KAPSAYIŞININ DANSİL TÜREVİ HALİNDE FLUORODANSİTOMETRİK YÖNTEM İLE MIKTAR TAYINI

FLUORODENSİTOMETRİK DETEKTİON OF CAPSAICIN AS ITS DANSYL DERIVATIVE

Lale ERSOY *

SUMMARY

A fluorodensitometric method was developed for the determination of capsaicin by means of the derivative formed with dansyl chloride. The reaction proceeded quantitatively at room temperature in 20 min and in acetone-Na₂CO₃ (3:1) system when the molar ratio of reagent to capsaicin was 8. After TLC separation of reaction product on silica-gel plate the fluorescence intensity of the derivative was measured at 525 nm, using 366 nm excitation filter. The fluorescence intensity is linear over the concentration range of 5-500 ng capsaicin/spot.

The proposed method was applied to determination of capsaicin in capsicum fructus. The range of recovery from Capsicum fructus is 98.8-100.6 %

ÖZET

Kapsayışının miktar tayını için dansil klorür ile oluşturduğu türevden yararlanılarak fluorodensitometrik bir yöntem geliştirildi. Reaksiyon oda sıcaklığında, 20 dakikada, acetone-Na₂CO₃ (3:1) sistiminde ve belirtilen kapsayışın mol oranının 8 olması halinde kantitatif olarak yürütülmektedir. Reaksiyon ürününün silikajel plakta kromatografiye edilmesinden sonra türev ait lekenin fluoresans siddetil 5-500 ng kapsayışın/leke konsantrasyon aralığında doğrusalıdır.

Geliştirilen yöntem meyvalarında kapsayışının miktar tayinine uygulanmıştır. Kapsikum meyvalarından gori kazanılabılırlik alanı 98.8-100.6 % dir.

* Marmara Üniversitesi Eczacılık Fakültesi, Analitik Kimya Anabilim Dalı, Nişantaşı/İSTANBUL.
GİRİŞ

Kapsikum meyvalarındaki acı lezzetli ve farmakolojik etkili (1) bir alkaloid alan kapsaisinin (4-OH, 3-OCH₃-benzil -8 metilnon trans -6- enamid) miktar tayini için bugüne değin bir çok yöntem geliştirilmiştir. Kapsikum meyvalarında, farmasötik preparatlarda veya özellikle son yıllarda olmak üzere vücud sıvılarındaki kapsaisinin miktar tayini için geliştirilen bu yöntemlerden en çok kullanılanları, UV-spektrofotometri (2,3), kolorimetri (2, 4-7), gaz kromatografisi (8-12) ve yüksek basınçlı sıvı kromatografisidir (13-16).

Aminlerin, aminoasitlerin, katekolaminlerin, fosfolipidlerin ve anabolik steroidlerin analizlerinde, amin grupları ile kuvvetli fluoresans gösteren türevler oluşturan 5-dimetilamino-1-sülfonil klorür (DANS-CI) belirtecindendir yaygın bir şekilde yararlanmaktadır (17-22).

Bu çalışmada kapsaisinin miktar tayini için bir fluorodansitometrik yöntem geliştirildi. Yöntem, DANS-CI belirtecii ile türrevlendirme işleminden sonra ince tabaka kromatografisi ile ayırma ve türve ait lekenin fluoresans şiddetinin doğrudan doğruya plak üzerinden ölçülmesi esasına dayanmaktadır.

DENEYSEL BÖLÜM

Materyal ve Aletler

Kantitatif ölçüler ZFM 4 fluoresans eki ve Camag Z-tarayıcısı ile donatılmış Zeiss PMQ II spektrofotometresi ile yapıldı. İşık kaynağı olarak 366 nm ekstasyon filtresi St 41 cıva lamba kullanıldı. Pikler bir Linear 355 stripchart yazıcısı kullanılarak ve kağıt hızı 12 cm/dak olarak şekilde kaydedildi. Eksityasyon ve emisyon spektrumları xenon arc lambalı Perkin Elmer 204 A spektrofluorometre aleti ile alındı. Çözeltilerin ince tabakaya uygulanmasında Hamilton şiringalardan yararlanıldı.
Standart kapsaisin çözeltisi: 0.01 % ve 0.001 % lik, asetonda
Dansil klorür çözeltisi: 0.267 % ve 0.026 % lik, asetonda ve taze
Trietanolamin çözeltisi: 20 % lik, isopropanolde hazırlanıdı.

Türevin Sentezi

20 mg kapsaisinin 1 ml asetondaki çözeltisine 50 mg DANS-CI ün 2 ml asetondaki çözeltisi ile 1 ml 0.1 M Na₂CO₃ çözeltisi katıldktan sonra karışım oda sıcaklığında ve gün ışığından korunarak 20 dak. bekletildi. Aseton su banyosunda ve azot akımında uzaklaştırıldı. Sulu karışım benzen ile ekstre edildi. Benzen tabakaları birleştirildikten sonra artık, metanolden kristallendirdi. Koyu sarı renkli kristaller ed= 88 - 90°C dir. Türevin silikajel plakta kloroform-metanol (100: 1) çözücü sistemindeki Rf değeri 0.55 dir.

