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Abstract 
In this paper, we consider the inverse scattering problem for Sturm-Liouville operator with discontinuity 

conditions at some point on the positive half line. The scattering data of this boundary value problem is examined. The 

resolvent operator is constructed and the expansion formula with respect to the eigenfunctions of this boundary value 

problem is obtained. The main equation or modified Marchenko equation of the inverse scattering problem is derived 

and an algorithm of the construction of the potential function according to scattering data of this boundary value 

problem is given. 
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Pozitif Yarı Eksende Süreksizlik Koşuluna Sahip Sturm-Liouville 

Operatörünün Ters Saçılma Problemi 
 

Öz 
Bu çalışmada, pozitif yarı eksen üzerindeki bir noktada süreksizlik koşuluna sahip Sturm-Liouville operatörünün 

ters saçılma problemi ele alınmıştır. Ele alınan sınır değer probleminin saçılma verileri incelenmiştir. Rezolvent 

operatörü inşa edilmiş ve sınır değer probleminin özfonksiyonlarına göre ayrışım formülü elde edilmiştir. Ters saçılma 

probleminin temel denklemi veya modifiye edilmiş Marchenko denklemi elde edilmiş ve sınır değer probleminin 

saçılma verilerine göre potansiyel fonksiyonun inşa edilme algoritması verilmiştir.  

 

Anahtar kelimeler: Sturm-Liouville denklemi, süreksizlik koşulları, ters saçılma problemi, temel denklem 

INTRODUCTION 

In physical and mathematical literature, there 

are numerous studies based on scattering theory 
because of its applications in the quantum mechanics 

(see Chadan and Sabatier, 1977; Faddeev and 

Takhtajan, 2007; Jaluent and Jean, 1976 and the 
references therein) and the investigations on this 

subject have been continued in detail. It is well 

known in quantum mechanics that the scattering of 
particles by a potential field is completely 

determined by the asymptotic form of the wave 

functions at infinity. Therefore, the following 

question arises: is it possible to reconstruct the 
potential from a knowledge of the asymptotic form 

of the wave functions at infinity? and then, if it is 

possible, to indicate a method for constructing the 
potential. This is known as the inverse problem of 

scattering theory. The mathematical side of this 

question is comprehensively studied and formalized 

in (Agranovich and Marchenko, 1963) and 
(Marchenko, 2011).   

In this paper, we will solve the inverse 

scattering problem of Sturm-Liouville operator with 
discontinuity conditions at some point on positive 

half line by using the method of Marchenko. Then, 

consider the Sturm-Liouville equation (or 
equivalently the time-independent one-dimensional 

Schrödinger equation)  

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆2,    0 < 𝑥 < ∞       (1) 

with boundary conditions  

𝑦′(0) − ℎ𝑦(0) = 0    (2) 

and discontinuity conditions at the point 𝑎 ∈ (0, ∞)  

𝑦(𝑎 − 0) = 𝛼𝑦(𝑎 + 0),  
 𝑦′(𝑎 − 0) = 𝛼−1𝑦′(𝑎 + 0)           (3) 
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where 1 ≠ 𝛼 > 0, ℎ is an arbitrary real number, 

𝑞(𝑥) is a real function satisfying the condition 

∫ 𝑥|𝑞(𝑥)|𝑑𝑥 < ∞.
∞

0
      (4) 

In case of 𝛼 = 1 i.e. in classical case, the 
inverse scattering problem of the boundary value 

problem (1)-(3) was completely solved by 

Marchenko (1955; 2011) and Levitan (1975; 1987). 
The inverse scattering problem for the discontinuous 

case on the positive half line was firstly studied by 

Gasymov (1977) and Darwish (1994) and also 
Guseinov and Pashaev (2002) solved the inverse 

discontinuous scattering problem by using the new 

integral representation (non-triangular) which was 

obtained for the Jost solution of the Sturm-Liouville 
equation with discontinuous coefficient. Then, the 

direct and inverse scattering problems for 

discontinuous Sturm-Liouville equation under 
different boundary conditions were examined with 

the help of this integral representation in (Çöl, 2015; 

El-Raheem and Salama, 2015; Mamedov, 2010; 
Mamedov and Cetinkaya, 2015; Mızrak, Mamedov 

and Akhtyamov, 2017). Inverse problem for a wave 

equation with piecewise constant coefficient was 

worked in (Lavrent’ev Jr, 1992). In case of the 
Sturm-Liouville equation with discontinuity 

conditions (or transmission conditions) at a point on 

the positive half line, the direct and inverse 
scattering problem with various boundary conditions 

and discontinuity conditions were investigated in 

(Huseynov and Osmanova, 2007; Huseynov and 

Osmanli, 2009; Huseynov and Mammadova, 2013; 
Manafov and Kablan, 2013). Moreover, the direct 

and inverse scattering problem for Sturm-Liouville 

operator with nonlinear spectral parameter in the 
boundary conditions were studied in (Goktas and 

Mamedov, 2020; Mamedov, 2009; Mamedov and 

Kosar, 2010; Mamedov and Kosar, 2011). 
In summary, the results obtained in this paper 

can be given as follows: firstly, the scattering data of 

the boundary value problem (1)-(3) are examined. 

