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ABSTRACT

In this paper, we study conics, which are invariant under the hyperbolic inversion with respect
to the absolute of an extended hyperbolic plane H2 of curvature radius ρ, ρ ∈ R+. They are called
the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the
second order in H2 belongs to one of four conics types of this plane. These types are as follows: the
bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches;
the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all
bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The
family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and
two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.
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1. Introduction

1.1. The extended hyperbolic plane H2

In the Cayley – Klein projective interpretation (see, for instance, [4, 10, 9]), an extended hyperbolic plane H2

is the projective plane P2 with an infinitely removed oval curve γ, called the absolute of the planeH2. According
to Staudt’s definition, the oval curve is also named a non-degenerate conic or simply a conic (see, for instance,
[1]). The plane H2 contains two connected components adjacent to the absolute. A complete Lobachevskii
plane Λ2 is realized on the interior domain of the plane P2 with respect to the conic γ. A hyperbolic plane Ĥ of
positive curvature is realized on the exterior domain of P2 with respect to γ [13, 14]. The group G of projective
automorphisms of the oval curve γ is the fundamental group of transformations for H2, Λ2, and Ĥ .

The lines of the plane H2 are as follows:
(1) the elliptic lines, crossing the absolute at a pair of imaginary conjugate points;
(2) the hyperbolic lines, intersecting the absolute at two real points;
(3) the parabolic lines that touch the absolute.

1.2. The conics types of the extended hyperbolic plane H2

Each conic of the plane H2, different from the absolute, belongs to one of twenty types. Each proper conic of
the Lobachevskii plane Λ2 belongs to one of five types [9, p. 181], and each proper conic of the plane Ĥ belongs
to one of eight types [14, 11]. Notice, the refined conics classification in the plane Λ2 was provided in [9]. One
of the conics types, namely the hyperbolic parabolas of one branches in Λ2, was skipped in [5], [4, p. 229].

The classification of conics in the planes Λ2 and Ĥ (see [4, 10, 14, 11, 5]) is based on the classification of
collineations, which are the product of polar transformations of two conics. In this classification, the geometric
covariants of two conics of the projective plane P2 are considered, namely the common points and the common
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tangents of a conic and the absolute. These geometric covariants are called the basic covariants of a conic [11].
Each a basic covariant can be real or imaginary. In the conics classification, the number of basic covariants and
their nature are taken into account. Other ways for the conics classification are known. For example, focal-
director properties of conics were used in the classification of conics of the plane Λ2 [7, 8]. Interestingly, the
relative position of two projective conics is also investigated regardless of hyperbolic geometry, without taking
into account the classic results from the works [4, 10, 5]. For example, incomplete lists of the possible relative
positions of conics are presented in [6, 3]. Such investigations, despite their omissions, confirm the timeliness of
the study of the conics in the planeH2. In the given paper, we adhere to the conics classification from [10, 14, 11]
and use terms from the works [14, 11]. All types of conics of the plane H2 are shown in Figure 1.
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Figure 1. The conics of the plane H2: a bihyperbola of one sheet in Ĥ (a); a bihyperbola of two sheets in Ĥ (b ); a hyperbolic parabola of one sheet and two
branches in Ĥ (c); a hyperbolic parabola of two sheets and two branches in Ĥ (d ); a hyperbolic parabola of one sheet and one branch in Ĥ (e); a hyperbola (f ); a
parabola (g); a hyperbolic cycle of Ĥ (h ); an equidistance of Λ2 (i ); an elliptic cycle of Ĥ (j ); a convex elliptic parabole (k ); a nonconvex elliptic parabole of Ĥ (l );
a horocycle of Ĥ (m); an elliptic parabole of Λ2 (n); a horocycle of Λ2 (o); a convex ellipce of Ĥ (p); a nonconvex ellipce of Ĥ (q); a hypercycle of Ĥ (r); an ellipce
of Λ2 (s); a circle of Λ2 (t ).