Kapsaisin İcin Miktar Tayini Yöntemi

10 ml lik tüpere standart kapsaisin çözeltisinden 0.5-5 ml alındı ve su banyosunda çözücüsü buharlaştırıldı. Her bir tüpe 0.25 ml 0.1 M Na₂CO₃ ve 0.75 ml DANS-CI çözeltisi ilave edildikten sonra karışım oda sıcaklığında gün ışığından korunarak 20 dak. bekletildi. Aseton su banyosunda azot akımında buharlaştırıldı. Sulu karışım 3 kez 1 er ml benzen ile vorteks karıştırıncda ekstre edildi. Birleştirilen benzen fazları 5 ml lik bir balonjeyede aynı çözücü ile hacmine tamamlandı. Bu çözelti her 5 er µl silikajel plaga uygulandı. Kromatografi işlemi kloroform-metanol (100:1) çözücü sistemi ile 10 cm yüksekliğe ulaşılan plak ve plak gün ışığında korunarak yapıldı. Havada kurutulan plaklara trietanolamin çözeltisi püskürtüldükten sonra türve ait lekelerin fluoresans siddet 366 nm ekstitasyon filtersi kullanılarak 525 nm de ölçülü. Pik alanları, piklerin uniform bir transparan kağıda kopya edilmesinden sonra kesilip tartılarak değerlendirildi.

Kapsikut Meyvalarında Kapsaisin Miktar Tayini

Sapından ve tohumlarından arındırılmış, kurutulmuş ve toz edilmiş kapsikut meyvasından tartılan 250 mg örnek, geri çeviren
sonuçcu altında 40 dak. kloroform ile ekstre edildi. Karışım süzüldükten sonra çözücüsü vakumda distile edildi ve kalıntı ile "Kapsaisin için miktar tayini yöntemi" başlığı altında bildirildiği şekilde çalışılarak türevlendirme işlemi yapıldı. Örnek çözeltisi ve türevlendirilen standart kapsaisin çözeltileri aynı plaga uygulana-rak kromatografyeye edildi. Örnekteki kapsaisin miktarı aynı plakat-ki standart çözeltilere ait lekelerin pik ağırlıklarından hazırlanan regresyon eşitliği yardımcı ile hesaplandı.

SONUÇ VE TARTIŞMA

Kapsaisin, DANS-CI belirteci ile alkali ortamda, eksitasyon maksimumu 352 nm, emisyon maksimumu 502 nm de (Şekil. 1) olan ve kuvvetli fluoresans gösteren bir türev oluşturmaktadır.

![Şekil-1: Kapsaisinin dansil türevinin benzendeki fluoresans spektrumu. Eks: eksitasyon, Em: emisyon.](image)

Tuş ve formülü, yüksek ayırma yetenekli kütle spektrometrisi yöntemi ile C₉₀ H₃₈ N₂O₅S olarak saptandı (Hesaplanan M⁺ 538.2657; ölçulen 538.2655). 220 Mz de alınan NMR spektrumunda ise sırasıyla aromatik (6.68-8.65 ppm), çift Became komşusu (5.35 ve 5.65 ppm), azota komşu (4.35 ppm), metoksi (3.3 ppm) ve N-dimetil gruplarındaki (2.9
Şekil-2: Kapsaisinin dansil türevinin dütorkloroformdaki NMR spektrumu (220 Hz)

Şekil-3: Kapsaisinin dansil türevinin UV ve görünür alandaki absorbsiyon spektrumu (metanolde).
ppm) ve yan zincirdeki diğer protonlara (0.8-2.2 ppm) ait pikler görülmektedir (Şekil. 2). Türevin metanolde alınmış absorbsiyon spektrumundaki maksimumlar 255 ve 342 nm dedir (Şekil. 3).

Kapsaisin ile DANS-CI arasındaki reaksiyonun bitiş süresini saptamak üzere oda sıcaklığında ve 45°C de çalışıldı. Reaksiyonun oda sıcaklığında 20, 45°C de ise 5 dakikada tamamlandığı görüldü (Şekil. 4). İstima ile reaksiyon daha kısa sürede tamamlandığını da önemli bir zaman farkı olmadığını oda sıcaklığında çalışma koşulu tercih edildi.

Şekil-4: Fluorsans şiddetinin oda sıcaklığında (——) ve 45°C de (.....) zamanına karşı değişimi.

Saf madde ile çalışmada DANS-CI, mol oranı bakımından kapsaisinin 8 katı olması halinde reaksiyon kantitatif olarak yürütüldüğü saptandı. Ancak kapsıkm meyvaları ile çalışırken eks tremde reaksiyon verecek başka maddeler de bulunduğundan 20 katı belirteç kullanıldı.

Sulu ortamda oluşan dansil-kapsaisinin kantitatif olarak ben- zen ile ekstre edilebilmesi, özellikle kapsıkm meyvaları ile çalışırken yan ürünlerin çözüçüye geçmemesi bakımından uygun olmaktadır.