Secondly, the resolvent operator is constructed and 
the eigenfunction expansion formula is obtained. 

Finally, we examine the inverse scattering problem 

that can be stated in the following way: determine a 

method of constructing the potential 𝑞(𝑥) from the 

scattering data of the boundary value problem (1)-

(3). Therefore, the main equation of the inverse 

problem is derived and an algorithm for the 

construction of the potential function 𝑞(𝑥) according 

to scattering data is given.  

 

MATERIAL AND METHODS 

 

To solve this inverse scattering problem, we use 

the method of Marchenko, in this method, the 

transformation operator is used and the central role 
is played by the main equation with respect to the 

kernel of the transformation operator. However, due 

to the discontinuity conditions (3), the integral 
representation (not transformation operator) 

obtained in (Huseynov and Osmanova, 2007) is used 

and so, the main equation of the problem (1)-(3) is 
different from the classical main equation or 

Marchenko equation. Hereby, we must specify that 

the existence of discontinuity conditions (3) in the 

boundary value problem (1)-(3) strongly influences 
the structure of the representation of the Jost 

solution and the main equation of the inverse 

scattering problem.  
Now, we give the integral representation of the 

Jost solution of the equation (1) with discontinuity 

conditions (3) obtained in (Huseynov and 

Osmanova, 2007):  
For all λ from the upper half-plane, the equation 

(1) satisfying the conditions (3) and (4) has the Jost 

solution 𝑒(𝑥, 𝜆) that can be represented in the form 

𝑒(𝑥, 𝜆) = 𝑒0(𝑥, 𝜆) + ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡
∞

𝑥
 (5) 

where 

𝑒0(𝑥, 𝜆) = {
𝑒𝑖𝜆𝑥 ,                                              𝑥 > 𝑎,

𝛼+𝑒𝑖𝜆𝑥 + 𝛼−𝑒𝑖𝜆(2𝑎−𝑥),     0 < 𝑥 < 𝑎
 

𝛼± =
1

2
(𝛼 ±

1

𝛼
), for each fixed 𝑥 ∈ (0, 𝑎) ∪ (𝑎, ∞) 

the kernel 𝐾(𝑥, . ) belongs to the space 𝐿1(𝑥, ∞) and 

satisfies the following properties: 

𝐾(𝑥, 𝑥) =
𝛼+

2
∫ 𝑞(𝑡)𝑑𝑡,      𝑥 ∈ (0, 𝑎)

∞

𝑥
      (6) 

𝐾(𝑥, 𝑥) =
1

2
∫ 𝑞(𝑡)𝑑𝑡,      𝑥 ∈ (𝑎, ∞)

∞

𝑥
     (7) 

      𝐾(𝑥, 2𝑎 − 𝑥 + 0) − 𝐾(𝑥, 2𝑎 − 𝑥 − 0) = 

  =
𝛼−

2
(∫ 𝑞(𝑡)𝑑𝑡 −

∞

𝑎
∫ 𝑞(𝑡)𝑑𝑡

𝑎

𝑥
), 𝑥 ∈ (0, 𝑎).     (8) 

It is seen from this representation that the triangular 

property of Jost solution representation is lost and 

the kernel function has a discontinuity along the line 

𝑡 = 2𝑎 − 𝑥 for 𝑥 ∈ (0, 𝑎). 
The solution 𝑒(𝑥, 𝜆) is regular with respect to 𝜆 

in the upper half plane 𝐼𝑚𝜆 > 0 and continuous 

for 𝐼𝑚𝜆 ≥ 0. For real 𝜆 ≠ 0, the function 𝑒(𝑥, 𝜆)  

and 𝑒(𝑥, 𝜆) form a fundamental system of solutions 
of equation (1) with discontinuity conditions (3) and 

their Wronskian is as follows:  
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𝑊 {𝑒(𝑥, 𝜆), 𝑒(𝑥, 𝜆)} = 

= 𝑒′(𝑥, 𝜆)𝑒(𝑥, 𝜆) − 𝑒(𝑥, 𝜆)𝑒′(𝑥, 𝜆) = 2𝑖𝜆.       (9) 

Let 𝜙(𝑥, 𝜆) be the solution of the equation (1) 
with discontinuity conditions (3) under the initial 

conditions 

𝜙(0, 𝜆) = 1,   𝜙′(0, 𝜆) = ℎ. 
 

