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Abstract

This paper aims to prove common �xed point theorems for a pair of hybrid and p-hybrid mappings via
common limit range property in G-metric space setting. The theorems proved here will generalise the results
due to Nashine et al. [35], Karapinar et al. [23, 24] from metric space notion to G-metric space and that of
Mustafa et al.[30] using (CLRf ) property concept in G-metric space, and many others in this setting. We
also provided an illustrative example to validate the results.
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1. Introduction

In 1963, Gähler [12] introduced the notion of 2-metric space which made several other authors to use
his notion to prove �xed point theorems for mappings on such spaces. A 2-metric is a function d(x, y, z)
symmetric under permutations, satisfying the tetrahedral inequality

d(x, y, z) ≤ d(x, y, a) + d(x, a, z) + d(a, y, z),∀x, y, z, a ∈ X,

as well as conditions
(i) for all x, y, we have d(x, y, y) = 0,
(ii) for all x, y, there exists z such that d(x, y, z) 6= 0.
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Later on, many authors used his notion to generalise Banach's contraction principle to obtain �xed point
theorems, e.g. [11, 19, 21, 25, 26, 41, 51] and many others. In 1988, Ha et al. [15] showed that a 2-metric
need not be a continuous function of its variables, whereas an ordinary metric is a continuous function of its
variables. Further, there is no easy relationship between results obtained in the two settings. In particular,
the contraction mapping theorem in metric spaces and 2-metric spaces are unrelated. These considerations
motivated Dhage [8] to introduce a new class of generalised metric space called D-metric space which is as
follows:

De�nition 1.1. [8] A function D : X×X×X → R is said to be a D-metric on X if it satis�es the following
properties.

(i) D(x, y, z) ≥ 0 for all x, y, z ∈ X and equality holds if and only if x = y = z (nonnegativity)

(ii) D(x, y, z) = D(x, z, y) (symmetry)

(iii) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z) for all x, y, z ∈ X (tetrahedral inequality).

A nonempty set X together with a D-metric is called a D-metric space and is denoted by (X,D).

Using this de�nition, Dhage[8] proved the existence of a unique �xed point for self-mapping satisfying a
contractive condition.

On the other hand, the existence of �xed points in D-metric space has been considered by Rhoades [40]
to prove two �xed point theorems for the generalised metric spaces. Dhage [9, 10] proved the results for
a common �xed point principle in D-metric space. Ahmad et al. [4] introduced a �xed point theorem for
expansive mappings in D-metric space. Singh and Sharma [45] and Sedghi et al. [42] proved common �xed
point theorems under compatible and weakly commuting mappings in D-metric space.

In 2006, Mustafa and Sims [29, 32] gave a generalisation of D-metric space to G-metric space soon after
identifying some shortcomings concerning the fundamental topological structure on D-metric spaces. They
de�ned several notions, such as continuity, completeness, compactness, convergence, and space product in
the G-metric space setting. In doing so, they replaced the tetrahedral inequality with an inequality involving
the repetition of indices. Further, Mustafa et al. [30], gave existence of a �xed point for mapping in G-metric
spaces which in�uenced many other authors. Since then, several researchers proved �xed point theorems
in G metric space. Shushanta [47] proved property P of Ciric operator on G-metric spaces. Chugh et

al. [7] proved the results of property P in G-metric spaces. Agarwal et al. [2] gave a theorem on couple
�xed point results in asymmetric G-metric spaces. Rani et al. [39] introduced the version of common
�xed point theorems for compatible and weakly compatible maps in G-metric spaces. Moreover, Jleli, and
Samet [20] gave some remarks results on G-metric spaces. For more details on G-metric spaces, one can see
[3, 5, 28, 31, 33, 43, 44, 49, 50] and the reference therein.

Likewise, Sintunavarat and Kumam [46] introduced the notion of common limit range (CLR) property
for single-valued mappings, which completely accommodated the conditions of the closeness of the degrees of
the detailed mappings and showed its superiority over the (EA) property due to Aamri and El Moutawakil
[1]. Motivated by this fact, Imdad et al. [17] established a common limit range property for a hybrid pair
of mappings and proved some �xed point results in symmetric (semi-metric) spaces. Also, Imdad et al. [16]
established the joint common limit range notion and proved the common �xed point theorem for a pair of
non-self mappings in metric space.

Some special conditions on the pairs of mappings like weakly compatible mappings, E.A. property,
faintly compatible mappings, common limit range property (CLR), coincidentally idempotent and joint
common limit range property (JCLR) has been utilised in di�erent proofs by the researchers. One can see,
[13, 16, 18, 36, 37, 38] and the references therein.

Naimpally et al. [34] generalised Goebel's [14] result in a hybrid of multivalued and single-valued maps
satisfying a contractive condition. Consequently, several �xed point theorems for multivalued maps were
extended by Naimpally et al. [34], Chauhan et al. [6] proved uni�ed common �xed point theorems for a
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hybrid pair of mappings via an implicit relation involving altering distance function. Recently, Nashine et

al. [35] established a prove on common �xed point theorem for hybrid generalised (F,ψ)-contraction under
common limit range property in metric spaces.

