
Erzincan Üniversitesi Erzincan University 
Fen Bilimleri Enstitüsü Dergisi Journal of Science and Technology 
2021, 14(2), 422-433 2021, 14(2), 422-433 
ISSN: 1307-9085, e-ISSN: 2149-4584  DOI: 10.18185/erzifbed.904630 
Araştırma Makalesi Research Article 

 

 
*Corresponding Author: gulsahaydin@sdu.edu.tr 422 

 

Some Results for Bislant and Semi-Slant Submanifolds of Semi-Riemannian 
Manifolds 

 

Gülşah AYDIN ŞEKERCİ1* , A. Ceylan ÇÖKEN2  
 

1Süleyman Demirel University, Department of Mathematics, Isparta, 32260, Turkey 
2Akdeniz University, Department of Mathematics, Antalya, 07070, Turkey 

Geliş / Received: 28/03/2021, Kabul / Accepted: 11/06/2021 

Abstract 
This study looks into the bislant submanifolds of almost product semi-Riemannian manifolds that are 
Riemannian, semi-Riemannian and lightlike. We also state the theorems that provide the required conditions 
for constructing a slant submanifold from a bislant submanifold. Morever, we define the semi-slant 
submanifolds of locally product semi-Riemannian manifolds and discuss the integrability conditions of 
distributions, which are invariant or slant, that constitute a semi-slant submanifold. 
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Yarı-Riemannian Manifoldların Bislant ve Yarı-Slant Altmanifoldları İçin Bazı Sonuçlar 

Öz 
Bu çalışma hemen hemen çarpım yarı-Riemann manifoldların Riemann, yarı-Riemann ve ışıkbenzer olan 
bislant altmanifoldlarını incelemektedir. Ayrıca, bir bislant altmanifolddan bir slant altmanifold oluşturmak için 
gerekli koşulları sağlayan teoremleri ifade ediyoruz. Dahası, lokal çarpım yarı-Riemann manifoldlarının yarı-
slant altmanifoldlarını tanımlıyor ve yarı-slant bir altmanifold oluşturan değişmez veya slant dağılımların 
integrallenebilirlik koşullarını tartışıyoruz. 

Anahtar Kelimeler: Yarı-Riemann; Hemen hemen çarpım yapısı; Dejenere olmayan metric 

1. Introduction 

Almost product structure F for almost product Riemannian manifolds has been studied for a 
long time however Yano and Kon (1984)'s paper was the first definition given in the past. Yano 
and Kon's study was followed with a more detailed paper by Chen (1990). The geometry of 
slant submanifolds as a generalization of submanifolds for Kaehler manifolds was stated in 
Chen (1990) which leads new study fields. On almost Riemannian product manifolds; theory 
of slant and semi-slant submanifolds was presented by Şahin (2006). On locally product 
manifolds, Li and Liu (2010) studied slant, bislant, semi-slant submanifolds in their paper. 
Şahin (2008) also stated the slant submanifold for lightlike submanifolds of indefinite 
Hermitian manifolds. Moreover, Aydın and Çöken (2013) worked the almost product structure 
on semi-Riemannian manifold similarly to Yano and Kon (1984)'s study. According to that, let 
𝑀𝑀 be a 𝑛𝑛-dimensional manifold. 𝐹𝐹 is called an almost product semi-Riemannian structure on 
𝑀𝑀 if it is a tensor field of type (1,1) such that 𝐹𝐹2 = 𝐼𝐼,𝐹𝐹 ≠ 𝐼𝐼 where 𝐼𝐼 is the identity map and 𝑔𝑔 
provides the condition 𝑔𝑔(𝐹𝐹𝑿𝑿,𝒀𝒀) = 𝑔𝑔(𝑿𝑿,𝐹𝐹𝒀𝒀), for any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝑇𝑇𝑀𝑀) where 𝑔𝑔 is a semi-
Riemannian metric tensor. Therefore, 𝑀𝑀 is an almost product semi-Riemannian manifold with 
almost product semi-Riemannian structure. Also, 𝑀𝑀 is a locally product manifold if 𝛻𝛻𝐹𝐹 = 0 
where 𝛻𝛻 is the Levi-Civita connection on 𝑀𝑀 (Li and Liu, 2010).  

The aim of this study depends on the possible three situations related of semi-Riemannian 
manifolds which are Riemannian, semi-Riemannian and lightlike submanifolds. It determines 
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the slant distributions, bislant submanifolds and semi-slant submanifolds for each mentioned 
situation. In preliminaries part of this study, some definitions and formulas for almost product 
semi-Riemannian manifolds are given. On the next part, which also includes the results and 
discussion, the definitions of slant distributions in these manifolds are introduced. Following 
these definitions, we describe bislant submanifolds, which are general statements of slant 
submanifolds, for almost product semi-Riemannian manifold. Furthermore, the necessary and 
sufficient conditions to do slant submanifold from bislant submanifolds are presented. In 
addition to these investigations, we also study to evolve some exercises about the bislant 
submanifolds. Moreover, the semi-slant submanifolds of locally product semi-Riemannian 
manifolds are defined, and the integrability conditions of invariant or slant distributions that 
make up a semi-slant submanifold are reviewed. 

2. Preliminaries 

The slant submanifolds on almost product semi- Riemannian manifolds are given by the 
following three situations since the submanifolds of semi-Riemannian manifold M are 
Riemannian, semi- Riemannian or lightlike manifolds. Therefore the slant submanifolds are 
investigated for each situation. 

Definition 2.1. Let Riemannian manifold 𝑀𝑀 be an immersed submanifold of almost product 
semi-Riemannian manifold 𝑀𝑀 and 𝜃𝜃(𝑥𝑥) be the angle between 𝐹𝐹𝑿𝑿 and 𝑿𝑿 for any 𝑥𝑥 ∈ 𝑀𝑀,𝑿𝑿 ∈
𝑇𝑇𝑥𝑥𝑀𝑀 where 𝐹𝐹 is an almost product structure. If 𝜃𝜃(𝑥𝑥) is constant, then it is called the slant angle. 
Hence, 𝑀𝑀 is a slant Riemannian submanifold of 𝑀𝑀 (Aydın and Çöken, 2013). 
 

We have 𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀 ⊥ 𝑇𝑇𝑀𝑀
⊥

 since 𝑀𝑀 is a Riemannian manifold. For any 𝑿𝑿 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀�, we have 
F𝑿𝑿 = f𝑿𝑿 + w𝑿𝑿 where f𝑿𝑿 and w𝑿𝑿 are tangent and normal components of vector field F𝑿𝑿, 

respectively. For any 𝑽𝑽 ∈ 𝛤𝛤 �𝑇𝑇𝑀𝑀
⊥
�, we have F𝑽𝑽 = B𝑽𝑽 + C𝑽𝑽 where 𝐵𝐵𝑽𝑽 and C𝑽𝑽 are tangent and 

normal components of vector field F𝑽𝑽, respectively. Then the Gauss-Weingarten formulas are 
given by    

∇𝑿𝑿𝒀𝒀 = ∇𝑿𝑿𝒀𝒀 + ℎ(𝑿𝑿,𝒀𝒀) 

∇𝑿𝑿𝑽𝑽 = −A𝑽𝑽𝑿𝑿 + ∇
⊥
𝑿𝑿𝑽𝑽 

for any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀� and 𝑽𝑽 ∈ 𝛤𝛤 �𝑇𝑇𝑀𝑀
⊥
�, where ∇

⊥
 is a connection in the normal bundle, ℎ is 

a second fundamental form of 𝑀𝑀 and A𝑽𝑽 is a Weingarten endomorphism associated with 𝑽𝑽 (Li 
and Liu, 2010). 