On the plane H2 there are seven types of cycles. These types are as follows: the hyperbolic and elliptic
cycles of the plane Ĥ (see Figures 1h and 1j, respectively), the equidistantes of the plane Λ2 (see Figure 1i ), the
horocycles of the planes Ĥ and Λ2 (see Figures 1m and 1o, respectively), the hypercycles of the plane Ĥ (see
Figure 1r), the circles of the plane Λ2 (see Figure 1t ) (see [4, 9, 14, 11, 15]). These conics are paths of an arbitrary
point in the plane H2 under the transformations of the groop G.
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1.3. Problem statement

Inversions with respect to the cycles of the plane H2 were studied in [16, 18, 21]. Since the absolute of the
plane H2 can be considered as the limit position of a hypercycle, a horocycle, and a hyperbolic cycle of the
plane Ĥ , as well as of a circle, an equidistant and a horocycle of the plane Λ2, we enter three types of inversions
with respect to the absolute of H2 [19, 20]. An inversion with respect to the absolute of H2 we call elliptic,
hyperbolic or parabolic if its center is respectively an inner, outer or eigen point with respect to the absolute.

According to the definitions of inverse points, each line containing the inversion center, is invariant under
this inversion. We study higher order curves, which are invariant under inversions with respect to the absolute.
Such curves we called the Raisa Orbits of the respective order (or R-orbits, for short). Depending on the type
of the inversion we distinguish elliptic, hyperbolic and parabolic R-orbits. Elliptic second-order Raisa Orbits were
studied in [20]. In this work we present the hyperbolic second-orderR-orbits of the planeH2. We find canonical
equations of these conics and prove that a hyperbolic R-orbit of the second order in the plane H2 of curvature
radius ρ, ρ ∈ R+, can be a conic of one of four following types:

• the bihyperbolas of one sheet in Ĥ ;
• the hyperbolas;
• the hyperbolic parabolas of one sheet and two branches in Ĥ ;
• the elliptic cycles of radius πρ/4.

In addition, we define the range of each family of all R-orbits of the same type.

1.4. Main notions

We study the objects of the plane H2 in canonical frames of two types. The equations of conics in the frames
of the first type allow us to obtain the most informative images by means the interactive mathematics software
GeoGebra. The frames of the second type are the most convenient in analytical proofs. Here we briefly provide
main notions (see [13, p. 87]). The main definitions and facts on conics in the projective plane are described, for
example, in books [1, 2].

A canonical frame of the first type of the plane H2 is a projective frame R∗ = {A1, A2, A3, E} whose vertices
A1, A2, A3 form an autopolar trilateral of the first order with respect to the absolute γ, and the unit point E lies
on the tangents to the curve γ drawn from the vertices A1 and A2.

A canonical frame of the second type of the plane H2 is a projective frame R∗ = {A1, A2, A3, E} whose vertices
A1, A2, A3 form an autopolar trilateral of the second order with respect to the absolute conic γ, and points A1,
A2, and E lie on γ.

The absolute curve γ in any canonical frame R∗ of the first type (or in any canonical frame R of the second
type) of the plane H2 is given by the equation

x2
1 + x2

2 − x2
3 = 0

(
x1x2 − x2

3 = 0
)
. (1.1)

The tangential equation of the absolute γ in any canonical frame R of the second type has the form

4X1X2 −X2
3 = 0. (1.2)

Denote the quadric form x1x2 − x2
3 from the second equation in (1.1) by ϕ(x1, x2, x3). In the frame R, the

real coordinates (a1 : a2 : a3) of an exterior or interior point with respect to the absolute satisfy respectively the
inequality

ϕ(a1, a2, a3) < 0 or ϕ(a1, a2, a3) > 0. (1.3)

Any point of the plane Ĥ defines four components in the plane H2. Let us determine them by analogy with
components of the plane Ĥ (see, for instance, [13, p. 104], [14, p. 11], [12, p. 9]).

Let X be an arbitrary point of the plane Ĥ , and let l1, l2 be the parabolic lines containing the point X .
By the valiana of a point X in H2 we mean the set of all interior points of the angle between lines l1, l2 that

does not contain the absolute γ. The polar line l of the point X with respect to γ divides the valiana of X into
two connected components. We call them the semivalianas of the point X .

The complement of the valiana of a point X in H2 is called the covaliana of X . The covaliana of a point X
on H2 consists of two components bounded by the lines l1, l2, and l. We call each of these components the
semicovaliana of a point X .
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2. Hyperbolic inversion in the plane H2

Let ω(S;h) be a cycle with centre S in the plane H2, and let M be an arbitrary point in the plane H2. Denote
the polar line of the point M with respect to the cycle ω by pM , and the common point of lines SM and pM by
M ′.