Next, we will describe some preliminaries of de�nition and theorems which will be useful for developing
our main results.

2. Preliminaries

De�nition 2.1. [32] Let X be a non empty set and G : X × X × X → R+ be a function satisfying the
following conditions:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X with z 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

The function G is called a generalised metric or G-metric, and the pair (X,G) is called a G-metric space.

The following example satis�es the above axioms.

Example 2.2. [32] Let X = R be the set of all real number. De�ne G : R3 → R+ by

G(x, y, z) = |x− y|+ |y − z|+ |x− z|,

for all x, y, z ∈ X. Then it is clear that (X,G) is a G-metric space with a G-metric on X.

Note that if G(x, y, z) = 0 then x = y = z.
Mustafa and Sims [32] proved the following proposition satisfying a G-metric properties.

Proposition 2.3. [32] Let (X,G) be a G-metric space, then the metric associated with G satis�es:

(i) G(x, y, z) ≤ G(x, x, y) +G(x, x, z),

(ii) G(x, y, y) ≤ 2G(y, x, x),

(iii) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a),

for all x, y, z, a ∈ X.

Mustafa and Sims [32] established some topological properties such as convergence, completeness and
continuity in G-metric spaces as follows:

De�nition 2.4. [32] Let (X,G) be a G-metric space. A sequence xn ∈ X is said to be:

(i) G-convergent to x ∈ X if for any ε > 0, there exists k ∈ N such that G(x, xn, xn) < ε for all n ≥ k;

(ii) G-Cauchy if for ε > 0, there exists k ∈ N such that, for all {xn} in X is called Cauchy sequence if for
each ε > 0, there exists n0 ∈ N such that G(xn, xm, xp) < ε for all n,m, p ≥ n0, i.e., G(xn, xm, xp)→ 0
as n,m, p→∞.
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De�nition 2.5. [32] A G-metric space is said to be G-complete if every G-Cauchy sequence in X is G-
convergent. Every G-metric on X de�nes a metric

dG(x, y) = G(x, y, y) +G(y, x, x), (1)

for all x, y ∈ X.

Proposition 2.6. [32] Let (X,G) be a G-metric space. Then the following properties are equivalent:

(i) (xn) is G-convergent to x,

(ii) G(xn, xm, xn)→ 0 as n,m→∞,

(iii) G(xn, x, x)→ 0 as n→∞,

(iv) (xn) is a G-Cauchy sequence,

(v) For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for n,m > k.

De�nition 2.7. [32] Let (X,G) and (X
′
, G

′
) be two G-metric spaces and let f : (X,G) → (X

′
, G

′
). Then

the map f is said to be G-continuous at x ∈ X if for ε > 0, there exists δ > 0 such that for all x, y ∈ X
and G(a, x, y) < δ, we have G

′
(fa, fx, fy) < ε. The function f is G-continuous if it is G-continuous for each

a ∈ X.

Proposition 2.8. [32] Let (X,G) and (X
′
, G

′
) be two G-metric spaces and let f : (X,G)→ (X

′
, G

′
). Then

the map f is said to be G-continuous at x ∈ X if and only if f is sequentially continuous, i.e., whenever

(xn) is G-convergent to x, the sequence f(xn) is G-convergent to fx.

Lemma 2.9. [32] Let (X,G) be a G-metric space. Then the function G(x, y, z) is continuous in all it is
variables.

Later, Kaewcharoen et al. [22] established the multi-valued notion in G-metric space. Let X be a G-
metric space. Denote CB(X) be the class of all non-empty, closed and bounded subsets of X. Let HG(., ., .)
be the Haursdor�- G-distance on CB(X), that is for A,B,C ∈ (CB(X)) de�ne:

HG(A,B,C) = max

{
sup
x∈A

G(x,B,C), sup
x∈B

G(x,C,A), sup
x∈C

G(x,A,B)

}
, (2)

where,

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C), (3)

dG(x,B) = inf
{
dG(x, y), y ∈ B

}
, (4)

dG(A,B) = inf
{
dG(a, b), a ∈ A, b ∈ B

}
, (5)

dG(x, y, C) = inf
{
G(x, y, z), z ∈ C

}
. (6)

Lemma 2.10. [22] Let X,G be a G-metric space and A,B ∈ CB(X). Then for each a ∈ A, we have

G(a,B,B) ≤ HG(A,B,B).

Lemma 2.11. [48] Let (X,G) be a G-metric space and A,B ∈ CB(X), then for each ε > 0, there exists
b ∈ B such that

G(a, b, b) ≤ HG(A,B,B) + ε.
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De�nition 2.12. [22] Let X be a non-empty set. Assume f : X → X and T : X → 2X are two mappings.
If w = fx ∈ Tx for some x ∈ X, then x is called a coincidence point of the pair (T, f) and w is a point of
coincidence of f and T . The mapping f and T are called weakly compatible if fx ∈ Tx for some x ∈ X
implies fTx ⊆ Tfx.