RESULTS AND DISCUSSION 

 

Scattering Data 

 

Lemma 1. The following identity holds for all real 

𝜆 ≠ 0:  
2𝑖𝜆𝜙(𝑥,𝜆)

𝑒′(0,𝜆)−ℎ𝑒(0,𝜆)
= 𝑒(𝑥, 𝜆) − 𝑆ℎ(𝜆)𝑒(𝑥, 𝜆)       (10) 

where 

𝑆ℎ(𝜆) =
𝑒′(0,𝜆)−ℎ𝑒(0,𝜆)

𝑒′(0,𝜆)−ℎ𝑒(0,𝜆)
     (11) 

and 𝑆ℎ(𝜆) = 𝑆ℎ(−𝜆) = [𝑆ℎ(−𝜆)]−1. 

Proof. Since the functions 𝑒(𝑥, 𝜆) and 𝑒(𝑥, 𝜆) form 
a fundamental system of solutions of the equation 

(1) with the condition (3) for all real 𝜆 ≠ 0, we 

obtain 

𝜙(𝑥, 𝜆) =
1

2𝑖𝜆
{[𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆)]𝑒(𝑥, 𝜆) − 

− [𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆)] 𝑒(𝑥, 𝜆)}.    (12) 

Now, let us show that  𝜔(𝜆) ≔ 𝑒′(0, 𝜆) −
ℎ𝑒(0, 𝜆) ≠ 0 for all real 𝜆 ≠ 0. Assume that 

𝜔(�̃�) ≔ 𝑒′(0, �̃�) − ℎ𝑒(0, �̃�) = 0. 

According to (9), we get 

𝑒′(0, �̃�)𝑒(0, �̃�) − 𝑒(0, �̃�)𝑒′(0, �̃�) = 2𝑖�̃�. 

Then, it follows from the last two equality that �̃� =
0, but this contradicts �̃� ≠ 0. Thus, we have 𝜔(𝜆) =
𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆) ≠ 0 for real 𝜆 ≠ 0. Taking into 

account this in the equality (12), we find (10) and 

(11) as claimed. The lemma is proved. 
 

Definition 2. The function ( )hS  expressed by the 

formula (11) is called the scattering function of the 
problem (1)-(3). 

Now, we will examine the zeros of the function 

𝜔(𝜆).  
 

Lemma 3. The function 𝜔(𝜆) may have only a finite 

number of zeros in the half plane 𝐼𝑚𝜆 > 0 and these 

zeros lie on the imaginary axis. 

Proof. Since 𝜔(𝜆) ≠ 0 for all real 𝜆 ≠ 0, the point 

𝜆 = 0 can be the only possible real zero of the 

function 𝜔(𝜆). The function 𝜔(𝜆) is analytic in the 

upper half plane. Therefore, taking into account this 
fact and the representation of the solution (5), it is 

obtained that the zeros of the function 𝜔(𝜆) form 

bounded and at most countable set whose unique 

limit point may be only a zero.  
Now, let us prove that all zeros of the function 

𝜔(𝜆) lie on the imaginary axis. Assume that 𝜏1 and 

𝜏2 are two zeros of the function 𝜔(𝜆). Then,  

𝜔(𝜏𝑖) = 𝑒′(0, 𝜏𝑖) − ℎ𝑒(0, 𝜏𝑖) = 0, 𝑖 = 1,2.     (13) 

Since the functions 𝑒(𝑥, 𝜏1) and 𝑒(𝑥, 𝜏2)  satisfy the 

equation (1), we can write 

−𝑒′′(𝑥, 𝜏1) + 𝑞(𝑥)𝑒(𝑥, 𝜏1) = 𝜏1
2𝑒(𝑥, 𝜏1), 

 

−𝑒′′(𝑥, 𝜏2) + 𝑞(𝑥)𝑒(𝑥, 𝜏2) = 𝜏2
2

𝑒(𝑥, 𝜏2), 
and it follows from these equalities that 

𝑑

𝑑𝑥
𝑊 {𝑒(𝑥, 𝜏2), 𝑒(𝑥, 𝜏1)}

= (𝜏1
2 − 𝜏2

2
)𝑒(𝑥, 𝜏1)𝑒(𝑥, 𝜏2). 