The points M and M ′ are called inverse points with respect to the cycle ω.
The transformation of the plane H2 under which each point M passes to its inverse point M ′ with respect to

a cycle ω, is called the inversion with respect to this cycle and is denoted by I . The cycle ω is called the base cycle
(or base), the point S is the centre of inversion I (see [16, 18, 21]).

When the base cycle ω is not an elliptic cycle of the plane Ĥ , the absolute γ can be considered as a limit
position of ω. When ω is a hyperbolic cycle of the plane Ĥ , that is, S is an inner point of the plane Ĥ , the
inversion I is called a hyperbolic inversion with respect to the absolute, or a hyperbolic inversion for short.

Let us find the analytical expression for the hyperbolic inversion I with centre S.
To this end we consider a canonical frame R = {A1, A2, S, E} of the second types. For an arbitrary point M

of the plane H2 with coordinates (m1 : m2 : m3) the line SM has the coordinates (−m2 : m1 : 0) in R. According
to the second equation from (1.1) the polar line pM of the point M with respect to the absolute can be set by
the coordinates (m2 : m1 : −2m3). Consequently, the point M ′, where M ′ = I(M) = SM ∩ pM , can be given in
R by the coordinates (m1m3 : m2m3 : m1m2). Thus, for the inversion I with centre S the following analytical
expressions in the frame R hold:

λx′1 = x1x3, λx
′
2 = x2x3, λx

′
3 = x1x2, λ ∈ R. (2.1)

We formulate and prove several almost obvious assertions in the following theorem.

Theorem 2.1. The hyperbolic inversion I of the plane H2 with centre S possesses the following properties.

1. Inversion I is not a bijective transformation of the plane H2.

2. Under I a line of the plane H2 corresponds to itself if and only if it passes through the point S.

3. Let M , M ′ be inverse points under I , and let l be the polar line of the point S with respect to the absolute γ. Then
the distance from M to S is equal to the distance from M ′ to l.

4. If an arbitrary pointM of the planeH2 belongs to the covaliana of the point S, then the inverse pointsM ,M ′ under
I belong to the same semicovaliana of S and to different components Λ2, Ĥ of the plane H2.

5. If an arbitrary point M of the plane H2 belongs to the valiana of the point S, then the inverse points M , M ′ under
I belong to different semivalianas of S.

Proof. 1. Accoding to the definition of the hyperbolic inversion each point of a parabolic line containing the
point S, corresponds under I to the common point of this line and the absolute γ. Moreover, each point of
the polar line of S with respect to γ corresponds under I to S. This violates the condition of injectiveness
of I and thereby proves the first assertion of the theorem.

2. By definition, inverse points under I are collinear with the centre S of I . From this follows the second
assertion of the theorem.

3. By the condition of the third theorem assertion, the point S is the pole of the line l with resprct to the
absolute. Hence, the line MS is orthogonal to the line l. Let M0 = MS ∩ l. Then the distance from M ′ to l
is equal to |M ′M0|. Let us prove that |MS| = |M ′M0|.
Denote the common points of the line MM ′ and the absolute γ by H1, H2. These points can be real
or imaginary conjugate. When the line MS is parabolic, these points coincide. By construct of inverse
points, the point M ′ lies on the polar line of M with respect to γ. Thus, for the cross-ratios (SM0H1H2),
(MM ′H1H2) of the quadruples of collinear points the following equalities hold

(SM0H1H2) = −1, (MM ′H1H2) = −1. (2.2)

Let us choose a frame R0 = {H1, H2, S} on the line MS. Accoding to the first equality from (2.2) the point
M0 has the coordinates (1 : −1) in R0. Denote coordinates of the points M , M ′ in this frame by (a : 1),
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(x : 1), where a, x ∈ R. Using the second equality from (2.2), we find that x = −a. Expressing the numbers
(MSH1H2), (M ′M0H1H2) via coordinates of points in the frame R0, we obtain

(MSH1H2) =

∣∣∣∣ a 1
1 0

∣∣∣∣ ∣∣∣∣ 1 1
0 1

∣∣∣∣∣∣∣∣ a 1
0 1

∣∣∣∣ ∣∣∣∣ 1 1
1 0

∣∣∣∣ =
1

a
, (M ′M0H1H2) =

∣∣∣∣ −a 1
1 0

∣∣∣∣ ∣∣∣∣ 1 −1
0 1

∣∣∣∣∣∣∣∣ −a 1
0 1

∣∣∣∣ ∣∣∣∣ 1 −1
1 0

∣∣∣∣ =
1

a
.