Proposition 2.13. [22] Let X be a non-empty set. Assume f : X → X and T : X → 2X are weakly
compatible mappings. If f and T have a unique point of coincidence u = fx ∈ Tx, then u is a unique
common �xed point of f and T .

Imdad et al. [17], established the concept of common limit range property for a pair of hybrid mappings
as follows.

De�nition 2.14. [17] Let (X, d) be a metric space with f : X → X and T : X → 2X be single and
multivalued mappings. Then the pair of hybrid mappings (f, T ) are said to have the (CLR) property, If
there exists a sequence {xn} in X and A ∈ 2X such that

lim
n→∞

fxn = fu ∈ A = lim
n→∞

Txn,

for some u, v ∈ X and A ∈ CB(X).

Mustafa et al. [27] de�ned a concept of 0- mappings on G-metric spaces as follows:

De�nition 2.15. [27] Let (X, d) be a G- metric space and let T : X → X be a mapping. For A ⊂ X, let
δ(A) = sup{G(a, b, c), a, b, c ∈ A} and ∀x, y ∈ X, de�ne,

0(x, T, n) = {x, Tx, T 2x, . . . Tnx},
0(x, T,∞) = {x, Tx, T 2x, T 3x . . . }.

De�nition 2.16. [27] Let {xn}∞n=0 be a sequence of elements of X, then for i, j, let

0(xi, j) = {xi, xi+1, xi+2, . . . xi+j},
0(xi,∞) = {xi, xi+1, xi+2, . . . }.

Mustafa et al. [27] proved their results on common �xed points in G-metric spaces using the concept of
(E.A.) property as follows:

Theorem 2.17. [27] Let (X,G) be a complete G- metric space and suppose mapping f, g : X → X satisfy
the following conditions:

(i) f and g are G-weakly commuting of type Gf ,

(ii) f(X) ⊆ g(X),

(iii) g(X) is a G-complete subspace of X,

(iv) G(fx, fy, fz) ≤ φ(M(x, y, z)), for all x, y, z ∈ X,

where

M(x, y, z) ≤


G(gx, gy, gz), G(gx, fy, gx)
G(gy, fx, gy), G(gz, fx, gz)
G(gz, fy, gz), G(gy, gz, gy),

G(gx, fz, gx).


If there exists x0 ∈ X such that δ(0(x0, f,∞)) <∞ then f and g have a unique common �xed point.

The notion of an almost altering distance function was introduced by Popa [36] which is as follows:
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De�nition 2.18. [36] A function ψ : [0,∞)→ [0,∞) is almost altering distance if

(Ψ1) ψ is continuous;

(Ψ2) ψ(t) = 0 if and only if t = 0.

Example 2.19. [36]

ψ(t) =


t, for t = [0, 1];

1
t for t ∈ (1,∞).

In 2020, Karapinar et al. [23] proved their results on p-hybrid Wardowski contraction as follows:

De�nition 2.20. [23] A mapping J : (M, d)→ (M, d) is called a p- hybrid Wardowski contraction, if there
is G ∈ β such that

d(J v,Jw) > 0⇒ τ +G(d(J v,Jw)) ≤ G(ApJ (v, w)),

for all p > 0. In particular, if the above inequality holds for p = 0, we say the J is a 0-hybrid Wardowski
contraction.

De�nition 2.21. [23, 24] Let (M, d) be a metric space and J be a self-mapping on this space for p ≥ 0
and ki ≥ 0, i = 1, 2, 3, 4, such that

∑4
i=1 ki = 1, we de�ne the following expression.

ApJ (v, w) =



[
k1(d(v, w))p + k2(d(v,J v))p + k3(d(w,Jw))p + k4

(
d(v,J v)+d(v,Jw)

2

)p] 1
p
,

for p ≥ 0, v, w ∈M;[
d(v, w)

]K1
[
d(v,J v)

]K2
[
d(w,Jw)

]K3
[
d(v,Jw)+d(w,J v)

2

]K4

,

for p = 0, v, w ∈M|J (M).

Theorem 2.22. [Theorem 4 and 5] [23]

(1) A p-hybrid Wardowski contraction self mapping on a complete metric space admits exactly one �xed
point inM.

(2) A 0-hybrid Wardowski contraction self mapping on a complete metric space admits �xed point inM
provided that for each sequence {nn} in (0,∞), limn→∞ nn = 0 i� limn→∞G(nn) = 0.

3. Main Results

To establish our �rst main result, we start by extending De�nition 2.14 using the G�metric space concept.

De�nition 3.1. Let (X,G) be a G -metric space with f : X → X and T : X → CB(X) be single
and multivalued mappings. Then the pair (f, T ) of hybrid mapping satisfy a common limit range (CLRf )
property with respect to f , if there exists a sequence {xn} in X and A ∈ CB(X) such that

lim
n→∞

fxn = fu ∈ A = lim
n→∞

Txn,

for some u ∈ X.

Now, we prove the following theorem which is an extension of Theorem 2.17.