Integrating this equality over the interval (0, ∞) and 
then using the discontinuous conditions (3), we find 

(𝜏1
2 − 𝜏2

2
) ∫ 𝑒(𝑥, 𝜏1)𝑒(𝑥, 𝜏2)

∞

0

𝑑𝑥 −                           

−𝑊 {𝑒(𝑥, 𝜏2), 𝑒(𝑥, 𝜏1)}
𝑥=0

= 0.      (14) 

In the second expression of the left hand side of 

(14), using the relation (13), we have 

𝑊 {𝑒(𝑥, 𝜏1), 𝑒(𝑥, 𝜏2)}
𝑥=0

=                                          

          = 𝑒′(0, 𝜏1)𝑒(0, 𝜏2) − 𝑒(0, 𝜏1)𝑒′(0, 𝜏2)=0. 

Thus, we obtain  

(𝜏1
2 − 𝜏2

2
) ∫ 𝑒(𝑥, 𝜏1)𝑒(𝑥, 𝜏2)

∞

0
𝑑𝑥 = 0     (15) 

In particular, when 𝜏2 = 𝜏1 is chosen, 𝜏1
2 − 𝜏1

2
= 0  

or 𝜏1 = 𝑖𝜆1, here 𝜆1  ≥ 0. Consequently, the zeros of 

the function 𝜔(𝜆) can lie on the imaginary axis.  

Moreover, the number of the zeros of the 

functions 𝜔(𝜆) is finite and this fact is similarly 

proved by using the method in (Marchenko, 2011 

see Lemma 3.1.6., pp. 186). The lemma is proved. 
 

Lemma 4. The zeros of the function 𝜔(𝜆) are 

simple. 

Proof. Denote  

�̇�(𝑥, 𝜆) =
𝑑

𝑑𝜆
𝑒(𝑥, 𝜆),   𝑒′(𝑥, 𝜆) =

𝑑

𝑑𝑥
𝑒(𝑥, 𝜆). 

Consider the following equation 

−𝑒′′(𝑥, 𝜆) + 𝑞(𝑥)𝑒(𝑥, 𝜆) = 𝜆2𝑒(𝑥, 𝜆). 
Differentiating this equation with respect to 𝜆, we 

get 
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−�̇�′′(𝑥, 𝜆) + 𝑞(𝑥)�̇�(𝑥, 𝜆) = 𝜆2�̇�(𝑥, 𝜆) + 2𝜆𝑒(𝑥, 𝜆). 
It follows from these two equalities that 

𝑑

𝑑𝑥
𝑊{𝑒(𝑥, 𝜆), �̇�(𝑥, 𝜆)} = 2𝜆[𝑒(𝑥, 𝜆)]2. 

Integrating this over the interval (0, ∞) and then 

using the discontinuity conditions (3) and the 

function 𝜔(𝜆) = 𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆), we calculate 

𝜔(𝜆)�̇�(0, 𝜆) − �̇�(𝜆)𝑒(0, 𝜆)

+ 2𝜆 ∫ [𝑒(𝑥, 𝜆)]2𝑑𝑥 = 0.
∞

0

 

Let 𝜆 = 𝑖𝜏  (𝜏 > 0) be a zero of the function 𝜔(𝜆). 
Then, we have  

2𝑖𝜏 ∫ |𝑒(𝑥, 𝑖𝜏)|2𝑑𝑥
∞

0

= �̇�(𝑖𝜏)𝑒(0, 𝑖𝜏). 

Since ∫ |𝑒(𝑥, 𝑖𝜏)|2𝑑𝑥
∞

0
> 0, it is obtained that 

�̇�(𝑖𝜏) ≠ 0 i.e., the zeros of the function 𝜔(𝜆)
 
are all 

simple. The lemma is proved.  

 

Now, let 𝑖𝜆𝑘 , (𝜆𝑘 > 0, 𝑘 = 1,2, … , 𝑛) be the 

zeros of the function 𝜔(𝜆) and denote  

𝑚𝑘
−2 ≔ ∫ |𝑒(𝑥, 𝑖𝜆𝑘)|2

∞

0

𝑑𝑥 =
�̇�(𝑖𝜆𝑘)𝑒(0, 𝑖𝜆𝑘)

2𝑖𝜆𝑘
. 

 (16) 

The numbers 𝑚𝑘 are called the normalized 

numbers of the problem (1)-(3). 
 

Definition 5. A collection  
{𝑆ℎ(𝜆), (−∞ < 𝜆 < ∞); 𝜆𝑘; 𝑚𝑘 , (𝑘 = 1,2, … , 𝑛)} 

is called the scattering data of the boundary value 

problem (1)-(3). 

