14H12N2O; Yield 77%; Mp: 271 0C; 1H NMR (CH3OD): 6.93 
(2H, d, J= 9.0 Hz, H-3′, H-5′), 7.21 (2H, dd, J=  3.1, 6.2 Hz,  H-5, 
H-6), 7.55 (2H, dd, J=  3.1, 6.3 Hz , H-4, H-7), 7.93 (2H, d, J= 9.0 
Hz, H-2′, H-6′). 13C NMR (CH3OD): 115.7 (C-3′, C-5′), 120.9 (C-
1′), 122.4 (C-5, C-6), 128.3 (C-2′, C-6′), 138.9 (C-3a and/or C-7a), 
152.7 (C-2), 159.8 (C-4′). FT-IR (KBr), cm-1: 3311, 2922, 1500, 
1252. CI MS (m/z): 211 [M+1]+.    

4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenol (2). 

C13H9ClN2O; Yield 90%; Mp: 257 0C; 1H NMR (CH3OD): 6.93 
(2H, d, J= 8.6 Hz, H-3′, H-5′), 7.18 (1H, dd, J=  2.0, 8.6 Hz, H-6), 
7.48 (1H, d, J= 8.6 Hz, H-7), 7.52 (1H, d, J= 1.6 Hz, H-4 ), 7.91 
(2H, d, J= 8.6 Hz, H-2′, H-6′). 13C NMR (CH3OD): 115.6 (C-3′, 
C-5′), 120.6 (C-1′), 122.6 (C-6), 127.8 (C-5), 128.4 (C-2′, C-6′), 
154.1 (C-2), 160.1 (C-4′). FT-IR (KBr), cm-1: 3631, 3201, 1492, 
1268. CI MS (m/z): 246 [M+1]+.  

FIGURE 4: Histammograms based on DPV signals of A) 1, B) 3, C) 6, D) 2, E) 7, F) 5, G) 4 at bare (a), drug modified (b) and after interaction with dsDNA (c) and ssDNA (d).
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2-(4-Hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylic acid (3). 

C14H10N2O3; Yield 63%; Mp: >300 0C; 1H NMR (CH3OD): 6.95 
(2H, d, J= 9.0 Hz, H-3′, H-5′), 7.58 (1H, d, J= 8.6 Hz, H-7), 7.93 
(1H, dd, J= 2.0, 8.4 Hz, H-6), 7.95 (2H, d, J= 8.6 Hz, H-2′, H-6′), 
8.26 (1H, d, J= 1.6 Hz, H-4). 13C NMR (CH3OD): 113.8 (C-7), 
115.8 (C-3′, C-5′), 116.7 (C-4), 120.3 (C-1′), 124.2 (C-6), 125.1 (C-
5), 128.7 (C-2′, C-6′), 138.7 (C-3a), 142.3 (C-7a), 155.1 (C-2), 160.4 
(C-4′), 169.4 (-COOH). FT-IR (KBr), cm-1: 3334, 2360, 1636, 
1508, 1303. CI MS (m/z): 255 [M+1]+.      

4-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)phenol (4). 

C15H14N2O; Yield 60%; Mp: >300 0C; 1H NMR (CH3OD): 2.29 
(6H, s, 2xAr-CH3), 6.87 (2H, d, J= 9.0 Hz, H-3′, H-5′), 7.27 (2H, 
s, H-4, H-7), 7.94 (2H, d, J= 8.6 Hz, H-2′,H-6′). 13C NMR 
(CH3OD): 20.7 (2xAr-CH3), 116.3 (C-3′, C-5′), 122.2 (C-1′), 128.6 
(C-2′, C-6′), 130.5 (C-5, C-6), 151.6 (C-2), 159.5 (C-4′). FT-IR 
(KBr), cm-1: 3254, 2967, 1610, 1253. CI MS (m/z): 239 [M+1]+.

N,N-Dimethyl-2-(4-(5-methyl-1H-benzo[d]imidazol-2-yl)phe-
noxy)ethanamine (5).

C18H21N3O;  Yield 18%; Mp: 134 0C; 1H NMR (CDCl3) (δ/
ppm): 2.30 (6H, s, H-1″′), 2.40 (3H, s, Ar-CH3), 2.72 (2H, t, J= 5.5 
Hz, H-2″), 4.03 (2H, t, J= 5.5 Hz, H-1″), 6.90 (2H, d, J= 8.9 Hz, 
H-3′, H-5′), 6.98 (1H, dd, J= 0.9, 8.2 Hz, H-6), 7.30 (1H, s, H-4), 
7.41 (1H, d, J= 8.2 Hz, H-7), 7.90 (2H, d, J= 8.8 Hz, H-2′, H-6′). 
13C NMR (CDCl3) (δ/ppm): 21.9 (Ar-CH3), 46.0 (C-1″′), 58.3 
(C-2″), 66.1 (C-1″), 115.1 (C-3′, C-5′), 123.0 (C-1′), 124.3 (C-6), 
128.3 (C-2′, C-6′), 132.7 (C-5), 151.8 (C-2), 160.4 (C-4′). FT-IR 
(KBr), cm-1: 3039, 2971, 2882, 1613, 1498, 1262, 1046, 837, 792. CI 
MS (m/z): 296 [M+1]+.

2-(4-(1H-Benzo[d]imidazol-2-yl)phenoxy)-N,N-dimethyletha-
namine (6). 

