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Highlights
* This paper focuses on the VMS-POD model of the Navier-Stokes equations
* A filter-based method is introduced that improves the accuracy of the VMS-POD scheme.
« It is presented that the proposed method conserve energy better.
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This paper studies a reduced-order model based on proper orthogonal decomposition (POD) for
Received: 9 Apr 2021 the incompressible Navier-Stokes equations. The difficulties resulting from nonlinearity are
Accepted: 16 Sep 2022 eliminated using the variational multiscale (VMS) method. The time filter is added as a separate

post-processing step to the standard VMS-POD approximation. This increases the accuracy and

presents a better energy preserving scheme without adding additional computational complexity.
Keywords The stability and error analyses of the method are provided, and results of the several numerical
tests are presented to verify the efficiency of the method in this setting.
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1. INTRODUCTION
This paper considers the incompressible Navier-Stokes equations (NSE) in the dimensionless form:

u —vAu+ (u-Vyu +Vp = f in (0,7] X Q,

V-u=0 in (0,7] X Q,

u=0 in (0,7] x Q,

u(0,x) = u, in Q 1)

where u(t, x) and p(t, x) are the fluid velocity and the pressure fields, respectively. Let Q@ ¢ R4, d € {2,3}
be a polyhedral domain with a boundary dQ. The parameters in (1) are the initial velocity field u,,
prescribed body forces f(x,t) and kinematic viscosity v > 0, inversely proportional to the Reynolds
number, Re.

It is known that the use of direct numerical simulation (DNS) to find a numerical solution of (1) results in
large degrees of freedom. This causes high computational cost and complexity. Utilizing Galerkin based
reduced-order modelling with proper orthogonal decomposition (POD) is an efficient method for lowering
the computational complexity in such settings, [1-3]. POD uses only the most energetic modes from an
ensemble of data obtained using the standard Galerkin finite element procedure. Therefore, the application
of POD ensures that the complexity, computational cost, and degrees of freedom in the system are
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significantly reduced. The performance of the approach is improved by the variational multiscale (VMS)
method of [4-8], which is based on adding an artificial viscosity term. As VMS affects only resolved small
scales, significant reductions appear in the oscillations of the small scales. Since the POD basis functions
are given in descending order, the small-resolved scales required for the implementation of the VMS
method can be easily decomposed.

Recent studies show that, adding a time filter improves the accuracy of the backward-Euler scheme from
first order to second order, and eliminates its over-damping behavior without increasing the complexity of
the system, as shown in [9-13] and the references therein. In addition, as discussed in [12], the time filtered
backward Euler method gives better energy balance in comparison with the conventional backward Euler
method. Hence, in the present work the time filtered backward Euler temporal discretization is utilized and
the novel ideas of [11,12] are expanded to the VMS-POD setting for NSE. As the filter is included as a
separate post-processing step, the method can be easily incorporated into the existing backward Euler codes.
This paper is organized as follows. In section 2, the notations and preliminaries which will be used for the
analysis are given. Section 3 presents the energy conservation, stability, and error analyses. Section 4
includes numerical experiments for validating the presented method. Finally, the paper ends with the
conclusions in Section 5.

2. NOTATION AND PRELIMINARIES

The standard Sobolev spaces and their norms are used throughout this paper. The notations (:,-), || - ||,
|| - ||,» show the inner product, norm in the L? () space, and norm in the Lebesgue spaces ((L”(Q))d, 1<

d
p < oo,p # 2), respectively, [14]. The norm in (H"‘(Q)) and dual space H~* of H}(Q) are given by

[l 1l and || - |]=1 , respectively. The continuous velocity, pressure spaces and divergence free space of
velocity are given as

x:= (HW)' =B,
V:i={ve X: (V- v,q9) =0, Vqge Q}.
The continuous variational formulation of (1) reads as: Find w : (0,7] = X, p: (0,7] —» Q satisfying
(up,v) +v(Vu, Vo) + b(w,u,v) — (p,V: v) = (f,v),

(q.V-u)=0, 2
forall (v, q) € (X,Q), where
1
b(u,v,w): = > (((u Vv,w) — ((u-Vw, v))

represent the skew-symmetric form of the convective term.