Thus, the equality (MSH1H2) = (M ′M0H1H2) holds. Based on this equality and the definition of the
length of an elliptic or hyperbolic segment (see, for instance, [13, pp. 118, 122]), we provide support for
the equality |MS| = |M ′M0|, from which the third assertion of the theorem follows.

4. To prove the following assertions, we use the canonical frame R = {A1, A2, S, E} of the second type. By
definition, the points A1, A2, E from R lie in γ, the point S is the pole of the line A1A2 with respect γ.

Let M be an arbitrary point from the covaliana of the point S, and let M0 = SM ∩ l, where l is the polar
line of S with respect to γ. Without losing of generality in reasonings we place the unit point E of R on
the line MM ′ in the same semicovaliana of S that the point M . After that, the points M , M0 can be given
in the frame R by the coordinates (1 : 1 : m), m ∈ R, and (1 : 1 : 0), respectively. According to formulae
(2.1) the point M ′ has the coordinates (m : m : 1). Expressing the cross-ratio (MM ′M0S) of the quadruple
of collinear points via their coordinates in the frame R, we find

(MM ′M0S) =

∣∣∣∣ 1 m
1 0

∣∣∣∣ ∣∣∣∣ m 1
0 1

∣∣∣∣∣∣∣∣ 1 m
0 1

∣∣∣∣ ∣∣∣∣ m 1
1 0

∣∣∣∣ = m2.

Since (MM ′M0S) = m2 > 0 for any m, the points M , M ′ are not divided by the points M0, S.
Consequently, M and M ′ lie in the same semicovaliana of the point S.

The cross-ratio (MM ′ES) has the following expression in coordinates

(MM ′ES) =

∣∣∣∣ 1 m
1 1

∣∣∣∣ ∣∣∣∣ m 1
0 1

∣∣∣∣∣∣∣∣ 1 m
0 1

∣∣∣∣ ∣∣∣∣ m 1
1 1

∣∣∣∣ = −m. (2.3)

Since the points M , E lie in the same semicovaliana of S, the inequality (MEM0S) > 0 holds. Writing
down this inequality in coordinates, we obtain

(MEM0S) =

∣∣∣∣ 1 m
1 0

∣∣∣∣ ∣∣∣∣ 1 1
0 1

∣∣∣∣∣∣∣∣ 1 m
0 1

∣∣∣∣ ∣∣∣∣ 1 1
1 0

∣∣∣∣ = m > 0. (2.4)

By the conditions (2.3), (2.4), the inequality (MM ′ES) < 0 holds. Consequently, the points M , M ′ are
divided by the points E, S, that is, the points M , M ′ belong to different components Λ2, Ĥ of the plane
H2. So, the fourth assertion of the theorem is proved.

5. Now we assume that an arbitrary point M lies in the valiana of the point S. Keeping the previous
notations, we place the unit point E of the frame R on the line, containing the point S and orthogonal to
the line SM . The points M , M0 have the coordinates (1 : −1 : m), m ∈ R, and (1 : −1 : 0), respectively. By
formulae (2.1), the point M ′ has the coordinates (−m : m : 1). Hence, for the cross-ratio (MM ′M0S) we
obtain

(MM ′M0S) =

∣∣∣∣ 1 m
1 0

∣∣∣∣ ∣∣∣∣ −m 1
0 1

∣∣∣∣∣∣∣∣ 1 m
0 1

∣∣∣∣ ∣∣∣∣ −m 1
1 0

∣∣∣∣ = −m2.

www.iejgeo.com 200

http://www.iej.geo.com


L. Romakina

Since (MM ′M0S) = −m2 < 0 for any m, the points M , M ′ are divided by the points M0, S. Consequently,
the points M , M ′ belong to different semivaliana of the point S. This completes the theorem proof.

3. Main Theorem on hyperbolic Raisa Orbits of the second order

Theorem 3.1. The family Θ of all hyperbolic Raisa Orbits of the second order in the plane H2 of curvature radius ρ,
ρ ∈ R+, possesses the following properties.