 

Eigenfunction Expansion  

 

The functions 

𝑢(𝑥, 𝜆) = 𝑒(𝑥, 𝜆) − 𝑆ℎ(𝜆)𝑒(𝑥, 𝜆),   (−∞ < 𝜆 < ∞), 
 (17) 

𝑢(𝑥, 𝑖𝜆𝑘) = 𝑚𝑘𝑒(𝑥, 𝑖𝜆𝑘), (𝑘 = 1,2, … , 𝑛)     (18) 
are bounded solutions of the boundary value 

problem (1)-(3). They form a complete set of 
normalized eigenfunctions of this problem. 

Consider the operator 𝐿 with the domain 

𝐷(𝐿) = {𝑓(𝑥) ∈ 𝐿2(0, ∞): 
𝑓(𝑥), 𝑓′(𝑥) ∈ 𝐴𝐶[0, 𝑎] ∩ 𝐴𝐶[𝑎, ∞), 𝑙(𝑓) ∈ 𝐿2(0, ∞) 

𝑓′(0) − ℎ𝑓(0) = 0, 𝑓(𝑎 − 0) = 𝛼𝑓(𝑎 + 0) 

𝑓′(𝑎 − 0) = 𝛼−1𝑓(𝑎 + 0)} 

where 

𝑙(𝑓) = −𝑓′′(𝑥) + 𝑞(𝑥)𝑓(𝑥). 

Assume that 𝜆2 is not a spectrum point of the 

operator 𝐿. Then, the resolvent operator 𝑅𝜆2(𝐿) =
(𝐿 − 𝜆2𝐼)−1 exists.  

Lemma 6. The resolvent operator is an integral 

operator formed by 

𝑦(𝑥, 𝜆) ≔ 𝑅𝜆2(𝐿)𝑓 = ∫ 𝑔(𝑥, 𝑡, 𝜆)𝑓(𝑡)𝑑𝑡      
∞

0
(19) 

with the kernel  

𝑔(𝑥, 𝑡, 𝜆) = −
1

𝜔(𝜆)
{
𝑒(𝑥, 𝜆)𝜙(𝑡, 𝜆),   𝑡 ≤ 𝑥,

𝑒(𝑡, 𝜆)𝜙(𝑥, 𝜆),   𝑥 ≤ 𝑡.
     (20) 

Proof. Let 𝑓(𝑥) ∈ 𝐷(𝐿) be a finite function at 

infinity. To obtain the resolvent operator of 𝐿, 

consider the following boundary value problem  

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆2𝑦 + 𝑓(𝑥), 
𝑦′(0) − ℎ𝑦(0) = 0, 

𝑦(𝑎 − 0) = 𝛼𝑦(𝑎 + 0), 𝑦′(𝑎 − 0) = 𝛼−1𝑦′(𝑎 + 0). 
Seek the solution of this problem as in the form: 

𝑦(𝑥, 𝜆) = 𝑐1(𝑥, 𝜆)𝜙(𝑥, 𝜆) + 𝑐2(𝑥, 𝜆)𝑒(𝑥, 𝜆), 
where the functions 𝜙(𝑥, 𝜆) and 𝑒(𝑥, 𝜆) are the 

solutions of homogeneous problem for 𝐼𝑚𝜆 > 0. 
Consequently, applying the method of variation of 

parameters, we find (19) and (20).  

 

Theorem 7. The eigenfunctions expansion formula 
of the boundary value problem (1)-(3) is as follows: 

𝛿(𝑡 − 𝑥) = ∑ 𝑢(𝑥, 𝑖𝜆𝑘)𝑢(𝑡, 𝑖𝜆𝑘)

𝑛

𝑘=1

+
1

2𝜋
∫ 𝑢(𝑥, 𝜆)𝑢(𝑡, 𝜆)

∞

0

𝑑𝜆 

 (21) 

where 𝛿(𝑥) is a Dirac delta function. 