Lemma 2.1. The following bounds are provided by the trilinear skew-symmetric form b(u, v, w).
b(u,v,w) < MQ) [|lvl||IVvl| [IVvl| |I[Vwl]|,

b(u,v,w) < M Q)|IVul| [IVvl| [IVwl]|,
forall u,v,w € X.
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Proof. Please see [15] for the proof.

The following notations are used for the discrete norms

1

N T
Iwll], = (At Z||vn||;) |Iwll] = max oz nsnlienll,,

n=1

where At denotes the time step, the variables at time t", n = 1,2, ..., N are given using superscripts, e.g.
v™" = v(t"). A conforming finite element method is considered for (2) such that T;, is a triangulation with
mesh size h. The finite element spaces X; c X, Q,, c Q satisfy the discrete inf-sup condition. Moreover,
X}, Qy, are composed of piecewise polynomials of degree at most s, s — 1, respectively, and they satisfy
the following approximation properties:

2

. 2
1nfh{||u— wh| } < Ch¥*2|ull,

wp€EX

g, {9e—wil < € hl,,

. 2 2
q;g&h{llp—thl }s C h*|Ipl| ®)

where u € HST1(Q),p € H(Q). The discretely divergence free space is given by

Viw={vpn € Xp: (V- vp,qy) = 0,Yq, € Qp} .

As V, is a closed subspace of X}, the formulation (3) is equivalent to the following V;, formulation:

(une vn) +v(Vuy , Vo) + b(up,up,vy) = (f,vp),

for all v, € Vy,. Let D = span{u(:, t,),u(,t,),...,u(:, ty)} be a snapshots ensemble for given time
instances t;, = kAt,k =1,...,N,for N = Ait To find low dimensional POD basis functions, the following

error minimization problem is solved.

2
N

g [0~ Qe eowi0) 0]

suchthat (y;, ;) =6;;,1 < i,j < r, r << d andd = rank(D). Using properties of inner products and
norms, an eigenvalue problem,

Zy] :,Lly] ,j = 1,...,7"

is obtained. Here Z € RV*N with Z,; = %(u(-, t),u(,,ty)), i,k =1,..,N, is the snapshots correlation
matrix, u; is the j-th eigenvalue, and y; is the associated eigenvector. The solution of the eigenvalue

problem produces POD basis functions { ¥4, ¥, ..., ¥,.} corresponding to the first r largest eigenvalues
{u;}i—4, respectively. Accordingly, the POD space is defined by

XT' = Span{ll)l,ll)z,...,ll)r}.
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In the VMS-POD setting, the POD space X, is decomposed to small resolved scale space X =
span {Yry1, Pryo - P, } and large resolved scale space Xz = span{y, P, ... P}, with R < r. We
also need the space Lg,, = VX = span{Vp,, Vip,, ... Vipr}, to define the projection operator. Note that,
one gets Xz S X, € X, C X.The L? projection operators B, ,: L> - X,., and P, p: L? - Lg,, are denoted

by
(u-P,uv,)=0 Vv, €X,
(u—Puru,vg) =0, V vz € Lg,.
The following lemma is required to bound the POD projection error.

Lemma 2.2. For the true solution u™ at time t™, we have

N d
l n __ P n 2 < C hZS+2 2 i
u urli = u + Hi )
M 2,5+1 .
n=1 i=r+1

N d
1 2 2 2
Mz_: ||V(un_Pu,run)|| = C (hzs+ “Srllz h25+2)|||u|||215+1 + z “willl#" '

n=1 i=r+1

where S, denotes the POD stiffness matrix with (S,.);; = fn Vi, - Vi dx.

Proof. Please see [6] for the proof.