Let us give the slant submanifold when the submanifold is a semi-Riemannian manifold. 
Assume that the semi-Riemannian manifold 𝑀𝑀 with 𝑛𝑛-dimension is an immersed submanifold 
of manifold 𝑀𝑀. We show the basis of 𝑇𝑇𝑀𝑀 by {𝒖𝒖𝟏𝟏,𝒖𝒖𝟐𝟐, . . . ,𝒖𝒖𝒏𝒏}. The set of 𝑞𝑞-timelike vector fields 
is given by �𝒖𝒖𝟏𝟏,𝒖𝒖𝟐𝟐, . . . ,𝒖𝒖𝒒𝒒� and the set of 𝑝𝑝-spacelike vector fields is given by 

�𝒖𝒖𝒒𝒒+𝟏𝟏,𝒖𝒖𝒒𝒒+𝟐𝟐, . . . ,𝒖𝒖𝒏𝒏�. In this situation, for 𝑞𝑞 < 𝑝𝑝, 𝒇𝒇𝒊𝒊 and 𝒇𝒇𝒊𝒊∗ are defined by 𝒇𝒇𝒊𝒊 = 𝒖𝒖𝒊𝒊+𝒖𝒖𝒒𝒒+𝒊𝒊
√2

, 

𝒇𝒇𝒊𝒊∗ = 𝒖𝒖𝒊𝒊−𝒖𝒖𝒒𝒒+𝒊𝒊
√2  which prove conditions as following: 

g�𝒇𝒇𝒊𝒊,𝒇𝒇𝒋𝒋� = g�𝒇𝒇𝒊𝒊∗,𝒇𝒇𝒋𝒋∗� = 0, 
g�𝒇𝒇𝒊𝒊,𝒇𝒇𝒋𝒋∗� = 𝛿𝛿𝑖𝑖𝑖𝑖, 𝑖𝑖, j ∈ {1,2, . . . , 𝑞𝑞}. 
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The basis of 𝑇𝑇𝑀𝑀 is described by �𝒇𝒇𝟏𝟏, . . . ,𝒇𝒇𝒒𝒒,𝒇𝒇𝟏𝟏∗ , . . . , 𝒇𝒇𝒒𝒒∗ ,𝒖𝒖𝟐𝟐𝒒𝒒+𝟏𝟏, . . . ,𝒖𝒖𝒑𝒑+𝒒𝒒�. Let 𝐷𝐷 is a distribution 
which consists of vector fields �𝒇𝒇𝟏𝟏, . . . ,𝒇𝒇𝒒𝒒�, 𝐷𝐷∗ is a distribution which consists of vector fields 
�𝒇𝒇𝟏𝟏∗ , . . . ,𝒇𝒇𝒒𝒒∗ � and 𝐷𝐷′ is a distribution which consists of vector fields �𝒖𝒖𝟐𝟐𝒒𝒒+𝟏𝟏, . . . ,𝒖𝒖𝒑𝒑+𝒒𝒒�. So, there 

exists  𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′. Similarly, for 𝑞𝑞 > 𝑝𝑝, 𝒇𝒇𝑖𝑖 and 𝒇𝒇𝑖𝑖∗ are defined by 𝒇𝒇𝒊𝒊 = 𝒖𝒖𝒊𝒊+𝒖𝒖𝒒𝒒+𝒊𝒊
√2

, 

𝒇𝒇𝒊𝒊∗ = 𝒖𝒖𝒊𝒊−𝒖𝒖𝒒𝒒+𝒊𝒊
√2  which prove conditions as following 

g�𝒇𝒇𝒊𝒊, 𝒇𝒇𝒋𝒋� = g�𝒇𝒇𝒊𝒊∗,𝒇𝒇𝒋𝒋∗� = 0, 
g�𝒇𝒇𝒊𝒊, 𝒇𝒇𝒋𝒋∗� = 𝛿𝛿𝑖𝑖𝑖𝑖, 𝑖𝑖, j ∈ {1,2, . . . , 𝑝𝑝}. 

 

Thereby, the basis of 𝑇𝑇𝑀𝑀 is described by �𝒇𝒇𝟏𝟏, . . . ,𝒇𝒇𝒑𝒑,𝒇𝒇𝟏𝟏∗ , . . . , 𝒇𝒇𝒑𝒑∗ ,𝒖𝒖𝒑𝒑+𝟏𝟏, . . . ,𝒖𝒖𝒒𝒒�. Let 𝐷𝐷 is a 
distribution which consists of vector fields �𝒇𝒇𝟏𝟏, . . . ,𝒇𝒇𝒑𝒑�, 𝐷𝐷∗ is a distribution which consists of 
vector fields �𝒇𝒇𝟏𝟏∗ , . . . ,𝒇𝒇𝒑𝒑∗ � and 𝐷𝐷′ is a distribution which consists of vector fields �𝒖𝒖𝒑𝒑+𝟏𝟏, . . . ,𝒖𝒖𝒒𝒒�. 
So, we write again that  𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′ (Duggal and Bejancu, 1996). 
 
Definition 2.2. Let semi-Riemannian manifold 𝑀𝑀 be an immersed submanifold of almost 
product semi-Riemannian manifold 𝑀𝑀. For any 𝑥𝑥 ∈ 𝑀𝑀,𝑿𝑿 ∈ 𝛤𝛤� 𝐷𝐷′�, 𝑀𝑀 is a slant semi-
Riemannian submanifold of 𝑀𝑀 if and only if the angle 𝜃𝜃 between 𝑿𝑿 and F𝑿𝑿 is constant where F 
is an almost product structure (Aydın and Çöken, 2013). 
 