C17H19N3O; Yield 32%; Mp: 212 0C; 1H NMR (CDCl3): 2.36 
(6H, s, H-1″′), 2.77 (2H, t, J= 5.2 Hz, H-2″), 4.09 (2H, t, J= 5.2 Hz, 
H-1″),  6.92 (2H, d, J= 8.8 Hz,  H-3′, H-5′), 7.22 (2H,dd, J= 3.2, 6.4 
Hz, H-5, H-6), 7.60 (2H, dd, J= 3.2, 6.0 Hz, H-4, H-7), 7.98 (2H, 
d, J= 9.2 Hz, H-2′, H-6′). 13C NMR (CDCl3) (δ/ppm): 46.0 (C-
1″′), 58.4 (C-2″), 66.1 (C-1″), 115.2 (C-3′, C-5′), 122.9 (C-5, C-6), 
128.4 (C-2′, C-6′), 152.1 (C-2), 160.5 (C-4′). FT-IR (KBr), cm-1: 
3061, 2973, 2851, 1611, 1497, 1247, 1042, 834, 745. CI MS (m/z): 
282 [M+1]+.

2-(4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenoxy)-N,N-di-
methylethanamine (7).

C17H18ClN3O; Yield 25 %; Mp: 115 0C; 1H NMR (CDCl3) (δ/
ppm): 2.37 (6H, s, H-1″′), 2.78 (2H, t, J= 5.5 Hz, H-2″), 4.11 (2H, 
t, J= 5.5 Hz, H-1″), 6.94 (2H, d, J= 9.0 Hz,  H-3′, H-5′), 7.19 (1H, 
dd, J= 2.0, 8.6 Hz, H-6), 7.49 (1H, d, J= 8.6 Hz, H-7), 7.56 (1H, s, 
H-4), 7.93 (2H, d, J= 8.6 Hz, H-2′, H-6′). 13C NMR (CDCl3) (δ/
ppm): 46.0 (C-1″′), 58.3 (C-2″), 66.2 (C-1″), 115.3 (C-3′, C-5′), 
122.4 (C-1′), 123.4 (C-6), 128.4 (C-2′, C-6′), 153.1 (C-2), 160.8 (C-
4′). FT-IR (KBr), cm-1: 2974, 2830, 1612, 1499, 1263, 1046, 837, 
742. CI MS (m/z): 317 [M+1]+.

Electrochemical Detection
Calf Thymus dsDNA and ssDNA were purchased (as lyophi-
lized powder) from Sigma. DNA stock solutions were pre-
pared with Mili Q water and kept frozen.

To dilute the stock solutions 0.50 M acetate buffer (pH 4.80) is 
used. Other chemicals were of analytical reagent grade. All so-
lutions are prepared with ultra pure water.

All of the electrochemical detections were carried out by an 
AUTOLAB PGSTAT 30 electrochemical analyzer (Eco Chemie, 
The Netherlands) using differential pulse voltammetry (DPV). 
Three electrode systems were utilized, which comprised the 
pencil grahite electrode (PGE), Ag/AgCl as the reference elec-
trode and the indicator electrode, the Pt wire. 

General procedure for Electrochemical Detection
Determination of the interaction mechanism of 1H-benzimida-
zole derivatives with DNA was performed at DNA modified 
DGE sensor surfaces. DGE’s were pretreated by applying 1.4 V 
for 60 seconds in phosphate buffer solution (pH 7.4) for over-
oxidation. Calf thymus ds and ssDNA’s were immobilized 
onto DGE surfaces via adsorption (34). Accumulation of 1H-
benzimdazole derivates were performed at DNA modified 
DGE surfaces with various concentrations of their solutions by 
applying open circuit mode for 5 minutes (27, 28). Determina-
tion of interaction mechanisms of drugs’s were obtained by 
applying DPV for transduction of benzimidazole derivates’ 
electrochemical responses. Figure 5 represents the schematic 
presentation of detection.

FIGURE 5: Voltammetric detection procedure of interactin between 1H-benzimidazole derivatives and DNA.
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1H-Benzimidazol türevlerinin sentezi ve DNA ile etkileşimlerinin voltametrik tayini

ÖZET: Çalışmada bazı 1H-benzimidazol türevlerinin sentezi ve elektrokimyasal genosensör teknolojisi kullanılarak 
DNA ile etkileşimlerinin tayini gerçekleştirilmiştir. DNA – ilaç etkileşiminin tayini ilaçların tek kullanımlık grafit elektrot 
yüzeylerinde (DGE) diferansiyel puls voltametrisi (DPV) ile yükseltgenme sinyallerinin görüntülenmesine dayanır. 7 
farklı 1H-benzimidazol türevinin çift sarmal DNA ile etkileşimi sonucu artan voltametrik sinyallere dayalı olarak alınan 
sonuçlarda gözlenen tayin sınırları; 1. bileşik 0.62 nM, 2. bileşik, 1.23 nM, 3. bileşik, 1.26 nM, 4. bileşik,1.08 nM, 5. bi-
leşik 1.13 nM, 6. bileşik 0.69 nM ve 7. bileşik için 0.42 nM olarak gözlenmiştir.

ANAHTAR KELİMELER: 1H-benzimidazol, elektrokimyasal genosensör, DNA-ilaç etkileşmesi, sentez.
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