Proof. Let 𝑓(𝑥) ∈ 𝐷(𝐿) be a twice continuously 
differential function and be finite at infinity. Then, 

for 𝐼𝑚𝜆 > 0 we can write from (19) and (20) that 

𝑦(𝑥, 𝜆) = ∫ 𝑔(𝑥, 𝑡, 𝜆)𝑓(𝑡)𝑑𝑡
∞

0

= 

= −
1

𝜔(𝜆)
∫ 𝑒(𝑥, 𝜆)

𝑥

0

𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡 

−
1

𝜔(𝜆)
∫ 𝑒(𝑡, 𝜆)𝜙(𝑥, 𝜆)𝑓(𝑡)𝑑𝑡

∞

𝑥

 

= −
𝑒(𝑥, 𝜆)

𝜆2𝜔(𝜆)
∫ [−𝜙′′(𝑡, 𝜆) + 𝑞(𝑡)𝜙(𝑡, 𝜆)]𝑓(𝑡)𝑑𝑡

𝑥

0

 

−
𝜙(𝑥, 𝜆)

𝜆2𝜔(𝜆)
∫ [−𝑒′′(𝑡, 𝜆) + 𝑞(𝑡)𝑒(𝑡, 𝜆)]𝑓(𝑡)𝑑𝑡

∞

𝑥

. 

Integrating by parts for both cases 𝑥 < 𝑎 and 𝑥 > 𝑎, 

we calculate 

𝑦(𝑥, 𝜆) = −
𝑓(𝑥)

𝜆2 +
𝑧(𝑥,𝜆)

𝜆2          (22) 

where 
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𝑧(𝑥, 𝜆) ≔ ∫ 𝑔(𝑥, 𝑡, 𝜆)[−𝑓′′(𝑡) + 𝑞(𝑡)𝑓(𝑡)]𝑑𝑡.
∞

0

 

Assume that Г𝑅 denote the positively oriented 

contour formed by the circle of radius 𝑅 and center 

at zero. Consider 𝐷1 = {𝑧: |𝑧| ≤ 𝑅, |𝐼𝑚𝑧| ≥ 𝜖} and 

𝐷2 = {𝑧: |𝑧| ≤ 𝑅, |𝐼𝑚𝑧| ≤ 𝜖}. Denote by Г𝑅,𝜖
′  the 

positive oriented boundary contour of 𝐷1 and Г𝑅,𝜖
′′  

the negative oriented boundary contour of 𝐷2. Then, 
we can use the properties of the integration as 

follows: 

∫ = ∫ + ∫
Г𝑅,𝜖

′′Г𝑅Г𝑅,𝜖
′     (23) 

Now, multiplying both sides of the expression (22) 

by 
𝜆

2𝜋𝑖
 and then integrating along the contour Г𝑅 

with respect to 𝜆, we get  
1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅

= −
1

2𝜋𝑖
∫

𝑓(𝑥)

𝜆Г𝑅

𝑑𝜆 + 𝑍𝑅(𝑥), 

(24) 

where 

𝑍𝑅(𝑥) ≔
1

2𝜋𝑖
∫

𝑧(𝑥, 𝜆)

𝜆
𝑑𝜆,

Г𝑅

 

and since lim
|𝜆|→∞

𝑠𝑢𝑝𝑥≥0|𝑧(𝑥, 𝜆)| = 0 which is 

obtained from the expressions of the functions 

𝑒(𝑥, 𝜆), 𝜙(𝑥, 𝜆) and 𝜔(𝜆), we have 𝑍𝑅(𝑥) → 0 

uniformly to 𝑥 as 𝑅 → ∞. According to (23), we can 
write  

 
1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅,𝜖
′

= 

=
1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅

+
1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅,𝜖
′′  

. 

(25) 
It follows from (24) and (25) that as 𝑅 → ∞ and 𝜖 →
0 

1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅,𝜖
′  

= 

= −𝑓(𝑥) +
1

2𝜋𝑖
∫ 𝜆[𝑦(𝑥, 𝜆 + 𝑖0) − 𝑦(𝑥, 𝜆 − 𝑖0)]𝑑𝜆

∞

−∞

. 

On the other hand, using the residue theorem, we 
have 

   
1

2𝜋𝑖
∫ 𝜆𝑦(𝑥, 𝜆)𝑑𝜆

Г𝑅,𝜖
′  

= 

= ∑ 𝑅𝑒𝑠𝜆=𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆)

𝑛

𝑘=1

+ ∑ 𝑅𝑒𝑠𝜆=−𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆).

𝑛

𝑘=1

 

It is found from the last two relations that  

𝑓(𝑥) = − ∑ 𝑅𝑒𝑠𝜆=𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆)

𝑛

𝑘=1

 

               − ∑ 𝑅𝑒𝑠𝜆=−𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆)

𝑛

𝑘=1

 

            +
1

2𝜋𝑖
∫ 𝜆[𝑦(𝑥, 𝜆 + 𝑖0) − 𝑦(𝑥, 𝜆 − 𝑖0)]𝑑𝜆.