Now, we can give the slant submanifolds for lightlike submanifolds. Let the lightlike manifold 
𝑀𝑀 be an immersed submanifold of 𝑀𝑀. We could not write that 𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀 ⊥ 𝑇𝑇𝑀𝑀

⊥ since the 
manifold 𝑀𝑀 is not nondegenerate. In this situation, we benefit from transversal bundle. Then, 
we have 

𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀⊕ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀�  
where 𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀� is a transversal bundle. Morever, we have 

𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ 𝑆𝑆�𝑇𝑇𝑀𝑀�  
where 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 is a radical bundle of 𝑇𝑇𝑀𝑀, 𝑆𝑆�𝑇𝑇𝑀𝑀� is a screen bundle of 𝑇𝑇𝑀𝑀 and is nondegenerate 
since 𝑀𝑀 is a lightlike manifold. Thus, we have 

𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ �F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 ⊥ 𝐷𝐷′′�  

where if 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ∩ F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 = {0} and F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 is on 𝑆𝑆�𝑇𝑇𝑀𝑀�, then 𝐷𝐷′′ is a complementary 
distribution to F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 on 𝑆𝑆�𝑇𝑇𝑀𝑀�. We obtain that 

𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ 𝑆𝑆�𝑇𝑇𝑀𝑀�⊕ 𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀�.  
Although 𝑇𝑇𝑀𝑀 is a semi-Euclidean space, the metric tensor g on 𝑀𝑀 can be degenerate since 
𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 consists of lightlike vector fields. We benefit from lightlike transversal bundle to 
remove this situation and we obtain  
 

𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ 𝑆𝑆�𝑇𝑇𝑀𝑀�⊕ �𝑙𝑙𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀� ⊥ 𝐷𝐷′�  
 
where 𝑙𝑙𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀� is a lightlike transversal bundle, 𝐷𝐷′ is a complementary distribution to 𝑙𝑙𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀� 
on 𝑡𝑡𝑡𝑡�𝑇𝑇𝑀𝑀� and is a semi-Riemannian distribution. Thus, we describe slant lightlike 
submanifold as following (Duggal and Bejancu, 1996; Aydın and Çöken, 2013). 
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Definition 2.3. Let lightlike manifold 𝑀𝑀 be an immersed submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. 𝑀𝑀 is a slant lightlike submanifold of 𝑀𝑀 if the following conditions 
provide that; 
 
(𝑖𝑖) F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ∩ 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 = {0}, 
(𝑖𝑖𝑖𝑖) For any 𝑥𝑥 ∈ 𝑀𝑀,𝑿𝑿 ∈ 𝛤𝛤�𝐷𝐷′′�, the angle 𝜃𝜃 between 𝑿𝑿 and F𝑿𝑿 is constant where 𝐷𝐷′′ is a 
complementary semi-Riemannian distribution to F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 on  𝑆𝑆�𝑇𝑇𝑀𝑀� and      F𝑿𝑿 ∈
𝛤𝛤�𝑇𝑇𝑀𝑀� (Aydın and Çöken, 2013). (see Şahin (2008)  for indefinite Hermitian manifolds) 
 
3. Bislant and semi-slant submanifolds 

In this section, we study the slant distributions, the bislant submanifolds and semi-slant 
submanifolds by using the slant submanifolds. 
 
Let 𝑀𝑀 be a Riemannian submanifold of almost product semi-Riemannian manifold 𝑀𝑀. We have 

𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀⊕ 𝑇𝑇𝑀𝑀
⊥

 and we state the slant distribution as following: 
 
Definition 3.1. Let 𝑀𝑀 be an immersed Riemannian submanifold of 𝑀𝑀 and 𝐷𝐷 be a distribution 
on 𝑀𝑀. 𝐷𝐷 is a slant distribution on 𝑀𝑀 if the angle θ(𝑥𝑥) between 𝑿𝑿 and F𝑿𝑿 is constant for any 
𝑥𝑥 ∈ 𝑀𝑀,𝑿𝑿 ∈ 𝐷𝐷𝑥𝑥.  
 
This situation is different when 𝑀𝑀 is semi-Riemannian manifold. Using the decompositions 

𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀⊕ 𝑇𝑇𝑀𝑀
⊥

 and  𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′, we describe the slant distribution as following: 
 
Definition 3.2. Let 𝑀𝑀 be an immersed semi-Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. Assume that the distribution 𝐷𝐷 exists on distribution 𝐷𝐷′. Then, the 
distribution 𝐷𝐷 is slant distribution on 𝑀𝑀 if the angle θ(𝑥𝑥) between 𝑿𝑿 and F𝑿𝑿 is constant for any 
𝑥𝑥 ∈ 𝑀𝑀,𝑿𝑿 ∈ 𝐷𝐷𝑥𝑥. 
 
Similarly, we describe the slant distribution from 𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ �F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 ⊥
𝐷𝐷′′� when 𝑀𝑀 is the lightlike manifold. 
 
Now, we give the definition of bislant submanifolds according to structure of submanifold and 
we investigate the necessary conditions to obtain the slant submanifold from bislant 
submanifold. 
 
Definition 3.3. Let 𝑀𝑀 be an immersed Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. Then, 𝑀𝑀 is called a bislant Riemannian submanifold if it provides the 
following conditions: 
 
(𝑖𝑖) There is orthogonal direct decomposition 𝑇𝑇𝑀𝑀 = (𝐷𝐷1 ⊕ 𝐷𝐷2) where 𝐷𝐷1 and 𝐷𝐷2 are the 
distributions on 𝑀𝑀. 
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(𝑖𝑖𝑖𝑖)  𝐷𝐷1 and 𝐷𝐷2 are the distributions with  angles 𝜃𝜃1 and 𝜃𝜃2, respectively (see Li and Liu (2010) 
for locally Riemannian manifold). 
 
In this case, we have the following theorem. 
 
Theorem 3.4. Let 𝑀𝑀 be an immersed Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀 and g be the metric tensor on 𝑀𝑀. Assume that 𝑀𝑀 is a bislant 
submanifold with slant angle 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃. 𝑀𝑀 is a slant submanifold with slant angle 𝜃𝜃 if 
g(F𝑿𝑿,𝒀𝒀) = 0 for any 𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1), 𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2). 
Proof. Assume that g(F𝑿𝑿,𝒀𝒀) = 0 for any  𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) and 𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2). In this case, we get 

g(f𝑿𝑿 + w𝑿𝑿,𝒀𝒀) = 0  
where f𝑿𝑿 is the tangent component of F𝑿𝑿 and w𝑿𝑿 is the normal component of F𝑿𝑿. For  𝒀𝒀 ∈

𝛤𝛤(𝐷𝐷2), we have 𝒀𝒀 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀�. So, g(w𝑿𝑿,𝒀𝒀) = 0 is from w𝑿𝑿 ∈ 𝛤𝛤 �𝑇𝑇𝑀𝑀
⊥
�. Thus, we find that 

g(f𝑿𝑿,𝒀𝒀) = 0. We obtain f𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) from f𝑿𝑿 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀� and 𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2) since f𝑿𝑿 and 𝒀𝒀 are 
orthogonal. Also, for any  𝑿𝑿 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀�, we get 𝑿𝑿 = P1𝑿𝑿 + P2𝑿𝑿 where P1𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) and P2𝑿𝑿 ∈
𝛤𝛤(𝐷𝐷2). Besides, the angle 𝜃𝜃1 between vector fields fP1𝑿𝑿 and FP1𝑿𝑿 is equal to 𝜃𝜃 because 𝐷𝐷1 is 
the slant distribution with the slant angle 𝜃𝜃1 = 𝜃𝜃. We obtain  

cos2 𝜃𝜃 =
‖fP1𝑿𝑿‖2

‖FP1𝑿𝑿‖2
  

from FP1𝑿𝑿 = fP1𝑿𝑿 + wP1𝑿𝑿. Similarly, we also obtain for the distribution 𝐷𝐷2 that 

cos2 𝜃𝜃 =
‖fP2𝑿𝑿‖2

‖FP2𝑿𝑿‖2
.  