Assumption 2.1. We assume that the following inequalities hold

IA

d
2
clm |l + > w)
2,5+1

i=r+1

n _ nll?
||u P, u ||

da
e[ < ¢ (s, sl + S 1w

i=r+1

2.1. The Time Filtered VMS-POD Schemes

This section introduces the time filtered backward Euler based VMS-POD method for NSE. At each time
step, there is a two-step procedure: The first step develops the VMS-POD approximate solution based on
backward Euler time discretization, and then the second step evolves this solution using the linear
combination of solutions at previous time levels.

Algorithm 2.1. Let f € L?(0,7; H~1()), u? and u;* be given with L? projections of initial condition u,
in X,. Givenu, u*~ ! € X, compute u*** for n = 0,1,..., N - 1 by applying the following two steps:

Step 1:
ii—'?’l+1 —un
<—r TE ,vr> +v(ViE" Vv + b)), " v,) + v (P gV, PurV vy)
= (f,v). )
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Step 2:
Wt = 2 (5 2wt ), )
forallv, € X, . Here X(u}) = 2u} —u ' and P, = I — P, g. Reorganizing Step 2, we have

3 1
St —up +supTh = Dlupt] (6

u‘;}+1

where the interpolation operator D satisfies D[ul*1] = ul**! + 0(At?). Inserting (6) in (4) produces: Find
n+l e X, satisfying

3ultt — 4u +ultt
2At

) +v(VD[uf*], Vv,) + b(X (up), Dui*], v,)

+VT(pu,RVD[u¥+1]: FPu,var) = (fn+1,17r), (7)
forall v, € X,. Itisclear that (7) is equivalent to Algorithm 2.1. Even though the temporal discretization
of the first term on the left-hand side seems two-step BDF-method (BDF2), the remaining parts of the
equation are different. Hence, the proposed method is not the same as standard BDF2. To simplify the

analysis, the G-stability concept is utilized as in [16, 17] with the following definitions of symmetric G-
matrix and G-norm:

1(6 -3

6=2{3 »

7 ) Il = W 6u), vu e R (8)

In addition, let F = 31 € R™™ be a positive, symmetric matrix, and Vvw € R™, then F-norm of w can be
expressed as ||w||2 = (w, Fw). The Lemmas below are well known and essential in the analysis. For a

detailed derivation of these relations, please see [16, 17].

Lemma 2.3. For any w' € L?(Q), we have

3wl — 4w 4 w1 Dlw™1] ”[ Wil
2At ’ T At

Lemma 2.4. Letw;,w, € L2(Q), then we get

(1.6 []) = 5 (I + Di2w = wall* + [l = wa ),

Lemma 2.5. The equivalence relation between L? norm and G-norm is given by the following inequality.
There exists C;, C, > 0 such that

2 2 2
e lwg]ll, = Mwall = e 1311

Lemma 2.6. Let w,w,, Wy, wer € L2(t™, t™11; 12(Q)), then we have the following inequalities

— ||[ ]” n+1_2Wn+Wn—1||12:>_

N-1
At Z ||D[Wn+1] n+1|| < CAt* ||th||L2(0TL2(Q))

n=0
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N-1
AtZHX(w”) —W”+1I| < CAt* ||th||L2<OTL2(Q))
N-1 2
3wt — 4w 4 w1
At ZO oA — ng+1 < CAt* ||tht| |L2(0T LZ(Q))
n=

Lemma 2.7. (Discrete Gronwall) Let a,,, by, ¢, 6,,, At and K be nonnegative numbers for n > 0 and

N

N N
aN+AthnSAtZdnan+Athn+K, N>0 )

n=0 n=0 n=0
then if Até, < 1 forall n, we get

N N N
5
aN+AthnSexp AtZ—n Athn+K , N >0. (10)
Z £, T A,

n=0
Proof. Please see [19] for the proof.
Lemma 2.8. Let v € H1(Q). Then the following inequality holds.
||V . v|| < \/E||Vv||
where d denotes the dimension of the domain Q.

3. NUMERICAL ANALYSIS OF THE NAVIER-STOKES SYSTEM

The goal of this section is to show that our scheme (7) is energy preserving and unconditionally stable. We
also present the convergence analysis of the method.