∞

−∞

 

(26) 

Next, let us examine the right hand side of the 

equation (26). Denote by 𝜓(𝑥, 𝜆) the solution of 
equation (1) with the discontinuity conditions (3) 

satisfying the initial conditions 

𝜓(0, 𝜆) = 0,      𝜓′(0, 𝜆) = −1. 
Moreover, 𝑊{𝜙(𝑥, 𝜆), 𝜓(𝑥, 𝜆)} = 1. Therefore, we 
have  

𝑒(𝑥, 𝜆) = 𝑒(0, 𝜆)𝜙(𝑥, 𝜆) − 𝜔(𝜆)𝜓(𝑥, 𝜆).   
   

(27) 

Using the expression (20) and (27), we can write 

for 𝑡 ≤ 𝑥 

𝑔(𝑥, 𝑡, 𝜆) = −
𝑒(0, 𝜆)

𝜔(𝜆)
 𝜙(𝑥, 𝜆)𝜙(𝑡, 𝜆) + 𝜓(𝑥, 𝜆)𝜙(𝑡, 𝜆), 

for 𝑥 ≤ 𝑡 

𝑔(𝑥, 𝑡, 𝜆) = −
𝑒(0, 𝜆)

𝜔(𝜆)
 𝜙(𝑥, 𝜆)𝜙(𝑡, 𝜆) + 𝜙(𝑥, 𝜆)𝜓(𝑡, 𝜆) 

and for 𝐼𝑚𝜆 > 0, we have 

𝑦(𝑥, 𝜆) = −
𝑒(0, 𝜆)

𝜔(𝜆)
∫ 𝜙(𝑥, 𝜆)𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡 +

∞

0

 

     + ∫ 𝜓(𝑥, 𝜆)𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡
𝑥

0

+ 

   + ∫ 𝜙(𝑥, 𝜆)𝜓(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡
∞

𝑥

. 

Then, it is obtained from this expression that 

∑ 𝑅𝑒𝑠𝜆=𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆)

𝑛

𝑘=1

+ ∑ 𝑅𝑒𝑠𝜆=−𝑖𝜆𝑘
𝜆𝑦(𝑥, 𝜆)

𝑛

𝑘=1

= 

= ∑
−2𝑖𝜆𝑘𝑒(0, 𝑖𝜆𝑘)

�̇�(𝑖𝜆𝑘)
∫ 𝜙(𝑥, 𝑖𝜆𝑘)𝜙(𝑡, 𝑖𝜆𝑘)𝑓(𝑡)𝑑𝑡.

∞

0

𝑛

𝑘=1

 

(28) 

Now, taking into account the relation 𝑦(𝑥, 𝜆 − 𝑖0) =

𝑦(𝑥, 𝜆 + 𝑖0), we find 

𝑦(𝑥, 𝜆 + 𝑖0) − 𝑦(𝑥, 𝜆 + 𝑖0) = 

= ∫ [−
𝑒(𝑥, 𝜆)

𝜔(𝜆)
+

𝑒(𝑥, 𝜆)

𝜔(𝜆)
]

𝑥

0

𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡 + 

+ ∫ 𝜙(𝑥, 𝜆) [−
𝑒(𝑡, 𝜆)

𝜔(𝜆)
+

𝑒(𝑡, 𝜆)

𝜔(𝜆)
] 𝑓(𝑡)𝑑𝑡

∞

𝑥

 

and using (27) in this expression, we get 

𝑦(𝑥, 𝜆 + 𝑖0) − 𝑦(𝑥, 𝜆 + 𝑖0) = 
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=
2𝑖𝜆

|𝜔(𝜆)|2
∫ 𝜙(𝑥, 𝜆)𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡.

∞

0

 

Thus, it follows from the last equality that 
1

2𝜋𝑖
∫ 𝜆

∞

−∞

[𝑦(𝑥, 𝜆 + 𝑖0) − 𝑦(𝑥, 𝜆 − 𝑖0)]𝑑𝜆 =    

=
2

𝜋
∫

𝜆2

|𝜔(𝜆)|2
𝜙(𝑥, 𝜆) ∫ 𝜙(𝑡, 𝜆)

∞

0

∞

0

𝑓(𝑡)𝑑𝑡𝑑𝜆. 