So, we have 

g(f𝑿𝑿, f𝑿𝑿)
g(F𝑿𝑿, F𝑿𝑿)

 =
g(fP1𝑿𝑿+ fP2𝑿𝑿, fP1𝑿𝑿 + fP2𝑿𝑿)

g(FP1𝑿𝑿 + FP2𝑿𝑿, FP1𝑿𝑿+ FP2𝑿𝑿)
 

 

 
=

g(fP1𝑿𝑿, fP1𝑿𝑿) + g(fP2𝑿𝑿, fP2𝑿𝑿)
g(FP1𝑿𝑿, FP1𝑿𝑿) + g(FP2𝑿𝑿, FP2𝑿𝑿)

 
 

 
=
‖FP1𝑿𝑿‖2 cos2 𝜃𝜃 + ‖FP2𝑿𝑿‖2 cos2 𝜃𝜃

‖FP1𝑿𝑿‖2 + ‖FP2𝑿𝑿‖2
 

 

 = cos2 𝜃𝜃.  
 
Thereby, 𝑀𝑀 is the slant submanifold with slant angle 𝜃𝜃. ■ 
 
The definition of bislant submanifold is different when 𝑀𝑀 is the semi-Riemannian submanifold. 
The reason for this, semi-Riemannian submanifold 𝑀𝑀 has 𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′ where, for 
𝑞𝑞 < 𝑝𝑝, 𝐷𝐷 is the distribution which is composed by �𝒇𝒇𝟏𝟏, . . . , 𝒇𝒇𝒒𝒒�, 𝐷𝐷∗ is the distribution which is 
composed by �𝒇𝒇𝟏𝟏∗ , . . . ,𝒇𝒇𝒒𝒒∗ �, 𝐷𝐷

′ is the distribution which is composed by �𝒖𝒖𝟐𝟐𝒒𝒒+𝟏𝟏, . . . ,𝒖𝒖𝒑𝒑+𝒒𝒒� and, 
for 𝑞𝑞 > 𝑝𝑝, 𝐷𝐷 is the distribution which is composed by �𝒇𝒇𝟏𝟏, . . . ,𝒇𝒇𝒑𝒑�, 𝐷𝐷∗ is the distribution which 
is composed by �𝒇𝒇𝟏𝟏∗ , . . . , 𝒇𝒇𝒑𝒑∗ �, 𝐷𝐷

′ is the distribution which is composed by �𝒖𝒖𝒑𝒑+𝟏𝟏, . . . ,𝒖𝒖𝒒𝒒�. 
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Definition 3.5. Let 𝑀𝑀 be an immersed semi-Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. In this case, 𝑀𝑀 is a bislant semi-Riemannian submanifold if it provides 
the following conditions. 
 
(𝑖𝑖) There is 𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′ for 𝑀𝑀 and 𝐷𝐷′ has an orthogonal direct decomposition such 
that 𝐷𝐷′ = 𝐷𝐷1 ⊕ 𝐷𝐷2 where 𝐷𝐷1 and 𝐷𝐷2 are the distributions on 𝑀𝑀. 
(𝑖𝑖𝑖𝑖) 𝐷𝐷1 and 𝐷𝐷2 are the distributions with slant angle 𝜃𝜃1 and 𝜃𝜃2, respectively. 
 
Thus, obtaining the slant submanifold from bislant submanifold on semi-Riemannian manifolds 
is different from Riemannian manifolds. 
 
Theorem 3.6. Let 𝑀𝑀 be an immersed semi-Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀, g be the metric tensor on 𝑀𝑀 and 𝑀𝑀 be the bislant semi-Riemannian 
submanifold with slant angle    𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃. Then, 𝑀𝑀 is the slant semi-Riemannian submanifold 
with slant angle 𝜃𝜃 if g(F𝑿𝑿,𝒀𝒀) = 0 and f𝑿𝑿 ∈ 𝐷𝐷′ for any  𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1),𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2). 
 
Proof. We have 𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′ since 𝑀𝑀 is the semi-Riemannian manifold. Let P1, P2, Q 
are projection functions on 𝐷𝐷,𝐷𝐷∗,𝐷𝐷′, respectively.  Q1, Q2 are the projection functions on 
𝐷𝐷1,𝐷𝐷2, respectively, since we have the orthogonal direct decomposition 𝐷𝐷′ = 𝐷𝐷1 ⊕𝐷𝐷2. 
 
Assume that f𝑿𝑿 ∈ 𝐷𝐷′ and g(F𝑿𝑿,𝒀𝒀) = 0 for any 𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) and 𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2). In that case, we get 

g(f𝑿𝑿 + w𝑿𝑿,𝒀𝒀) = 0  
where f𝑿𝑿 is the tangent component of F𝑿𝑿 and w𝑿𝑿 is the normal component of F𝑿𝑿. For  𝒀𝒀 ∈

𝛤𝛤(𝐷𝐷2), we have 𝒀𝒀 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀�. So, g(w𝑿𝑿,𝒀𝒀) = 0 is from w𝑿𝑿 ∈ 𝛤𝛤 �𝑇𝑇𝑀𝑀
⊥
�. Thus, we find that 

g(f𝑿𝑿,𝒀𝒀) = 0 and we have  f𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) from f𝑿𝑿 ∈ 𝛤𝛤�𝐷𝐷′�. 
 
For any 𝑥𝑥 ∈ 𝑀𝑀 and 𝑿𝑿 ∈ 𝛤𝛤�𝐷𝐷′�, we will investigate whether 𝑀𝑀 is slant submanifold or not. 
Then, Q𝑿𝑿 ∈ 𝛤𝛤�𝐷𝐷′� for any 𝑿𝑿 ∈ 𝛤𝛤�𝑇𝑇𝑀𝑀�. We obtain that Q𝑿𝑿 = Q1𝑿𝑿 + Q2𝑿𝑿 where Q1𝑿𝑿 ∈
𝛤𝛤(𝐷𝐷1) and Q2𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷2). Let 𝑞𝑞 < 𝑝𝑝 where 𝑞𝑞 is the number of timelike vector fields on 𝑇𝑇𝑀𝑀 and 
𝑝𝑝 is the number of spacelike vector fields on 𝑇𝑇𝑀𝑀. We have 

cos2 𝜃𝜃 =
‖fQ1𝑿𝑿‖2

‖FQ1𝑿𝑿‖2
  

since 𝐷𝐷1 is the slant distribution with  slant angle 𝜃𝜃1 = 𝜃𝜃. In addition to, we get 

cos2 𝜃𝜃 =
‖fQ2𝑿𝑿‖2

‖FQ2𝑿𝑿‖2
  

since 𝐷𝐷2 is the slant distribution with slant angle 𝜃𝜃2 = 𝜃𝜃. Then, we obtain that 
 

g(fQ𝑿𝑿, fQ𝑿𝑿)
g(FQ𝑿𝑿, FQ𝑿𝑿)