1. Each conic from Θ belongs to one of four conics types of the plane H2. These types are as follows: the bihyperbolas of
one sheet in Ĥ ; the hyperbolas; the hyperbolic parabolas of one sheet and two branches in Ĥ ; the elliptic cycles of radius
πρ/4.

2. The family of all bihyperbolas of one sheet in Ĥ (or all hyperbolas) defined exactly up to motions and belonging to
the family Θ, is one-parametric. Each conic from this family can be set in some canonical frame of the second type by the
equation

x2
3 + x1x2 + ax1x3 − (a+ 2)x2x3 = 0, a ∈ R, a 6= −1

(
x2

3 + x1x2 + a(x1x3 + x2x3) = 0, a ∈ R, |a| > 1
)
. (3.1)

All hyperbolic R-orbits from the hyperbolas family belong to the same class of hyperbolas.
3. The family Θ contains a unique hyperbolic parabola of one sheet and two branches in Ĥ and a unique elliptic cycle,

which are defined exactly up to motions. A hyperbolic parabola of one sheet and two branches in Ĥ (or elliptic cycle) from
Θ can be set in some canonical frame of the second type by the equation

x2
3 + x1x2 − 2x1x3 = 0,

(
x1x2 + x2

3 = 0
)
. (3.2)

Proof. Let non-degenerate conic σ of the plane H2 be invariant under hyperbolic inversion I with centre S. To
find all posible types of σ as an oval curve of the plane H2, we choose a canonical frame R = {A1, A2, S, E} of
the second type. The family U of all such frames depends on one parameter. Indeed, the point S is fixed. Hence,
its polar line A1A2 with respect to the absolute γ is fixed too. Moreover, by the frame definition, A1 ∈ γ, A2 ∈ γ.
Thus, the vertices A1 and A2 of the frame R are defined with exactly up the points order. The unit point E can
move along γ, that is, its position depends on one parameter. This parameter defines a frame in the family U .

If S lies in σ, then each line containing the point S, except for the tangent of the conic σ, has another point
from σ. Assume that a line t contains S and t ∩ σ = {S, V }, where V 6= S. The point V ′, where V ′ = I(V ), lies in
both the line t and the conic σ. Hence t contains three points from the conic σ. This is not possible because the
conic σ is non-degenerate. Thus, σ does not contain the point S(0 : 0 : 1). In that case, the conic σ can be given
in the frame R by the equation

3∑
i,j=1

aijxixi = 0, aij ∈ R, a33 = 1. (3.3)

Using the analytical expression (2.1) of the inversion I , we get the equation of a curve σ′, containing image
of the conic σ under I

a11x
2
1x

2
3 + a22x

2
2x

2
3 + x2

1x
2
2 + 2a12x1x2x

2
3 + 2a13x

2
1x2x3 + 2a23x1x

2
2x3 = 0. (3.4)

Since σ is invariant under I , the curve σ′ breaks down into a pair of conics, one of which is σ. Let σ′ = σ ∪ β,
where the conic β is given in R by the equation

3∑
i,j=1

bijxixi = 0, bij ∈ R. (3.5)

Comparing the product of quadric forms from Eqs. (3.3), (3.5) with the quadric form from Eq. (3.4) under the
condition a33 = 1, we obtain the following conditions for coefficients aij and bij :

a11 = a22 = 0, 2a12 = 1, b11 = b22 = b33 = b13 = b23 = 0, b12 6= 0.

Under these conditions the conic β has the equation x1x2 = 0 and is the pair of parabolic lines containing S.
The conic σ equation can be written in the form

x2
3 + x1x2 + ax1x3 + bx2x3 = 0, a, b ∈ R, ab 6= 1. (3.6)
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Denote the quadric form x2
3 + x1x2 + ax1x3 + bx2x3 from Eq. (3.6) by ϕ0(x1, x2, x3). The determinant of a

coordinate matrix of the form ϕ0(x1, x2, x3) is equal to (ab− 1)/4. Hence the condition ab 6= 1 guarantees the
nondegeneracy of the conic σ.

We investigate the hyperbolic R-orbit σ, considering all fundamentally different possibilities for coefficients
a, b from Eq. (3.6).