Theorem 3.2. Let (X,G) be a complete G- metric space and suppose mapping f, T : X → 2X with almost
altering distance ψ ∈ Ψ satisfy the following conditions:
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(a) f and T are weakly compatible,

(b) f and T satisfy CLRf property,

(c) Tx ⊆ f(X),

(d) T (X) is a G-complete subspace of X,

(e) HG(Tx, Ty, Tz) ≤ ψ(M(x, y, z)); for all x, y, z ∈ X,

where

M(x, y, z) ≤ max


G(fx, fy, fz), G(fx, Ty, fx),
G(fy, Tx, fy), G(fz, Tx, fz),
G(fz, Ty, fz), G(fy, Tz, fy),

G(fx, Tz, fx)

 . (7)

Then f and T have a unique common �xed point.

Proof. From condition (a), using De�nition 2.12 one can show that f and T are weakly compatible. Since
fx ∈ Tx⇒ fTx ⊆ Tfx. Thus T (X) ⊆ f(X) and T (X) is a G-complete subspace of X.

Applying De�nition 3.1, as the pair (f, T ) satisfy CLRf property, there exists a sequence {xn} in X such
that

lim
n→∞

fxn = fu ∈ A = lim
n→∞

Txn,

for some u ∈ X and A ∈ 2X .
First we show that fu ∈ Tu. If fu 6= Tu, for all u ∈ X, using Equation 7 with x = xn and y = u, we get

HG(Txn, Tu, Tz) ≤ ψ(M(xn, u, z)), (8)

where

M(xn, u, u) ≤ max


G(fxn, fu, fz), G(fxn, Tu, fxn),
G(fu, Txn, fu), G(fz, Txn, fz),
G(fz, Tu, fz), G(fu, Tz, fu),

G(fxn, T z, fxn)

 . (9)

By taking y = z in (9) we have

M(xn, u, u) ≤ max


G(fxn, fu, fu), G(fxn, Tu, fxn),
G(fu, Txn, fu), G(fu, Txn, fu),
G(fu, Tu, fu), G(fu, Tu, fu),

G(fxn, Tu, fxn),

 (10)

Passing to the limits as n→∞ in (10) with fxn = fu, A = Txn, we obtain

M(xn, u, u) ≤ max


G(fu, fu, fu), G(fu,A, fu),
G(fu,A, fu), G(fu,A, fu),
G(fu,A, fu), G(fu,A, fu),

G(fu,A, fu),


≤ max


0, G(fu,A, fu),

G(fu,A, fu), G(fu,A, fu),
G(fu,A, fu), G(fu,A, fu),

G(fu,A, fu),


⇒M(xn, u, u) = G(fu,A, fu). (11)
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Using (11) in (8) as a results yields

HG(A, Tu, Tu) ≤ ψ(G(fu,A, fu)). (12)

As ψ is non-decreasing we have

HG(A, Tu, Tu) < G(fu,A, fu), (13)

Using (13) and Lemma 2.11, we get

G(fu, Tu, Tu) ≤ G(fu,A, fu) + ε,

G(fu, Tu, Tu)−G(fu,A, fu) ≤ ε,

⇒ 0 < ε, (14)

which is a contradiction. Hence, fu ∈ Tu which shows that the pair (f, T ) has a coincidence point.
Next, assume that if fu ∈ Tu and fv ∈ Tv. By Lemma 2.10 and Proposition 2.13, we have

G(fu, v, v) < G(Tu, Tv, Tv).

Now, we prove the uniqueness of a point of coincidence of f and T . We prove that the �xed point of T is
unique. Assume that v ∈ X is another coincidence �xed point of f and T such that v 6= u. Then, since u
and v are such that fu ∈ Tu, fv ∈ Tv ∈ X, we set x = u and y = v in (7) which yields

HG(Tu, Tv, Tz) ≤ ψ(M(u, v, z)), (15)

where,

M(u, v, z) ≤ max


G(fu, fv, fz), G(fu, Tv, fu),
G(fv, Tu, fv), G(fz, Tu, fz),
G(fz, Tv, fz), G(fv, Tz, fv),

G(fu, Tz, fu)

 . (16)

By taking y = z in (16) we have

M(u, v, v) ≤ max


G(fu, fv, fv), G(fu, Tv, fu),
G(fv, Tu, fv), G(fv, Tu, fv),
G(fv, Tv, fv), G(fv, Tv, fv),

G(fu, Tv, fu),


⇒M(u, v, v) = G(fu, Tv, fu). (17)

Using (17) in (15) as a result yields

HG(Tu, Tv, Tv) ≤ ψ(G(fu, Tv, fu)). (18)

As ψ is non-decreasing we have,

HG(Tu, Tv, Tv) < G(fu, Tv, fu), (19)

which is a contradiction. Hence, fv ∈ Tv which shows that the pair (f, T ) has a coincidence point. Thus,
(f, T ) has a unique common �xed point which is u, that is the assumption given in Theorem 3.2 validated.