Dansil türevlerinin fluoresans şiddetini arttırmak ve türevi daha dayanıklı hale getirmek amacıyla kromatografi işlemininden
sonra plaga trietanolamin çözeltisi püskürtülmesi tavsiye edilmektedir (17). Bu nedenle trietanolamin çözeltisinin dansil-kapsaisin türevinin fluoresans şiddetine etkisi incelendi. Fluoresans şiddetinde önemli bir artma ve emisyon maksimumunda 15 nm lik hipsokromik bir kayma (540 nm den 525 nm ye) görülmediği için çalışmada trietanolamin çözeltisi kullanıldı ve ölçümler 525 nm de yapıldı.

Dansil türevleri genel olarak işe karşı duyarlı olduğundan (17) türevin benzen çözeltisindeki ve plak üzerindeki dayanıklılığı incelendi. 4°C de ve gün işığından korunarak bekletilen benzen çözeltisinin 24 saat dayanıklığı görüldü. Plak üzerindeki lekelerin karanhıta 8 saat dayanıklı olduğu, UV ışık altında bekletildiğinde ise fluoresans şiddetinin 10 dakika sürede arttığı sonra sabit kaldıgı gözlandı. Trietanolamin çözeltisi püskürtüldükten sonra UV ışık altında bekletildiğinde ise UV ışının, lekenin fluoresans şiddetinde önemli bir farklılığa neden olmadığı gözlandı (Şekil. 5).

Şekil-5: UV ışının (366 nm) türev (A) ve trietanolamin çözeltisi ile muamele edilmiş türev (B) etkisi. Emisyon yarık aralığı A ve B için sırası ile 0.7 ve 0.2 mm dir.

Fluoresans şiddeti ile konsantrasyon arasındaki ilişki lekede 5-500 ng kapsaisine eşdeğer türev bulunması halinde doğrusaldir. Ölçü eğrisi lekedeki kapsaisin miktarı (ng) ile pik ağırlığı (mg)
arasında çizildi. 5-50 ve 50-500 ng kapsaisin miktarları için ayrı duru- yarlıktta çalışıldı. İnce tabaka üzerinde sıptanabilen en düşük kap- saisın miktarı 2 ng/lekedir.

Geliştirilen yöntem tekrarlanabilirliğinin saptanması amacı ile aynı konsantrasyondaki kapsaisin çözeltisi ile튜TextLabel_scaledırme ve ölçme işlemlerleri aynı koşullarda olacak şekilde 5 kez çalışıldı. 100 ng kapsaisin/leke için bağlı standart sapma 1.82 % olarak bulundu.

Kapsikum meyvalarından geri kazanma oranının saptanması amacı ile önceden kapsaisin içermediği saptanmış kuru kapsikum meyvasına belirli miktarlarda kapsaisin (0.04-0.4 mg kapsaisin/250 mg kurumeyva) katılarak çalışıldı. 5 ayrı çalışmanın ortalaması sonuçlarından hesaplanan geri kazanma oranı alanı 98.8-100.6 % ve ortalama ise 99.4 % dir (Tablo I).

Tablo-I: Kapsikum meyvasına değişik miktarlarda katılan kapsaisinin geri kazanma oranı.

<table>
<thead>
<tr>
<th>Kapsaisin</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Katılan a</td>
<td>Bulunan a,b</td>
<td>SD</td>
<td>Geri Kazanma Oranı (%)</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>39.6</td>
<td>± 0.90</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td>98.8</td>
<td>± 1.06</td>
<td>98.8</td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td>200.2</td>
<td>± 2.55</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>300.0</td>
<td>300.6</td>
<td>± 2.49</td>
<td>100.2</td>
<td></td>
</tr>
<tr>
<td>400.0</td>
<td>395.2</td>
<td>± 2.35</td>
<td>98.8</td>
<td></td>
</tr>
</tbody>
</table>

a: µg/250 mg kurumeyva
b: 5 çalışmanın ortalaması

Geliştirilen yöntem İnegöl, Gaziantep, Şanlıurfa ve Mustafake- malaşta Teknik Ziraat Müdürlüklerinden sağlanan kapsikum mev- valarına uygulandı. 100 g kuru meyvadaki kapsaisin miktarları sırasıyla 172.0 mg; 133.4 mg; 128.0 mg ve 64.0 mg dir.

Literatürde kapsaisinin miktar tayini için önerilen diğer yöntemlerde genellikle güç ve zaman alıcı ayırma işlemlerine gerek duyulmaktadır. Geliştirilen bu yöntemde ise herhangi bir saf- laştırma işlemi olmaksızın, duyarlı bir şekilde ve oldukça kolay
sağlanabilir bir alet ile kapsaisin analizi mümkün olmaktadır. Yöntemin duyarlılığı özellikle son yıllarda sıkıla uygulanmış biyo-lojik sıvılarda kapsaisin tayinine de olanak sağlayabileceği.