Lemma 3.1. (Global Energy Conservation) The approximation (7) satisfies the energy equality:

2 N- N-1
”[ ] %ZHu““ 2u¢+u¢-1||i+m:2( VD[ 1| + vy || P g VD[] ||2)
n=0 n=0
+ AtZ(fn+1 D n+1]) (11)

Proof. Letting v, = D[ul*1], using Lemma 2.3 and the skew symmetry property in (7) yields

il 1, -zl +

[ IvD I + vy || Pua¥DLa | = (£, DL (12)

L —2up + ur||>

4At

Summing over the time steps and multiplying by At yields the energy equality (11).
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Lemma 3.2. (Stability) Assume f € L?(0,7; H"1(Q)), then the approximation (7) is unconditionally
stable in the following sense: for any At > 0,

[l 1] + {120 =2l 1 4 [l == +Z||un+1 2+l

N-1
+At2(2v|IVD u||* + 4vy || Py g VD[] ||)
n=0
< [ + {120 — [+ [ — +2v‘1AtZIIf”“I| (13)

Proof. Applying Cauchy-Schwarz inequality together with Young's inequality to the right-hand side of
(12) gives

At v At
o [, + = Dl

At (L, D[ul)) < (14)

Substituting (14) in (12), utilizing Lemma 2.4, summing over the time steps and multiplying by 4 produces
the stated result (13).

The following regularity assumptions of the exact solution are needed for the optimal error estimation:

ue L*(0,r; H'1(Q)), uy € L2(0,HY(Q)),  uye € L2(0,7;12(Q)),
p€ L2(0,5; H(Y), fe L*(0,5; H(Q). (15)

Theorem 3.1. (Error estimation) Let regularity assumptions (15) hold. For a sufficiently small time-step,
the error satisfies

N-1
~ 2
[luV —ul||? + 2At z (1/||V2)[u”+1 u;‘“]||2 + vy || P rVD[u™tt — u¥+1]|| )
n=0
<u -, P+ [12® —u,0) - (u?t - ‘1)||2+||(u°—ur°)—(u‘1 1)||2

+C( 1+ h2 + At + (1+I,I], + [18g1], ) 25+ + Z 1+ |1l s + Z il | (16)

i=r+1 i=R+1
where C* is a generic constant independent of At and h.

Proof. To derive the error equations, the continuous variational formulation of (1) at the time level t =
t™*1 is considered. Adding and subtracting the terms produces, for all v, € X,

2At
+vr(PurVD[U™ ], Py pVo,) — (p™, V- v,) = (f(t™), v,) + E(w, ;) (17)

3un+1 — 4u" + un—l
( vr> + V(VD[uTH-l]; \Y vr) + b(X(u"),D[u"H],vr)

where
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3u™l —4ut 4+ ut!
E(w,v,) = < AL —uptt,v r> +v(VD[u"*'],Vv,) —v(Vu™,Vv,)

+VT(Fpu,RVD[un+1]J Apu,var) + b(‘x(un)r D[un+1]’ v‘l") - b(un+11 un+1l vT‘)'

Subtracting (7) from (17) gives, Vv, € X, and Vg, € Qy

3etl — 4em + el1
2At

) +v(VDler™],Vv,) + b(X (up), Dler ], vy)

+b(X(e ) D[ n+1] vr) + VT( PuRVD[ n+1]’ ’Pu,var) - (pn+1 - Qhrv ' vr) = E(u; vr) (18)

where et = u™*t1 — y**1 is the error between the continuous and finite element solutions at the time
level t = t™*1, The error can be decomposed as

n+1 — un+1

er ur+1 — (un+1 run+1) (un+1 run+1) — nn+1 _ ¢;l+1 (19)

where U™ is the L? projection of u™*! in X,. Inserting (19) into (18), setting v, = D[¢p?*1], using
Lemma 2.3 and the skew symmetry property give

allf W, -z o

. 2
+v|IVD ¢+1]||2+vT||Pu,sz>[ m1]]|

+1 -1
- 3T -4t + " i1
- 2At T

|igp+t — 29 + pp I

4At

+v|(VD[n™*], VD@7 D)