Furthermore, we formulate the corollaries:

Corollary 3.3. Let (X,G) be a G-metric space. Assume that f : X → X and T : X → 2X satisfy the
conditions of Theorem 3.2 if any of the following contractions is applied:
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(i)

HG(Tx, Ty, Ty) = kmax

{
G(fy, Ty, Ty)+(

G(fx, Ty, Ty), 2G(fy, Tx, Tx)
)} (20)

for all x, y, z ∈ X, where k ∈ [0, 13).

(ii)

HG(Tx, Ty, Tz) =


G(fx, fy, fz), G(fx, Tx, Tx)
G(fy, Ty, Ty), G(fy, Tz, Tz)
G(fx, Ty, Ty), G(fx, Tz, Tz),

G(fz, Tx, Tx),

 (21)

(iii)

HG(Tx, Ty, Tz) =


αG(fx, fy, fz)+

β[G(fx, Tx, Tx) +G(fy, Ty, Ty)
+G(fz, Tz, Tz)]

 (22)

for all x, y, z ∈ X and 0 ≤ α+ 3β < 1.

(iv)

HG(Tx, Ty, Tz) ≤ ψ(M(x, y, z)),

where

M(x, y, z) = max



G(fx, fy, fy), G(fx, Tx, Tx)
G(fy, Ty, Ty), G(fz, Tz, Tz),

G(fx,fy,Tx)
2 ,

G(fx,Ty,Ty)+G(fx,Tz,Tz)+G(fy,Tx,Tx)
4 ,

G(fx,fy,Tx)
2 ,

G(fx,Ty,Ty)+G(fy,Tx,Tx)+G(fz,Tx,Tx)
5


(23)

for all x, y, z ∈ X, where k ∈ [0, 12).

Corollary 3.4. Let (X,G) be a G-metric space. Assume that f : X → X and T : X → 2X be a pair of
hybrid mappings. Then (f, T ) is called a generalized Meir-Keeler type contraction whenever for each ε > 0,
there exists δ > 0 such that

ε ≤ ψ(M(x, y, z)) < ε+ δ =⇒ HG(Tx, Ty, Tz) < ε,

where

M(x, y, z) = max

{
G(fx, fy, fz), G(Tx, fx, fx)
G(Ty, fy, fy), G(Tz, fz, fz)

}
(24)

for all x, y, z ∈ X. Then (f, T ) has a unique common �xed point.
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Next, we present our second main results, by extending De�nition 2.21 using a pair of p-hybrid mapping
in G�metric space concept.

De�nition 3.5. Let (X,G) be a G-metric space and f, T be a pair of hybrid mapping on this space for
p ≥ 0 and ki ≥ 0, i = 1, 2, 3, 4, such that

∑4
i=1 ki = 1. We de�ne the following expression.

Mp
G(ζ, η, η) =



[
k1(G(fζ, fη, fη))p + k2(G(fζ, T ζ, T ζ))p + k3(G(Tη, fη, fη))p

+k4

(
G(fζ,Tη,Tη)+G(Tζ,fη,fη)

2

)p] 1
p
,

for p ≥ 0, ζ, η ∈ X;[
G(fζ, fζ, fη)

]K1
[
G(fζ, T ζ, T ζ)

]K2
[
G(Tη, fη, fη)

]K3[
G(Tζ,fη,fη)+G(fζ,Tη,Tη)

2

]K4

,

for p = 0, ζ, η ∈ X.

(25)

Theorem 3.6. Let (X,G) be a complete G- metric space and suppose mapping f, T : X → CB(X) is a
p-hybrid contraction with almost altering distance ψ ∈ Ψ satisfy the following conditions:

(a) f and T are weakly compatible;

(b) f and T satisfy CLRf property;

(c) Tx ⊆ f(X);

(d) T (X) is a G-complete subspace of X;

(e) HpG(Tζ, Tη, Tη) ≤ ψ(Mp
G(ζ, η, η)); for all ζ, η ∈ X and p ≥ 0,

where

Mp
G(ζ, η, η) =

[
k1(G(fζ, fη, fη))p + k2(G(fζ, T ζ, T ζ))p + k3(G(Tη, fη, fη))p

+k4

(G(fζ, Tη, Tη) + d(Tζ, fη, fη)

2

)p] 1
p
. (26)

Then f and T admit a unique common �xed point in X.

Proof. Applying De�nition 3.1, as the pair (f, T ) satisfy CLRf property, there exists a sequence {xn} in X
such that

lim
n→∞

fζn = fw ∈ B = lim
n→∞

Tζn,

for some w ∈ X and B ∈ CB(X).
We assume that fw ∈ Tw. If fw 6= Tw, for all w ∈ X, using (26) with ζ = ζn and η = w, we have

Hp
G(Tζn, Tw, Tw) ≤ ψ(Mp

G(ζn, w, w)), (27)

Mp
G(ζn, w, w) =

[
k1(G(fζn, fw, fw))p + k2(G(fζn, T ζn, T ζn))p + k3(G(Tw, fw, fw))p

+k4

(G(fζn, Tw, Tw) +G(Tζn, fw, fw)