1. At first, we assume that the conic σ is given by Eq. (3.6), where ab 6= 0. Under this condition from Eqs.
(1.1), (3.6) we obtain coordinates of common points of the R-orbit σ and the absolute γ in R:

A1(1 : 0 : 0), Q1

(
b
(

1 +
√

1− ab
)

: a
(

1−
√

1− ab
)

: −ab
)
,

A2(0 : 1 : 0), Q2

(
b
(

1−
√

1− ab
)

: a
(

1 +
√

1− ab
)

: −ab
)
.

Note that the points A1, A2 are real, and under the conditions ab 6= 1, ab 6= 0 there are no matching points
in the set A1, A2, Q1, Q2. According to the nature of the points Q1, Q2 we distinguish the following cases.

(a) Assume that ab < 1. In this case the points Q1, Q2 are real. Consequently, σ has four real points from
the absolute. By the classification of oval curves of the plane Ĥ (see [14, 11]), the conic σ can be a
bihyperbola of one sheet or a bihyperbola of two sheets in Ĥ (see Figures 1a and 1b, respectively).
Among the diagonal points of a full quadrilateral with vertices at the common points of the absolute
and a bihyperbola of two sheets, there is a point which is interior both with respect to the absolute
and with respect to the bihyperbola. We use this fact to clarify the conic σ type. Let us consider the
full quadrilateral A1A2Q1Q2. Let A1A2 ∩Q1Q2 = A, A1Q1 ∩A2Q2 = B, and A1Q2 ∩A2Q1 = C. The
diagonal points A, B, C of the full quadrilateral A1A2Q1Q2 have the following coordinates in R:

A(b : −a : 0), B
(
b
(

1−
√

1− ab
)

: a
(

1−
√

1− ab
)

: −ab
)
,

C
(
b
(

1 +
√

1− ab
)

: a
(

1 +
√

1− ab
)

: −ab
)
.

Let K be a pole of the line A1A2 with respect σ. Since the points A1, A2 are real, the point K is an
exterior point with respect σ. Using coordinates (b : a : −1) of the point K, we find the following
inequalities for real coordinates (a1 : a2 : a3) of an arbitrary exterior (interior) point with respect to
the conic σ in the frame R under the condition ab < 1:

ϕ0(a1, a2, a3) > 0 (ϕ0(a1, a2, a3) < 0) . (3.7)

The quadric forms ϕ and ϕ0 on the coordinates of points A, B, C have the following expressions:

ϕ(A) = −ab, ϕ0(A) = −ab,

ϕ(B) = −2ab
√

1− ab
(

1−
√

1− ab
)
, ϕ0(B) = 2ab(1− ab)

(
1−
√

1− ab
)
,

ϕ(C) = 2ab
√

1− ab
(

1 +
√

1− ab
)
, ϕ0(C) = 2ab(1− ab)

(
1 +
√

1− ab
)
.

Using these expressions under the condition ab < 1, we proved the following inequalities:

ϕ(A)ϕ0(A) > 0, ϕ(B) < 0, ϕ0(B) > 0, ϕ(C)ϕ0(C) > 0. (3.8)

By virtue of the inequalities (1.3), (3.7), and (3.8), the following assertions hold:
1) the point A (or C) is interior with respect to the conic σ if and only if it is exterior with respect to
the absolute;
2) the point B is exterior with respect to the conic σ and with respect to the absolute.
Thus, none of the points A, B, C lie in the intersection of the interior domains of the conics γ and σ.
From this we conclude that under the conditions ab 6= 0, ab < 1 the conic σ is a bihyperbola of one
sheet in the plane Ĥ .
Note that Eq. (3.6) contains two parameters a, b, while the point E position depends on one
parameter. By fixing the point E, for example, at the point Q1, we obtain the condition b = −a− 2,
that is, we will reduce the number of parameters in Eq. (3.6) to one. After that, the frame R is
determined uniquely, and the conic σ can be set in R by the first equation from (3.1).
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(b) Assume that ab > 1. In this case the points Q1, Q2 are imaginary conjugate. Consequently, the conic
σ has two real and two imaginary points from the absolute. By the classification of oval curves of
the plane Ĥ , this means that the conic σ is a hyperbole (see Figure 1f ). The class of a hyperbola in
the plane Ĥ is defined by the position of poles of the line connecting the common real points of the
hyperbola and the absolute with respect to the absolute and with respect to the hyperbola. There are
nine classes of hyperbolas of the plane Ĥ (see [11, p. 44]).
Under the condition ab > 1 real coordinates (a1 : a2 : a3) of an arbitrary interior point with respect
to the conic σ satisfy the inequality ϕ0(a1, a2, a3) > 0. Hence the point S(0 : 0 : 1) lies in the interior
domain with respect σ. By virtue of the inequalities (1.3) and ab > 1, the point K(b : a : −1) lies in the
interior domain with respect γ. Therefore, all hyperbolic R-orbits from the hyperbolas family belong
to the same class of hyperbolas.