 =
g(fQ1𝑿𝑿 + fQ2𝑿𝑿, fQ1𝑿𝑿 + fQ2𝑿𝑿)

g(FQ1𝑿𝑿 + FQ2𝑿𝑿, FQ1𝑿𝑿 + FQ2𝑿𝑿)
 
 

 
=

g(fQ1𝑿𝑿, fQ1𝑿𝑿) + g(fQ2𝑿𝑿, fQ2𝑿𝑿)
g(FQ1𝑿𝑿, FQ1𝑿𝑿) + g(FQ2𝑿𝑿, FQ2𝑿𝑿)

 
 

 
=

cos2 𝜃𝜃 g(FQ1𝑿𝑿, FQ1𝑿𝑿) + cos2 𝜃𝜃 g(FQ2𝑿𝑿, FQ2𝑿𝑿)
g(FQ1𝑿𝑿, FQ1𝑿𝑿) + g(FQ2𝑿𝑿, FQ2𝑿𝑿)  



Some Results for Bislant and Semi-Slant Submanifolds of Semi-Riemannian Manifolds  

 
 428 

 

 = cos2 𝜃𝜃.  
Let 𝑞𝑞 > 𝑝𝑝. We state that 

cosh2 𝜃𝜃 =
‖fQ1𝑿𝑿‖2

‖FQ1𝑿𝑿‖2
 

since 𝐷𝐷1 is the slant distribution with slant angle 𝜃𝜃1 = 𝜃𝜃. In addition to, we have 

cosh2 𝜃𝜃 =
‖fQ2𝑿𝑿‖2

‖FQ2𝑿𝑿‖2
  

since 𝐷𝐷2 is the slant distribution with slant angle 𝜃𝜃2 = 𝜃𝜃. Then, we obtain that 
 

g(fQ𝑿𝑿, fQ𝑿𝑿)
g(FQ𝑿𝑿, FQ𝑿𝑿)

 

 

=
g(fQ1𝑿𝑿 + fQ2𝑿𝑿, fQ1𝑿𝑿 + fQ2𝑿𝑿)

g(FQ1𝑿𝑿 + FQ2𝑿𝑿, FQ1𝑿𝑿 + FQ2𝑋𝑋)
 

 

 
=

g(fQ1𝑿𝑿, fQ1𝑿𝑿) + g(fQ2𝑿𝑿, fQ2𝑿𝑿)
g(FQ1𝑿𝑿, FQ1𝑿𝑿) + g(FQ2𝑿𝑿, FQ2𝑿𝑿)

 
 

 
=

cosh2 𝜃𝜃 g(FQ1𝑿𝑿, FQ1𝑿𝑿) + cosh2 𝜃𝜃 g(FQ2𝑿𝑿, FQ2𝑿𝑿)
g(FQ1𝑿𝑿, FQ1𝑿𝑿) + g(FQ2𝑿𝑿, FQ2𝑿𝑿)  

 = cosh2 𝜃𝜃.  
Thereby, 𝑀𝑀 is the slant semi-Riemannian submanifold with slant angle 𝜃𝜃. ■ 
 
Example 3.7. Let 𝑀𝑀 be a submanifold which is immersed of  ℝ2

8 = ℝ2
4 × ℝ4 and the basis of 

𝑇𝑇𝑀𝑀 is given by the following vector fields: 
 
𝑿𝑿1 = (0,1,0,0,0,0,0,0), 
𝑿𝑿2 = (−1,0,1,1,0,0,3,0), 
𝑿𝑿3 = �0,0,1,−1,3√2, 0,0,0�, 
𝑿𝑿4 = �1,0,1,1,0,2√2, 1,0�, 
𝑿𝑿5 = (0,0,0,0,0,0,0,1). 
 

Here, the signature of metric tensor g is given by (−,−, +, +, +, +, +, +) and 𝐹𝐹 � 𝝏𝝏
𝝏𝝏𝒙𝒙𝒊𝒊
� = − 𝝏𝝏

𝝏𝝏𝒙𝒙𝒊𝒊
, 

for 𝑖𝑖 = 1, 2, 3, 4,  𝐹𝐹 � 𝝏𝝏
𝝏𝝏𝒙𝒙𝒋𝒋
� = 𝝏𝝏

𝝏𝝏𝒙𝒙𝒋𝒋
, for 𝑗𝑗 = 5, 6, 7, 8 where F is an almost product semi-

Riemannian structure. According to that, 𝑝𝑝 = 4 and 𝑞𝑞 = 1. So, we obtain 

𝒇𝒇1 =
𝑿𝑿𝟏𝟏 + 𝑿𝑿𝟓𝟓
√2

=
1
√2

(0,1,0,0,0,0,0,1), 

𝒇𝒇𝟏𝟏∗ =
𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟓𝟓
√2

=
1
√2

(0,1,0,0,0,0,0,−1). 

Then, the distribution 𝐷𝐷 is denoted by {𝒇𝒇1} and the distribution 𝐷𝐷∗ is denoted by {𝒇𝒇𝟏𝟏∗ }. Also, we 
assume that 𝐷𝐷1 = 𝑆𝑆𝑝𝑝{𝑿𝑿𝟐𝟐,𝑿𝑿𝟑𝟑} and 𝐷𝐷2 = 𝑆𝑆𝑝𝑝{𝑿𝑿𝟒𝟒}. In this case, we have 

g(𝑿𝑿𝟐𝟐, F𝑿𝑿𝟐𝟐) = ‖𝑿𝑿2‖‖F𝑿𝑿2‖ cos𝛽𝛽1 
8 = 10 cos𝛽𝛽1 

cos𝛽𝛽1 = 4
5

 

  
where F is an almost product semi-Riemannian structure. Morever, we obtain 

g(𝑿𝑿3, F𝑿𝑿3) = ‖𝑿𝑿3‖‖F𝑿𝑿3‖ cos𝛽𝛽2 
16 = 20 cos𝛽𝛽2 
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cos𝛽𝛽2 = 4
5

 

So, 𝐷𝐷1 is the slant distribution with slant angle 𝛽𝛽 = cos−1 �4
5
�. On the other hand, we obtain  

g(𝑿𝑿4, F𝑿𝑿4) = ‖𝑿𝑿4‖‖F𝑿𝑿4‖ cos𝜙𝜙 
8 = 10 cos𝜙𝜙 

cos𝜙𝜙 = 4
5

 

Also, 𝐷𝐷2 is the slant distribution with slant angle 𝜙𝜙 = cos−1 �4
5
�. 𝑀𝑀 is a bislant submanifold. 

Besides, 𝑀𝑀 is a slant submanifold from g(F𝑿𝑿2,𝑿𝑿4) = 0 and g(F𝑿𝑿3,𝑿𝑿4) = 0. Also, if we have 
𝐷𝐷2 = 𝑆𝑆𝑝𝑝{𝑿𝑿4} and 𝑿𝑿4 = �0,1,1,√2, 2√2, 3,1,0�, then 𝑀𝑀 is not a slant submanifold from 
g(F𝑿𝑿2,𝑿𝑿4) ≠ 0 and g(F𝑿𝑿3,𝑿𝑿4) ≠ 0. 
 