2

)p] 1
p
. (28)
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Passing to the limit as n→∞ in (28) with fζn = fw, B = Tζn = Tw, we obtain

Mp
G(ζn, w, w) ≤

[
k1(G(fw, fw, fw))p + k2(G(fw, Tw, Tw))p + k3(G(Tw, fw, fw))p

+k4

(G(fw, Tw, Tw) +G(Tw, fw, fw)

2

)p] 1
p
,

≤
[
(k2 + k3 + k4)

(
G(fw, Tw, Tw)

)p] 1
p
,

= (k2 + k3 + k4)
1
pG(fw, Tw, Tw). (29)

Using (29) in (27) as a result yields

Hp
G(B, Tu, Tu) ≤ ψ((k2 + k3 + k4)

1
pG(fw, Tw, Tw)). (30)

By the property of ψ, it follows that

Hp
G(B, Tw, Tw) < G(fw, Tw, Tw). (31)

Using (31) and Lemma 2.11, we get

G(fw, Tw, Tw) ≤ G(fw, Tw, Tw) + ε,

G(fw, Tw, Tw)−G(fw, Tw, Tw) ≤ ε,

⇒ 0 < ε, (32)

which is a contradiction. Hence, fw ∈ Tw which shows that the pair (f, T ) has a coincidence point.
Next, assume that if fw ∈ Tw and fz ∈ Tz. By Lemma 2.10 and Proposition 2.13, we have

G(fz, z, z) < G(Tz, Tz, Tz).

For the uniqueness point of coincidence of f and T , we follow a similar procedure as in the proof of Theorem
3.2.

Theorem 3.7. Let (X,G) be a complete G- metric space and suppose mapping f, T : X → CB(X) is a
0-hybrid contraction with almost altering distance ψ ∈ Ψ satisfy the following conditions:

(a) f and T satisfy CLRf property;

(b) HpG(Tζ, Tη, Tη) ≤ ψ(Mp
G(ζ, η, η)); for all ζ, η ∈ X and p = 0 with k1 + k2 + k3 + k4 < 1,

where

Mp
G(ζ, η, η) =

[
G(fζ, fζ, fη)

]K1
[
G(fζ, T ζ, T ζ)

]K2
[
G(Tη, fη, fη)

]K3

[G(Tζ, fη, fη) +G(fζ, Tη, Tη)

2

]K4

, (33)

Then f and T admits a unique common �xed point in X.

Proof. By De�nition 3.1, (f, T ) satisfy CLRf property, there exists a sequence {xn} in X such that

lim
n→∞

fζn = fw ∈ B = lim
n→∞

Tζn,

for some w ∈ X and B ∈ CB(X).
Suppose that fw ∈ Tw. If fw 6= Tw, for all w ∈ X, using (25) with ζ = ζn and η = w, we have

Hp
G(Tζn, Tw, Tw) ≤ ψ(M(ζn, w, w)), (34)

Mp
G(ζn, w, w) =

[
G(fζn, fζn, fw)

]K1
[
G(fζn, T ζn, T ζn)

]K2
[
G(Tw, fw, fw)

]K3

[G(Tζn, fw, fw) +G(fζn, Tw, Tw)

2

]K4

. (35)
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Passing to the limit as n→∞ in (35) with fζn = fw, B = Tζn = Tw, we obtain

Mp
G(ζn, w, w) ≤

[
G(fw, fw, fw)

]K1
[
G(fw, Tw, Tw)

]K2
[
G(Tw, fw, fw)

]K3

[G(Tw, fw, fw) +G(fw, Tw, Tw)

2

]K4

,

= [G(fw, Tw, Tw)](k2+k3+k4). (36)

Using (36) in (34) as a result yields

Hp
G(B, Tu, Tu) ≤ ψ([G(fw, Tw, Tw)](k2+k3+k4)). (37)

By the property of ψ, it follows that

Hp
G(B, Tw, Tw) < [G(fw, Tw, Tw)](k2+k3+k4). (38)

Using (38) and Lemma 2.11, we get

G(fw, Tw, Tw) ≤ [G(fw, Tw, Tw)](k2+k3+k4) + ε,

G(fw, Tw, Tw)− [G(fw, Tw, Tw)](k2+k3+k4) ≤ ε,

=⇒ 0 < ε, (39)

which is a contradiction. Hence, fw ∈ Tw which shows that the pair (f, T ) has a coincidence point. From
the proof of Theorem 3.2, we conclude that T is 0-hybrid contraction in G-metric space. Also satis�es all
conditions of Theorem 3.7.

In the following section, we formulate a vivid example to validate Theorem 3.2.

Example 3.8. Let X = [0, 1] be equipped with G-metric, G(x, y, z) = |x − y| + |y − z| + |x − z|. De�ne

Tx = [0, x
8(x+1) ], fx = x

3
2 and xn = 1

n . Also, ψ = 1
2 t, t > 0 for all x, y, z ∈ X.

Using De�nition 2.12, the mappings f and T are called weakly compatible if fx ∈ Tx for some x ∈ X
which implies that fTx ⊆ Tfx. To observe this consider, Tx = [0, x

8(x+1) ] and fx = x
3
2 .