Note that Eq. (3.6) contains two parameters a, b under such condition that the point E position depends
on one parameter. By fixing the point E, for example, in the line SK, we obtain the condition a = b, that
is, we will reduce the number of parameters in Eq. (3.6) to one. After that, the frame R is determined
uniquely, and the conic σ can be set in R by the second equation from (3.1).

2. Now we assume that the conic σ is given by Eq. (3.6), where a 6= 0, b = 0. The case, when a = 0, b 6= 0,
gives a similar result because it can be obtained by permuting vertices A1, A2 of the frame R.

From Eqs. (1.1), (3.6) we find coordinates of common points of the R-orbit σ and the absolute:

A1(1 : 0 : 0), A2(0 : 1 : 0), Q
(
4 : a2 : −2a

)
, a 6= 0.

Since there are no matching points in the set A1, A2, Q, the conic σ is a hyperbolic parabola (see [14, p.
29]). Each hyperbolic parabola of the plane H2 belongs to one of three types (see Figures 1c, 1d, and 1e).
We refine the conic σ type, taking into account the number and nature of its common tangents with the
absolute.

In the case on consideration the tangential equation of the conic σ can be written in the form

a2X2
2 +X2

3 + 4X1X2 − 2aX2X3 = 0, a 6= 0. (3.9)

From the system of Eqs. (1.2), (3.9) we find common tangents of the conics σ and γ:

A2A3(1 : 0 : 0), l∗1
(
a2 : 8i : 4a(1 + i)

)
, l∗2

(
a2 : −8i : 4a(1− i)

)
.

Two of three common tangents of the conics σ and γ are imaginary. Hence the conic σ is a hyperbolic
parabola of one sheet and two branches in Ĥ .

By fixing the point E at the point Q, we obtain the condition a = −2, that is, we fix the last free parameter
a in Eq. (3.6) under b = 0. In this step, the frame R is fixed, and the conic σ can be set in R by the first
equation from (3.2).

3. Finally, we assume that the conic σ is given by Eq. (3.6), where a = b = 0. In this case, the conic σ is not
depend on the point E position and can be set by the second equation from (3.2). It is an elliptic cycle of
the plane H2 with centre S and radius πρ/4 (see [14, p. 39]).

We considered all possible cases and uncovered four types of hyperbolic second-order R-orbits in the plane
H2. This yields the first theorem assertion. In addition, for each conic under study we presented the canonical
frame in which the conic can be given by one of the equations from (3.1), (3.2). In each case, having regard to
the number of free parameters of the equations from (3.1), (3.2), we get the second and third assertions of the
theorem. Thus, the theorem is proved.

4. Visualization of stadied objects

In order to display the studied conics, we represent them in the plane E2 (see, for instance, [4, 17, 22]).
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Let the coordinate line A1A2 of the frame R be the absolute line of the plane E2. The absolute circle-points
J1 and J2 of E2 we give by coordinates (±i : 1 : 0). Under this agreement the following relations between the
Cartesian coordinates (x, y) and the projective coordinates (x1 : x2 : x3) of the same point hold

x =
x1

x3
, y =

x2

x3
. (4.1)

Using the relations (4.1), we move from Eqs. (1.1), (3.1), and (3.2) to the following equations of the absolute
γ and hyperbolic R-orbits in the Cartesian coordinates (x, y) corresponding to the frame R:

γ : xy − 1 = 0, (4.2)

xy + ax− (a+ 2)y + 1 = 0, a ∈ R, a 6= −1, (4.3)

xy + a(x+ y) + 1 = 0, a ∈ R, |a| > 1, (4.4)

xy − 2x+ 1 = 0, (4.5)

xy + 1 = 0. (4.6)