+vr|(Pur VD™, Py r VD7 )| + 16X (W), D™ +'], DI@F+ D
+bX@™), D[u™ ], D[$F* DI + Ib(X (@7), D[u"**], D7D
(™" = g5, V- D[$F* DI + |E(u, D[FHDI. (20)

Due to the definition of L2 projection, the first right-hand side term in (20) vanishes. Implementing Cauchy-

_ 2
Schwarz and Young's inequalities and using || Pu,RVD[n”“]” < ||VD[11”+1]||2, the second and third
terms on the right-hand side of (20) are estimated as follows:

v|(vz>[nn+1],vz>[¢¢+1])|ch||vz>[nn+1]||2+ el (711", 1)

vr|(PurVDI™1], Py VDI21])| < Cvr|IVD ]| +—||PuRVD[ n+1]||2. (22)

The nonlinear terms are bounded by using Lemma 2.1 and Young's inequality as

b (W), Dl™+], DI ”“])I+Ib(X(n”) D] DIE D] + bQC(@), D™, D]
< ovH(|IvX(uf 71| + |1 @I 19D 1)

+ v @™’ [IvDl “+1||)+ S [1vDI (171", (23)
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Now, the consistency error |E(u, D[¢p?*1])| in (20) can be bounded by using Cauchy-Schwarz, Young’s
and Poincaré’s inequalities together with Lemma 2.1:

3u™l —4ut 4+ ut !
‘( —uptt ,D[w“])

2A¢
3u™t — 4yt + ul ’ 2
<cv? AT —upt! ||vz) Lans 11l (24)
VIV — w1, VD[@r )| < Cv|IV@D ] — ||’ T ||VD as|# (25)
vr|(PurVD[w™ 1], Pz VD2 ])| < Cvy || P VD[u+] || +—||v1) [+ 11]7, (26)
b(X (™), D[], D[$7*]) — b™, u™, D[$rT])
-1 ny||? n+1 n+1y(|? n n+1y(|? n+1||?
< v (V@[ IV ] — w1 + [I9Qe@™) — u Y| Ivar|)
||v2> [+ 1]1|" 27)

Using Cauchy-Schwarz and Young’s inequalities together with Lemma 2.8, the pressure term is estimated
by

(™ — qn, V- D[PF])| < qiEanhllp’”1 — qul| |IV- D@2+
< dmfllp”“—thlllvw nH)|
|2

L 2
< cv7tinf |Ip™t - qul| ||VD [P+ (28)
9q€Qn

Collecting all of the bounds in (21)-(28) for (20) yields

aillf W, -z llo-

_ 2
—||VD n+1 ||2+V7T||Pu,RVD[ ¥+1]||

Y,
4At||¢"+1 207 + 27|,

< C( +vp)[IVDI™ 11| + v v @[ IvDg™ 11| + v=2 | IvaX @™ || [IvD[un+1]))?
3u™! — 4y + u™?
2At

u‘?+1

2
+ v~ inf ||[p™t! — +v?t
i [Ip™ = gl

+ Vl IV(D[un“] _ un+1) | |2

+vr ||T)u,RVD[un+1]||2 + v_1||VX(un)||2||V(D[un+1] _ un+1)||2

+v | IVOe@™) — w D)) IV 1| +Cvt IV (@M ] | IVD [ |,

(29)

The sum fromn = 0 to n = N — 1 and the multiplication of (29) by At results in
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2

N—
1 112
ZZ mri - 27+ @n |

15511, +

tN v At < 2
TZHVD n+1 T z RVD Tl+1]||

n=0

¢0 N-1 5
< ” ¢r-1] +C (v+vT)AtZ||VD " 1|
T
N-1 N-1
+v—1AtZ||vx(u’;)|| [IVD[n"™*?] || +v‘1AtZ|IVX(11”)I| ||v1>[u"+1]||2
i 2" N
3 n+1 — 4 n n—-1
sviary ([P TE g +vAtZ||\7(D[u"+1] —ur )|’
n=0 n=0
N-1 5 N—-1
+vTAtz ||“Pu,sz>[un+1]|| +v‘lAtZ||Vx(u")||2||V(D[u"+1] —unt ||
n=0 n=0
N-1 N-1
+vlAt Z [IVQe@™) — un || [|var+t|| + v-1at Z inf |[p"™+! — anl|”
= n=0q Qn
5 N-1
+ev2ac||Ivopl]| Z (4lvep1]* + [Ivep-1["). (30)