For

fTx =

[
x

8(x+ 1)

] 3
2

,

and

Tfx =

[
0,

x
3
2

8(x
3
2 + 1)

]
,

so that[
x

8(x+ 1)

] 3
2

⊆

[
0,

x
3
2

8(x
3
2 + 1)

]
.

Also, f and T satisfy CLRf property. By De�nition 3.1 and let {xn} be a sequence in X. Then

lim
n→∞

f
( 1

n

)
= fu ∈ A = lim

n→∞
T
( 1

n

)
,

lim
n→∞

f
( 1

n

)
= f0 ∈ A = lim

n→∞
T
( 1

n

)
.

Next, we show that TX is a G-complete subspace in X. By De�nition 2.5 we have

G(x, y, y) ≤ |x− y|+ |y − y|+ |x− y|
= 2|x− y|, (40)
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and

G(y, x, x) ≤ |y − x|+ |x− x|+ |y − x|,
= 2|y − x|. (41)

Using (40) and (40) in (1), we get

dG(x, y) ≤ 2|x− y|+ 2|y − x|
= 4|x− y|. (42)

To prove (e), let x, y, z ∈ X. If x = y = z = 0, then Tx = Ty = Tz = 0 and HG(Tx, Ty, Tz) = 0. Our proof
is done. If not suppose that the value of x, y, z are not all zero.

For x ≤ y ≤ z, we have

HG(Tx, Ty, Tz) = HG

([
0,

x

8(x+ 1)

]
,
[
0,

y

8(y + 1)

]
,
[
0,

z

8(z + 1)

])
. (43)

By (2)

=⇒ max



sup0≤a≤ x
8(x+1)

G

(
a,
[
0, y

8(y+1)

]
,
[
0, z

8(z+1)

])
,

sup0≤b≤ y
8(y+1)

G

(
b,
[
0, x

8(x+1)

]
,
[
0, z

8(z+1)

])
,

sup0≤c≤ z
8(z+1)

G

(
a,
[
0, x

8(x+1)

]
,
[
0, y

8(y+1)

])


.

Since x ≤ y ≤ z, then
[
0, x

8(x+1)

]
⊆
[
0, y

8(y+1)

]
⊆
[
0, z

8(z+1)

]
, using (3) implies that

dG

([
0,

x

8(x+ 1)

]
,
[
0,

y

8(y + 1)

])
= 0,

dG

([
0,

y

8(y + 1)

]
,
[
0,

z

8(z + 1)

])
= 0,

dG

([
0,

x

8(x+ 1)

]
,
[
0,

z

8(z + 1)

])
= 0.

Now for each 0 ≤ a ≤ x
8(x+1) and dG(x, y) = 4|x− y| in (3) we have
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G

(
a,
[
0,

y

8(y + 1)

]
,
[
0,

z

8(z + 1)

])
= dG

(
a,
[
0,

y

8(y + 1)

])
+

dG

([
0,

y

8(y + 1)

]
,
[
0,

z

8(z + 1)

])
+

dG

(
a,
[
0,

z

8(z + 1)

])
= 0

≤ 4a− 4y

8(y + 1)
+ 0 + 4a− 4z

8(z + 1)
,

= 8a− 4y(z + 1) + 4z(y + 1)

8(y + 1)(z + 1)
,

≤ 8x

8(x+ 1)
− 4y(z + 1) + 4z(y + 1)

8(y + 1)(z + 1)
,

=
8x(y + 1)(z + 1)− (4y(z + 1) + 4z(y + 1))(x+ 1)

8(x+ 1)(y + 1)(z + 1)

(44)

Next, for each 0 ≤ b ≤ y
8(y+1) and dG(x, y) = 4|x− y| in (3) we have

G

(
b,
[
0,

x

8(x+ 1)

]
,
[
0,

z

8(z + 1)

])
= dG

(
b,
[
0,

x

8(x+ 1)

])
+

dG

([
0,

x

8(x+ 1)

]
,
[
0,

z

8(z + 1)

])
+

dG

(
b,
[
0,

z

8(z + 1)

])
,

≤ 4b− 4x

8(x+ 1)
+ 0 + 4b− 4z

8(z + 1)
,

= 8b− 4x(z + 1) + 4z(x+ 1)

8(x+ 1)(z + 1)
,

≤ 8y

8(y + 1)
− 4x(z + 1) + 4z(x+ 1)

8(x+ 1)(z + 1)
,

=
8y(x+ 1)(z + 1)− (4x(z + 1) + 4z(x+ 1))(y + 1)

8(x+ 1)(y + 1)(z + 1)

(45)
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Similarly, for each 0 ≤ c ≤ z
8(z+1) and (3) gives

G

(
c,
[
0,

x

8(x+ 1)

]
,
[
0,

y

8(y + 1)

])
= dG

(
c,
[
0,

x

8(x+ 1)

])
+

dG

([ x

8(x+ 1)

]
,
[
0,

y

8(y + 1)