We construct images of the absolute and hyperbolic second-order R-orbits in the plane E2 through the
equations (4.2), (4.3), (4.4), (4.5), (4.6) in the Cartesian system corresponding to the frame R. The obtained
conics are shown in Figures 1a, 2a, 3a, and 4a. The interior domains with respect to the conics γ and σ are
highlighted.













a                                                                           b

Figure 2. Images of the absolute γ of the plane H2 and the hyperbolic second-order R-orbit σ with Eqs. (4.3) (a), (4.14) (b ), where a = 5, in E2. The conic σ is
a bihyperbola of one sheet.












a                                                                           b

Figure 3. Images of the absolute γ of the plane H2 and the hyperbolic second-order R-orbit σ with Eqs. (4.4) (a), (4.15) (b ), where a = 1.3, in E2. The conic σ is
a hyperbola.

To get the most informative images of the studied objects on the Euclidean plane E2, we will go to the
canonical frame R∗ of the first type. Let us obtain the formulae for transforming the coordinates of an arbitrary
point in the plane H2 which correspond to this transition.

Assume that the canonical frame R∗ = {A∗1, A∗2, A∗3, E∗) of the first type associated with the canonical frame
R = {A1, A2, A3, E) of the second type by the following conditions:

A∗1 = E21 = A1 −A2, A∗2 = A3, A∗3 = E12 = A1 +A2, E∗ = A2A3 ∩ EE21.
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













a                                                                           b



Figure 4. Images of the absolute γ of the plane H2 and the hyperbolic second-order R-orbit σ with Eqs. (4.5) (a), (4.16) (b ) in E2. The conic σ is a hyperbolic
parabola of one sheet and two branches.












a                                                                           b



Figure 5. Images of the absolute γ of the planeH2 and the hyperbolic second-orderR-orbit σ with Eqs. (4.6) (a), (4.17) (b ) inE2. The conic σ is an elliptic cycle.

Under these conditions the vertices and unit point of the frame R∗ have the following coordinates in the
frame R:

A∗1(1 : −1 : 0), A∗2(0 : 0 : 1), A∗3(1 : 1 : 0), E∗(2 : 0 : 1).

Consequently, the compatible matrix of the transition from R to R∗ can be written in the form: 1 0 1 2
−1 0 1 0
0 1 0 1

 . (4.7)

Denote the coordinates of an arbitrary point of the plane H2 in the frame R by (x1 : x2 : x3) and denote
the coordinates of the same point in the frame R∗ by (x∗1 : x∗2 : x∗3). Using the matrix (4.7), we get the desired
formulae of the coordinates transformation:

λx1 = x∗1 + x∗3, λx2 = −x∗1 + x∗3, λx3 = x∗2, λ ∈ R. (4.8)

Rewriting the equations of investigated conics from (3.1), (3.2) using the formulae (4.8), we obtain the
equations of these conics in the frame R∗:

− x2
1 + x2

2 + x2
3 + 2(a+ 1)x1x2 − 2x2x3 = 0, a ∈ R, a 6= −1, (4.9)

− x2
1 + x2

2 + x2
3 + 2ax2x3 = 0, a ∈ R, |a| > 1, (4.10)

− x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 = 0, (4.11)

− x2
1 + x2

2 + x2
3 = 0. (4.12)

Using the relations (4.1), we move from Eqs. (1.1), (4.9) – (4.12) to the following equations of the absolute γ
and hyperbolic R-orbits in the Cartesian coordinates (x, y) corresponding to the frame R∗:

γ : x2 + y2 = 1. (4.13)

x2 − y2 − 2(a+ 1)xy + 2y = 1, a ∈ R, a 6= −1, (4.14)

x2 − y2 − 2ay = 1, a ∈ R, |a| > 1, (4.15)
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x2 − y2 + 2xy + 2y = 1, (4.16)

x2 − y2 = 1. (4.17)

By applying the equations (4.13), (4.14), (4.15), (4.16), (4.17), we construct images of the absolute and
hyperbolic second-order R-orbits in the Cartesian system corresponding to the frame R∗. The obtained conics
are shown in Figures 1b, 2b, 3b, and 4b.
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