=0

S

Utilizing the definition of L ,, and APu,R = I — P, r, the bound of the seventh term on the right-hand side of
(30) can be obtained as:

N-1 N-1
At Z ||?’u,RV2)[un+1]||2 = At Z ||[vD[um+1] - Pu,RVZ)[u”+1]||2
n=0 n=0

N—
C
Nz inf [|VD[u™*1] — VD[wg]l|”

UREXR

N-

C

Nz ||V7.) 1] vzv[ug+1]||2 (31)
n=0

where U%*1 denotes the large-scale representation of the projection. By utilizing the approximation

properties (3), the Equation (31), Assumption 2.1, Lemma 2.2, Lemma 2.6, and Lemma 3.2, the right-hand
side terms in (30) can be bounded as

N-1
2
ae Y [lvnly I < ¢ (h2 + [Is 1], h22) Il |+ z il s ), (32)
n=0 st i=r+1

ae Y (vl Ivom i)’
n=0
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N-1
< c<||u2||2 + (120 — ) + |l —urt* + 2v—1AtZ||fn+1||f1>

n=0

2
| (k2 11, 02 Jell] )+ Z il P |, (33)

i=r+1

N-1
ae Y |Ivca | ion i)
n=0

< cllwowall]] | (w2 lspll, w202 Il + Z il ) (34

i=r+1

= |[3untt — 4un 4wt . ‘
Atzo . || < A el (35)
n=
ac ) IV = w I < ALY Vel (36)
N-1 2 )
AtZ||vz>[un+1]—VD[Ug+1]|| <C (h"’5+IISRIIZh"’s“’)|llull|2 + Z |I¢I| ui |, 37)
n=0 SR
N-1
AfZHV(X(u") w2 CARt Vel sy ) (38)
=0
N-1
2
: 1_ 2
Afzoq‘enc{h“”"+ aill < cn lipl]f (39)
n=

2 -1
Substituting (32)-(39) in (30) and using the assumption At < C( |||VD[u]||| 0) allows the utilization

of Lemma 2.7, which leads to

N 2 1N . AtN—l ~ ,
|H¢7v-1] ZZ p—297+ 917, +—Z||VD P+ 5= ) [ Purv0ler |

' n=0 n=0

¢0 2 d , d ,
<L e (e e (sl + i) e+ D It Inpd
T i=r+1 i=R+1

(40)

where C* depends on v, vy. Applying Lemma 2.4, removing the non-negative terms, and multiplying by
4, one has
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N-1 N-1
|l 1]* + 2vAt Z IvD[pm+1]1]” + 2vrAt z || P VI ;l+1]||2
n=0 n=0

<l —wl P42’ —w?) - @t —u T DPP @0 —w) - @t - w D)

d d
+C* | 1+ 02+ Act + (|I5, 1], + [ISgll,) A25+2 + Z 11| s + Z 1| i

i=r+1 i=R+1

Finally, applying the triangle inequality, we have

N-1
||uN _ uyllz + 2At Z (v||VD[u”+1 _ u;1+1]||2 +vr ||~pu’RVD[un+1 _ u;l+1]||2 )

n=0
N-1

_ 2
< (164 1" +28¢ )" (VIvDIgr 11| + vr || PuvDlg ]| )

n=0
N-1

N |2 n+11|? D n+1 2
+ 1V | +2AtZ(V|IVD[n 1|* +vr || PurV00™ | )

n=0
Using Lemma 2.2 and substituting (41) in (42) finish the proof.