Example 3.8. Let 𝑀𝑀 = (ℝ6

8,𝑔𝑔) = (ℝ4
4 × ℝ2

4, g) be a semi-Riemannian manifold. Assume that 

the signature of metric tensor g is given by (−,−,−,−,−,−, +, +) and � 𝝏𝝏
𝝏𝝏𝒙𝒙𝟏𝟏

, 𝝏𝝏
𝝏𝝏𝒙𝒙𝟐𝟐

, … , 𝝏𝝏
𝝏𝝏𝒙𝒙𝟖𝟖
� is the 

basis of 𝑇𝑇𝑀𝑀. Also, the tangent bundle of 𝑀𝑀, which is the submanifold of ℝ6
8, is spanned by the 

following vector fields. 
 

𝑿𝑿𝟏𝟏 = 
𝝏𝝏
𝝏𝝏𝒙𝒙𝟏𝟏

,  

𝑿𝑿2 = 
𝝏𝝏
𝝏𝝏𝒙𝒙𝟖𝟖

,  

𝑿𝑿3 = 
𝝏𝝏
𝝏𝝏𝒙𝒙𝟐𝟐

+ cos 𝜃𝜃
𝝏𝝏
𝝏𝝏𝒙𝒙𝟑𝟑

+ sin𝜃𝜃
𝝏𝝏
𝝏𝝏𝒙𝒙𝟒𝟒

+ 2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟓𝟓

+ √2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟕𝟕

,  

𝑿𝑿4 = 2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟐𝟐

+ sin𝜃𝜃
𝝏𝝏
𝝏𝝏𝒙𝒙𝟑𝟑

− cos 𝜃𝜃
𝝏𝝏
𝝏𝝏𝒙𝒙𝟒𝟒

− 3
𝝏𝝏
𝝏𝝏𝒙𝒙𝟓𝟓

+ 2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟕𝟕

 , 

𝑿𝑿5 = 
𝝏𝝏
𝝏𝝏𝒙𝒙𝟐𝟐

+
𝝏𝝏
𝝏𝝏𝒙𝒙𝟑𝟑

+
𝝏𝝏
𝝏𝝏𝒙𝒙𝟒𝟒

+ 2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟓𝟓

+ 2
𝝏𝝏
𝝏𝝏𝒙𝒙𝟔𝟔

+ √5
𝝏𝝏
𝝏𝝏𝒙𝒙𝟕𝟕

,  

𝑿𝑿6 = 
𝝏𝝏
𝝏𝝏𝒙𝒙𝟐𝟐

− √5
𝝏𝝏
𝝏𝝏𝒙𝒙𝟓𝟓

+ √5
𝝏𝝏
𝝏𝝏𝒙𝒙𝟔𝟔

+ 3
𝝏𝝏
𝝏𝝏𝒙𝒙𝟕𝟕

.  

 
In this situation, 𝑝𝑝 = 1 and 𝑞𝑞 = 5. Then, we obtain  
 

𝒇𝒇1 =
𝑿𝑿𝟏𝟏 + 𝑿𝑿𝟐𝟐
√2

=
1
√2

�
𝝏𝝏
𝝏𝝏𝒙𝒙𝟏𝟏

+
𝝏𝝏
𝝏𝝏𝒙𝒙𝟖𝟖

� 

 

𝒇𝒇𝟏𝟏∗ =
𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐
√2

=
1
√2

�
𝝏𝝏
𝝏𝝏𝒙𝒙𝟏𝟏

−
𝝏𝝏
𝝏𝝏𝒙𝒙𝟖𝟖

� 

 
where 𝒇𝒇𝟏𝟏 and 𝒇𝒇𝟏𝟏∗  are the lightlike vector fields. So, the distribution 𝐷𝐷 is denoted by {𝒇𝒇𝟏𝟏} and 
the distribution 𝐷𝐷∗ is denoted by {𝒇𝒇1∗}. If  𝐷𝐷1 and 𝐷𝐷2 is given by 𝐷𝐷1 = 𝑆𝑆𝑝𝑝{𝑿𝑿𝟑𝟑,𝑿𝑿𝟒𝟒} and                        
𝐷𝐷2 = 𝑆𝑆𝑝𝑝{𝑿𝑿𝟓𝟓,𝑿𝑿𝟔𝟔}, then we have the orthogonal direct decomposition as given below: 

𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷1 ⊕𝐷𝐷2. 
Now, we will investigate whether 𝑀𝑀 is bislant subminifold or not. We define that              

𝐹𝐹 � 𝝏𝝏
𝝏𝝏𝒙𝒙𝒊𝒊
� = − 𝝏𝝏

𝝏𝝏𝒙𝒙𝒊𝒊
, for 𝑖𝑖 = 1, 2, 3, 4 and 𝐹𝐹 � 𝝏𝝏

𝝏𝝏𝒙𝒙𝒋𝒋
� = 𝝏𝝏

𝝏𝝏𝒙𝒙𝒋𝒋
, for 𝑗𝑗 = 5, 6, 7, 8 where 𝐹𝐹 is an almost 
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product semi-Riemannian structure. Firstly, when we study with distribution 𝐷𝐷1, we need to 
calculate the angle between 𝐷𝐷1 and F𝑿𝑿 for any 𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1). Therefore, if we obtain that         
F𝑿𝑿3 = �0,−1,− cos 𝜃𝜃 ,− sin𝜃𝜃 , 2,0,√2, 0� and F𝑿𝑿4 = (0,−2,− sin𝜃𝜃 , cos 𝜃𝜃 ,−3,0,2,0), then 
we have g(𝑿𝑿3, F𝑿𝑿3) = 0 and g(𝑿𝑿4, F𝑿𝑿4) = 0. According to that, we get 

g(𝑿𝑿3, F𝑿𝑿4) = ‖𝑿𝑿3‖‖F𝑿𝑿4‖ cosh𝛼𝛼1 
8 + 2√2 = 2√10 cosh𝛼𝛼1 

cosh𝛼𝛼1 = 4 + √2
√10

 

Also, we see that the angle between F𝑿𝑿3 and 𝑿𝑿4 is equal to 𝛼𝛼1. So, 𝐷𝐷1 is a slant distribution 

with slant angle 𝛼𝛼1 = cosh−1 �4+√2
√10

�. Secondly, we study with distribution 𝐷𝐷2. We need to 

calculate the angle between 𝐷𝐷2 and F𝑿𝑿 for any  𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷2) According to that, if we obtain  that 
F𝑿𝑿5 = �0,−1,−1,−1,2,2,√5, 0� and F𝑿𝑿6 = �0,−1,0,0,−√5,√5, 3,0�, then we have 

g(𝑿𝑿5, F𝑿𝑿6) = ‖𝑿𝑿5‖‖F𝑿𝑿6‖ cosh𝛼𝛼2 
3√5 + 1 = √6√2 cosh𝛼𝛼2 

   

cosh𝛼𝛼2 = 3√5 + 1
2√3

 

From here, we say that 𝐷𝐷2 is a slant distribution with slant angle 𝛼𝛼2 = cosh−1 �3√5+1
2√3

�. Thus, 

𝑀𝑀 is a bislant submanifold. Also, 𝛼𝛼1 is not equal to 𝛼𝛼2. In addition to, 
 

g(𝑿𝑿5, F𝑿𝑿6) =  g((0,−1,− cos𝜃𝜃 ,− sin𝜃𝜃 , 2, 0,√2, 0), 
 (0, 1, 1, 1, 2, 2,√5, 0)) 

= 1 + cos𝜃𝜃 + sin𝜃𝜃 − 4 + √10 ≠ 0 
Accordingly, 𝑀𝑀 is not the slant submanifold. 
 