])
+

dG

(
c,
[
0,

y

8(y + 1)

])
,

≤ 4c− 4x

8(x+ 1)
+ 0 + 4c− 4y

8(y + 1)
,

= 8c− 4x(y + 1) + 4y(x+ 1)

8(x+ 1)(y + 1)
,

≤ 8z

8(z + 1)
− 4x(y + 1) + 4y(x+ 1)

8(x+ 1)(y + 1)
,

=
8z(x+ 1)(y + 1)− (4x(y + 1) + 4y(x+ 1))(z + 1)

8(x+ 1)(y + 1)(z + 1)

(46)

As a result, we deduce

HG(Tx, Ty, Tz) ≤ max



sup0≤a≤ x
8(x+1)

8x(y+1)(z+1)−(4y(z+1)+4z(y+1))(x+1)
8(x+1)(y+1)(z+1) ,

sup0≤b≤ y
8(y+1)

8y(x+1)(z+1)−(4x(z+1)+4z(x+1))(y+1)
8(x+1)(y+1)(z+1) ,

sup0≤c≤ z
8(z+1)

8z(x+1)(y+1)−(4x(y+1)+4y(x+1))(z+1)
8(x+1)(y+1)(z+1)


,

=
8z(x+ 1)(y + 1)− (4x(y + 1) + 4y(x+ 1))(z + 1)

8(x+ 1)(y + 1)(z + 1)
. (47)
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On the other hand, we calculate the following G-metrics. By (4) and (5), we get

G(fx, fy, fz) = G
(
x

3
2 , y

3
2 , z

3
2

)
,

≤
∣∣∣x 3

2 − y
3
2

∣∣∣+
∣∣∣y 3

2 − z
3
2

∣∣∣+
∣∣∣x 3

2 − z
3
2

∣∣∣,
= 2x

3
2 − 2z

3
2 .

G(fx, Ty, fx) = G
(
x

3
2 ,
[
0,

y

8(y + 1)

]
, x

3
2

)
,

≤ inf
{
dG

(
x

3
2 , 0
)
, dG

(
x

3
2 ,

y

8(y + 1)

)}
,

≤ inf
{

4x
3
2 , 4x

3
2 − 4y

8(y + 1)

)}
,

= 4x
3
2 − y

8(y + 1)
.

G(fy, Tx, fy) = G
(
y

3
2 ,
[
0,

4x

8(x+ 1)

]
, y

3
2

)
,

≤ inf
{
dG

(
y

3
2 , 0
)
, dG

(
y

3
2 ,

x

8(x+ 1)

)}
,

≤ inf
{

4y
3
2 , 4y

3
2 − x

8(x+ 1)

)}
,

= 4y
3
2 − 4x

8(x+ 1)
.

G(fz, Ty, fz) = G
(
z

3
2 ,
[
0,

y

8(y + 1)

]
, z

3
2

)
,

≤ inf
{
dG

(
z

3
2 , 0
)
, dG

(
z

3
2 ,

4y

8(y + 1)

)}
,

≤ inf
{

4z
3
2 , 4z

3
2 − 4y

8(y + 1)

)}
,

= 4z
3
2 − 4y

8(y + 1)
.

G(fy, Tz, fy) = G
(
y

3
2 ,
[
0,

z

8(z + 1)

]
, y

3
2

)
,

≤ inf
{
dG

(
y

3
2 , 0
)
, dG

(
y

3
2 ,

z

8(z + 1)

)}
,

≤ inf
{

4y
3
2 , 4y

3
2 − 4z

8(z + 1)

)}
,

= 4y
3
2 − 4z

8(z + 1)
.

G(fx, Tz, fx) = G
(
x

3
2 ,
[
0,

z

8(z + 1)

]
, x

3
2

)
,

≤ inf
{
dG

(
x

3
2 , 0
)
, dG

(
x

3
2 ,

z

8(z + 1)

)}
,

≤ inf
{

4x
3
2 , 4x

3
2 − 4z

8(z + 1)

)}
,

= 4x
3
2 − 4z

8(z + 1)
.
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Applying Equation (7) we obtain

M(x, y, z) ≤ max

{
2x

3
2 − 2z

3
2 , 4x

3
2 − 4y

8(y+1) , 4y
3
2 − 4x

8(x+1) , 4z
3
2 − 4x

8(x+1) ,

4z
3
2 − 4y

8(y+1) , 4y
3
2 − 4z

8(z+1) , 4x
3
2 − 4z

8(z+1) ,

}

= 4z
3
2 − 4y

8(y + 1)
. (48)

By (48) and (47) it follows that

8z(x+ 1)(y + 1)− (4x(y + 1) + 4y(x+ 1))(z + 1)

8(x+ 1)(y + 1)(z + 1)
≤ ψ(4z

3
2 − 4y

8(y + 1)
).

This shows that all condition imposed in Theorem 3.6 are satis�ed. Hence a pair of hybrid mapping f and
T in G-metric space has a unique common �xed point x = 0.

Acknowledgement: The authors are thankful to the learned reviewers for their valuable comments.
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