4. NUMERICAL EXPERIMENTS

(41)

(42)

This section is reserved for two numerical experiments in which we verify the theoretical findings and
expose the effectiveness of the proposed method. The first test presents the convergence rates by scaling
the time step At, mesh size h, POD cutoff r, VMS cutoff R to confirm Theorem 3.1. In the second test, we
compare the energy conservation properties of the proposed time filtered VMS-POD scheme and the
unfiltered case. Here, the Algorithm 2.1 is studied in a two-dimensional domain (. For all simulations, the
flow over a circular cylinder in a 2D channel (please see [4, 18, 20]) is utilized as a test problem which is

illustrated in Figure 1.

2.2

- 0.1 0.41
0.2

i

0.2

A 4 v

Figure 1. 2D channel flow over a circular cylinder domain

In the test problem, no-slip boundary conditions are imposed along the walls and cylinder. In addition, the

following inflow and outflow boundary conditions are applied:

6y(0.41 —y)

0412 B uz(o, y, t) = u2(2.2,y, t) = 0

u1(0,y,t) =uy(2.2,y,t) =

The parameters are chosen as v = 1073, At = 0.02 and f = 0 (no forcing). The POD method collects
the snapshots from a BDF2-finite element DNS simulation with Taylor-Hood elements and a 103K mesh

resolution at each time step fromt = 6tot = 10.
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4.1. Test 1: Convergence Rates Verification

In this test, our special interest is the scaling of the errors with respect to the time step At , mesh size h,
POD cutoff r and VMS cutoff R. Here, the true solution is chosen as the BDF2-FEM solution of NSE.
First, we scale the numerical error of the proposed method with respect to the time step At. We select the
parametersas r =8, R =5, vy = 0,0003, end time = 4 to verify the numerical analysis of the Algorithm
2.1. The errors and convergence rates are shown in Table 1 for decreasing values of At. To measure the
error between the numerical solution and the true solution, we utilize the norm in L°°(0, T; L2 (Q)) space
which can be expressed as

= MAXg< ne N ||u(t") — u;l

|||u—ur|| L°°(L2(Q)) ||L2(ﬂ)'

Table 1. Convergence of the filtered VMS-POD for varying At

At Il =, rate
L°(12()

0.010 0.45361 -

0.008 0.34680 1.20

0.006 0.25176 111

0.004 0.14852 1.30

0.002 0.03804 1.97

We observe that the rates improve to the second order even for the large time step with the use of the filter.
The results are consistent with Theorem 3.1. Next, we check the convergence rates for varying mesh size
h. To isolate the spatial error, we fix the At = 0.02, end time = 1,r = 20,R = 12. The error values, and
converegence rates are given in Table 2. It is observed that third order convergence in L% (0, t; L?(Q))-
norm.

Table 2. Convergence of the filtered VMS-POD for varying h

h |||u—ur| o rate
L (L2(9))

0.20 0.4343 -

0.15 0.1564 3.55

0.10 0.0620 2.28

0.05 0.0210 1.56

0.03 0.0031 3.74

As the error estimate depends also on the POD cutoff r and VMS cutoff R via the terms

da da
o= ) lwillin,  a= ) lwillin

i=r+1 i=R+1

we now verify the convergence rates of the method with respect to different » and R. We choose At = 0.002
and calculate e and &, for each r and R. The resultant errors and rates are listed in Tables 3 and 4 for
increasing values of R and r, respectively. Here, we use the norm in the LZ(O, T; H 1(9)) space given by

N
2
|||u — | 12(H'(@) = |A Z“u(tn) B umlHl(ﬂ) '
n=1
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Table 3. Convergence of the filtered VMS-POD for varying R

R |R &R |||u_u I rate |||u_u I rate
T2 ()) ")

20 |1 52.1231 | 0.1701 - | 5.8665 -

20 |3 18.1675 | 0.0384 1.41 | 1.5101 1.29
20 |5 10.4747 | 0.0281 0.57 | 1.2299 0.37
20 |7 4.7608 | 0.0193 0.47 | 0.8504 0.47

Table 4. Convergence of the filtered VMS-POD for varying r
R |R £ Il = .| rate | |[ju— 1l rate
r 12(2() L2(H(9)

4 3 13.458 | 0.2389 - 8.1399 -

6 3 5.4549 | 0.0898 1.08 | 4.7426 0.59
8 3 3.4015 | 0.0442 1.50 | 2.3595 1.48
10 |3 1.5230 | 0.0283 0.55 | 1.6768 0.43

We observe that convergence rates with respect to  and R are close to 0.5 in both L*(0,1; L?(Q)) and
L? (0, T, H 1(Q)) norms. The calculated rates are in line with the corresponding values reported in [1, 4].