Now, we investigate the bislant submanifold when 𝑀𝑀 is the lightlike submanifold. It is different 
from the others due to the structure of tangent bundle 𝑇𝑇𝑀𝑀.  We have 𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥
�F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 ⊥ 𝐷𝐷′′� for lightlike manifold 𝑀𝑀 where 𝐷𝐷′′ is the complementary 
distribution to F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 on 𝑆𝑆�𝑇𝑇𝑀𝑀� and it is semi-Riemannian. Thus, the bislant 
submanifolds for lightlike submanifold are similar to the bislant semi-Riemannian 
submanifolds. 
 
Definition 3.9. Let 𝑀𝑀 is an immersed lightlike submanifold of almost product semi-Riemannian 
manifold 𝑀𝑀. Then, 𝑀𝑀 is called a bislant lightlike submanifold if it provides the following 
conditions.  
 
(𝑖𝑖) There exists the decomposition 𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ �F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 ⊥ 𝐷𝐷′′� where 𝐷𝐷′′ 

has orthogonal direct decomposition 𝐷𝐷′′ = 𝐷𝐷1 ⊕𝐷𝐷2 and 𝐷𝐷′′ is semi-Riemannian. Here, 𝐷𝐷1 
and 𝐷𝐷2 are the distributions on 𝑀𝑀.  
(𝑖𝑖𝑖𝑖) 𝐷𝐷1 and 𝐷𝐷2 are the distributions with the slant angle 𝜃𝜃1 and 𝜃𝜃2, respectively. 
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Remark 3.10. (𝑖𝑖) For 𝑖𝑖𝑛𝑛𝑅𝑅 �𝑆𝑆�𝑇𝑇𝑀𝑀�� = 𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑇𝑇𝑀𝑀, the distribution 𝐷𝐷′′ is extraordinarily 
Riemannian. Therefore, we need to investigate the bislant notion as similar on bislant 
Riemannian submanifold.  
(𝑖𝑖𝑖𝑖) For 𝑖𝑖𝑛𝑛𝑅𝑅 �𝑆𝑆�𝑇𝑇𝑀𝑀�� > 𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙𝑇𝑇𝑀𝑀, 𝐷𝐷′′ is semi-Riemannian and we can state previous theorem 
as bislant semi-Riemannian submanifold. 
 
Theorem 3.11. Let 𝑀𝑀 be an immersed lightlike submanifold of almost product semi-
Riemannian manifold 𝑀𝑀, g be the metric tensor on 𝑀𝑀 and 𝑀𝑀 be a bislant lightlike submanifold 
with the slant angle 𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃. Then, 𝑀𝑀 is a slant lightlike manifold with slant angle 𝜃𝜃 if 
g(F𝑿𝑿,𝒀𝒀) = 0 and f𝑿𝑿 ∈ 𝛤𝛤�𝐷𝐷′′� for any  𝑿𝑿 ∈ 𝛤𝛤(𝐷𝐷1) and 𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2). 
 
Definition 3.12. Let 𝑀𝑀 be a Riemannian submanifold of almost product semi-Riemannian 
manifold 𝑀𝑀. A semi-slant Riemannian submanifold 𝑀𝑀‾  of 𝑀𝑀 is a submanifold which admits two 
orthogonal complementary distributions 𝐷𝐷1 and 𝐷𝐷2.  
 
(𝑖𝑖) 𝑇𝑇𝑀𝑀 = 𝐷𝐷1 ⊕ 𝐷𝐷2. 
(𝑖𝑖𝑖𝑖)The distribution 𝐷𝐷1 is an invariant distribution, that is 𝐹𝐹𝐷𝐷1 = 𝐷𝐷1. 
(𝑖𝑖𝑖𝑖𝑖𝑖)The distribution 𝐷𝐷2 is a slant distribution with slant angle 𝜃𝜃 ≠ 0 (see Li and Liu (2010) 
for locally Riemannian manifold). 
 
Theorem 3.13. Let 𝑀𝑀 be a Riemannian submanifold of locally product semi-Riemannian 
manifold 𝑀𝑀. Then, there exist as followings: 
 
(𝑖𝑖) The distribution 𝐷𝐷1 is integrable if and only if 

ℎ(𝑿𝑿, f𝒀𝒀) = ℎ(f𝑿𝑿,𝒀𝒀)  
for any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1) where h is the second fundamental form of 𝑀𝑀. 
(𝑖𝑖𝑖𝑖) The distribution 𝐷𝐷2 is integrable if and only if 

P1(∇𝑿𝑿fP2𝐘𝐘 − ∇𝒀𝒀fP2𝑿𝑿) = P1(𝐴𝐴w𝒀𝒀𝑿𝑿 − 𝐴𝐴w𝑿𝑿𝒀𝒀)  
for any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2) where 𝐴𝐴 is the shape operator. 
 
Remark 3.14. Above theorem, which is given for semi-slant Riemannian submanifolds of 
locally product semi-Riemannian manifolds, is demonstrated as in semi slant submanifolds of 
locally product Riemannian manifolds (see Li and Liu (2010) for locally Riemannian manifold). 
 
Definition 3.15. Let 𝑀𝑀 be an immersed semi-Riemannian submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. In that case, 𝑀𝑀 is a semi-slant semi-Riemannian submanifold if it 
provides the following conditions. 
 
(𝑖𝑖) There exists 𝑇𝑇𝑀𝑀 = (𝐷𝐷⊕𝐷𝐷∗) ⊥ 𝐷𝐷′ and 𝐷𝐷′ is the orthogonal direct decomposition such that  
𝐷𝐷′ = 𝐷𝐷1 ⊕ 𝐷𝐷2 where 𝐷𝐷1 and 𝐷𝐷2 are the distributions on 𝑀𝑀. 
(𝑖𝑖𝑖𝑖) 𝐷𝐷1 is the invariant distribution that is  𝐹𝐹𝐷𝐷1 = 𝐷𝐷1  
(𝑖𝑖𝑖𝑖𝑖𝑖)𝐷𝐷2 is the slant distribution with slant angle 𝜃𝜃. 
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Then; let 𝑃𝑃1, 𝑃𝑃2, 𝑄𝑄1 and 𝑄𝑄2 be projections on 𝐷𝐷, 𝐷𝐷∗, 𝐷𝐷1 and 𝐷𝐷2, respectively. In this situation, 
the integrability conditions of distributions could be given by the following theorem. 
 