4.2. Test 2: Conservation of Energy

In the second test, the aim is to show that the global energy
1
Energy = —fu(x)u(x)dx
2 Q

is preserved for the solution obtained by the Algorithm 2.1. We also aim to demonstrate that the proposed
time filtered VMS-POD method is more successful in predicting the energy compared to the unfiltered
case. We choose the parameters as At = 0.002,r =8, R = 5,vy = 0,0003, end time = 4. At each time
step, energy values versus time for both cases are displayed in Figure 2.

\ === Unfiltered
s — Filtered
s b ~
3 I
L E \~\ |
0.54 e
\.~_~
0.535 | TS ———— |
1 I} 1 J -—--I-—-----F —————
0.5 1 15 2 2e ’ * 4
Time

Figure 2. Energy versus time for unfiltered and filtered case

In Figure 2, it is seen that the conservation of energy property improves when time filtering is added to the
classical backward Euler method. Hence, the proposed time filtered VMS-POD method conserves the
energy better than the unfiltered case.

Next, we check the lift and drag coefficients of the filtered VMS-POD approach obtained from 25K, 55K,
and 103K degrees of freedom for velocity in FEM simulations. Average and range of the lift and drag
coefficients are defined as

ave Crang e _

max min ave range __ | .max min
cqg d |cd —Ccg |, cr, o —|cl —q |
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Here, we take the lift and drag coefficients of DNS simulations as reference and calculate the error between
them and c$¢, ¢;""™¢, ¢f*¢ and c; “"9°. The lift and drag coefficients, as well as the error values for each

r are listed in Table 5.

Table 5. Average and range of lift and drag coefficients for varying r

r E%l\g cgve error ;"¢ error ctve  error ¢, "¢ error
103K 3.18 - 0.07 - -0.01 - 2.04 -
8 25K 3.18 <0.01 0.09 0.02 -0.01 <0.01 2.12 0.08
8 55K 3.19 0.01 0.08 0.01 -0.01 <0.01 2.07 0.03
8 103K 3.20 0.02 0.10 0.03 -0.01 <0.01 2.13 0.09
10 25K 3.18 <0.01 0.07 <0.01 -0.01 <0.01 2.09 0.05
10 55K 3.19 0.01 0.07 <0.01 -0.01 <0.01 2.05 0.01
10 103K 3.17 0.01 0.08 0.01 -0.01 <0.01 2.04 <0.01
12 25K 3.18 <0.01 0.07 <0.01 -0.01 <0.01 2.10 0.06
12 55K 3.19 0.01 0.07 <0.01 -0.01 <0.01 2.06 0.02
12 103K 3.18 <0.01 0.07 <0.01 -0.01 <0.01 2.05 0.01

Note that, the results in the Table 5 are in line with the results reported in [20].
5. CONCLUSIONS

In this paper, the effectiveness of adding time filters to the VMS-POD method is demonstrated by means
of theoretical and computational analyzes. It is shown that the proposed method is energy preserving,
unconditionally stable, and convergent. The numerical experiments validate the numerical applicability of
the method. In the first test, the convergence rates with respect to At, h, 7 and R are examined. The results
of this numerical test on the benchmark problem are confirmed with the theoretical findings. In the second
test, the effects of the filter to the energy balance properties of the VMS-POD method are evaluated. Results
of the second numerical experiment indicate that the addition of the time filter provides better energy
saving. In the light of these numerical tests, it has been observed that the filtered VMS-POD method both
increases the accuracy and conserves the energy better.
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