Theorem 3.16. Let 𝑀𝑀 be a semi-Riemannian submanifold of locally product semi-Riemannian 
manifold 𝑀𝑀. For any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1),  

ℎ(𝑿𝑿, f𝒀𝒀) = ℎ(f𝑿𝑿,𝒀𝒀)  
if the distribution 𝐷𝐷1 is integrable. 
 
Proof. For any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1), in the Gauss formula given by ∇𝑿𝑿𝒀𝒀 = ∇𝑿𝑿𝒀𝒀 + ℎ(𝑿𝑿,𝒀𝒀), let us write 
F𝒀𝒀 instead of 𝒀𝒀. 

∇𝑿𝑿F𝒀𝒀 = ∇𝑿𝑿𝐹𝐹𝒀𝒀 + ℎ(𝑿𝑿, F𝒀𝒀)  

∇F = 0 since 𝑀𝑀 is locally product semi-Riemannian manifold, so ∇𝑿𝑿F𝒀𝒀 = F∇𝑿𝑿𝒀𝒀. From this 
equation, we have 

∇𝑿𝑿F𝒀𝒀 + ℎ(𝑿𝑿, F𝒀𝒀) = F∇𝑿𝑿𝒀𝒀 + Fℎ(𝑿𝑿,𝒀𝒀)  
When we separate this equation to the tangential and normal components, there are 

∇𝑿𝑿(f𝒀𝒀 + w𝒀𝒀) + ℎ(𝑿𝑿, F𝒀𝒀) =  f∇𝑿𝑿𝒀𝒀 + w∇𝑿𝑿𝒀𝒀 +𝐵𝐵ℎ(𝑿𝑿,𝒀𝒀) + 𝐶𝐶ℎ(𝑿𝑿,𝒀𝒀)  
   

∇𝑿𝑿f𝒀𝒀 + ∇𝑿𝑿w𝒀𝒀 + ℎ(𝑿𝑿, F𝒀𝒀) = f∇𝑿𝑿𝒀𝒀 + w∇𝑿𝑿𝒀𝒀 +𝐵𝐵ℎ(𝑿𝑿,𝒀𝒀) + 𝐶𝐶ℎ(𝑿𝑿,𝒀𝒀)  
Since the distribution 𝐷𝐷1 is invariant and  𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1), we have w𝒀𝒀 = 0. 

∇𝑿𝑿f𝒀𝒀 + ℎ(𝑿𝑿, F𝒀𝒀) = 𝑓𝑓∇𝑿𝑿𝒀𝒀 + w∇𝑿𝑿𝒀𝒀 + 𝐵𝐵ℎ(𝑿𝑿,𝒀𝒀) + 𝐶𝐶ℎ(𝑿𝑿,𝒀𝒀) 
So, we can easily see that 

w∇𝑿𝑿𝒀𝒀 = ℎ(𝑿𝑿, F𝒀𝒀) − 𝐶𝐶ℎ(𝑿𝑿,𝒀𝒀)  
By replacing 𝑿𝑿 and 𝒀𝒀, 
w(∇𝑿𝑿𝒀𝒀 − ∇𝒀𝒀𝑿𝑿) = ℎ(𝑿𝑿, F𝒀𝒀) − ℎ(𝒀𝒀, F𝑿𝑿)  
If 𝐷𝐷1 is integrable, then [𝑿𝑿,𝒀𝒀] ∈ 𝛤𝛤(𝐷𝐷1) and from here, w[𝑿𝑿,𝒀𝒀] = 0. So, the desired equation 
is obtained. ■ 
 
However, the opposite of the above theorem is not always true. It is given by the following 
result. 
 
Conclusion 3.17. Let 𝑀𝑀 be a semi-Riemannian submanifold of locally product semi-
Riemannian manifold 𝑀𝑀. For any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1), 

ℎ(𝑿𝑿, f𝒀𝒀) = ℎ(f𝑿𝑿,𝒀𝒀)  
 and [𝑿𝑿,𝒀𝒀] ∈ 𝛤𝛤�𝐷𝐷′� if and only if the distribution 𝐷𝐷1 is integrable. 
 
Proof. The proof of this conclusion is done using the following equations: 

g(w2[𝑿𝑿,𝒀𝒀],𝒁𝒁) = sin2 𝜃𝜃 g([𝑿𝑿,𝒀𝒀],𝒁𝒁) = 0 for 𝑝𝑝 > 𝑞𝑞,  
g(w2[𝑿𝑿,𝒀𝒀],𝒁𝒁) = sinh2 𝜃𝜃 g([𝑿𝑿,𝒀𝒀],𝒁𝒁) = 0 for 𝑝𝑝 < 𝑞𝑞,  

 
where 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷1),𝒁𝒁 ∈ 𝛤𝛤(𝐷𝐷2) and 𝜃𝜃 is a slant angle of the distribution 𝐷𝐷2. So, the proof is 
easily completed. ■ 
 
Theorem 3.18. Let 𝑀𝑀 be a semi-Riemannian submanifold of locally product semi-Riemannian 
manifold 𝑀𝑀. For any 𝑿𝑿,𝒀𝒀 ∈ 𝛤𝛤(𝐷𝐷2), 

P1(∇𝑿𝑿fQ2𝒀𝒀 − ∇𝒀𝒀fQ2𝑿𝑿) = P1(𝐴𝐴w𝒀𝒀𝑿𝑿 − 𝐴𝐴w𝑿𝑿𝒀𝒀)  
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if the distribution 𝐷𝐷2 is integrable. 
 
Proof. This proof is easily done with the help of Gauss and Weingarten equation. ■ 
 
Definition 3.19. Let 𝑀𝑀 is an immersed lightlike submanifold of almost product semi-
Riemannian manifold 𝑀𝑀. Then, 𝑀𝑀 is called a semi-slant lightlike submanifold if it provides the 
following conditions. 
 
 (𝑖𝑖) 𝑇𝑇𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀 ⊥ �F𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑀𝑀⊕ F𝑙𝑙𝑡𝑡𝑡𝑡𝑇𝑇𝑀𝑀 ⊥ 𝐷𝐷′′� where 𝐷𝐷′′ has orthogonal direct 

decomposition 𝐷𝐷′′ = 𝐷𝐷1 ⊕ 𝐷𝐷2 and 𝐷𝐷′′ is semi-Riemannian. Here, 𝐷𝐷1 and 𝐷𝐷2 are the 
distributions on 𝑀𝑀. 
(𝑖𝑖𝑖𝑖) 𝐷𝐷1 is the invariant distribution that is 𝐹𝐹𝐷𝐷1 = 𝐷𝐷1  
(𝑖𝑖𝑖𝑖𝑖𝑖)  𝐷𝐷2 is the slant distribution with the slant angle 𝜃𝜃. 
 
Because of the expressions and the proofs of the theorems which are given for semi-slant semi-
Riemannian submanifolds are similarly to this case, we omit them. 
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