(29) 

Consequently, substituting (28) and (29) into (26), 

we calculate  
 

𝑓(𝑥) =

= ∑
2𝑖𝜆𝑘𝑒(0, 𝑖𝜆𝑘)

�̇�(𝑖𝜆𝑘)
∫ 𝜙(𝑥, 𝑖𝜆𝑘)𝜙(𝑡, 𝑖𝜆𝑘)𝑓(𝑡)𝑑𝑡

∞

0

𝑛

𝑘=1

 

+
2

𝜋
∫

𝜆2

|𝜔(𝜆)|2
𝜙(𝑥, 𝜆) ∫ 𝜙(𝑡, 𝜆)𝑓(𝑡)𝑑𝑡𝑑𝜆

∞

0

.
∞

0

 

Moreover, in the last expression considering 

𝑒(𝑥, 𝜆) = 𝑒(0, 𝜆)𝜙(𝑥, 𝜆), (16), (17) and (18), the 

eigenfunction expansion formula (21) is obtained. 
The theorem is proved. 

 

Inverse Scattering Problem 

 

In this section, we will reconstruct the potential 

𝑞(𝑥) by scattering data of the boundary value 

problem (1)-(3). The problem (1)-(3) has bounded 

solutions (17) and (18) and as 𝑥 → ∞, the following 

asymptotic formulas are satisfied:  

𝑢(𝑥, 𝜆) = 𝑒−𝑖𝜆𝑥 − 𝑆ℎ(𝜆)𝑒𝑖𝜆𝑥 + 𝑜(1), (−∞ < 𝜆 < ∞) 

𝑢(𝑥, 𝑖𝜆𝑘) = 𝑚𝑘𝑒−𝜆𝑘𝑥(1 + 𝑜(1)),   (𝑘 = 1,2, … , 𝑛). 
Then, it must be specified that the scattering data 

 {𝑆ℎ(𝜆), (−∞ < 𝜆 < ∞); 𝜆𝑘; 𝑚𝑘 , (𝑘 = 1,2, … , 𝑛)} 
provides a complete description of the behavior at 

infinity of the normed eigenfunctions 𝑢(𝑥, 𝜆) of the 

problem (1)-(3).  

When 𝑞(𝑥) ≡ 0 in the equation (1), the 

following relation which is similar to (10) is valid: 
2𝑖𝜆�̃�(𝑥,𝜆)

𝑒0
′(0,𝜆)

= 𝑒0(𝑥, 𝜆) − 𝑆0(𝜆)𝑒0(𝑥, 𝜆),        (30) 

where �̃�(𝑥, 𝜆) is a solution of the equation (1) with 
(3) under the initial conditions 

�̃�(0, 𝜆) = 1,    �̃�′(0, 𝜆) = 0, 
moreover,   

𝑆0(𝜆) =
𝑒0

′(0,𝜆)

𝑒0
′(0,𝜆)

=
−𝛼++𝛼−𝑒−2𝑖𝜆𝑎

𝛼+−𝛼−𝑒2𝑖𝜆𝑎    (31) 

and we have 𝑆0(𝜆) − 𝑆ℎ(𝜆) = 𝑂 (
1

𝜆
) as |𝜆| → ∞.   

Thus, the function 𝑆0(𝜆) − 𝑆ℎ(𝜆) ∈ 𝐿2(−∞, ∞) is 
the Fourier transform of the function  

𝐹𝑆(𝑥) =
1

2𝜋
∫ [𝑆0(𝜆) − 𝑆ℎ(𝜆)]

∞

−∞
𝑒𝑖𝜆𝑥𝑑𝜆      (32) 

which belongs to the space 𝐿2(−∞, ∞). 
 

Theorem 8. For each 𝑥 ≥ 0, 𝑥 ≠ 𝑎 the kernel 

𝐾(𝑥, 𝑦) of the integral representation (5) satisfies the 

following equation 

𝐾(𝑥, 𝑦) −
𝛼−

𝛼+
𝐾(𝑥, 2𝑎 − 𝑦) + 

+�̂�(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝐹(𝑦 + 𝑡)
∞

𝑥

𝑑𝑡 = 0,   𝑥 < 𝑦, 

(33) 

where 

𝐹(𝑥) = 𝐹𝑆(𝑥) + ∑ 𝑚𝑘
2𝑒−𝜆𝑘𝑥𝑛

𝑘=1              (34) 
and 

�̂�(𝑥, 𝑦) = {

𝛼+𝐹(𝑥 + 𝑦) +                                       

+𝛼−𝐹(2𝑎 − 𝑥 + 𝑦),           0 < 𝑥 < 𝑎

𝐹(𝑥 + 𝑦),                                       𝑥 > 𝑎.

 

(35) 
Proof. It is obtained from (10) and (30) that  

2𝑖𝜆𝜙(𝑥, 𝜆)

𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆)
−

2𝑖𝜆�̃�(𝑥, 𝜆)

𝑒0
′ (0, 𝜆)

= 

= ∫ 𝐾(𝑥, 𝑡)𝑒−𝑖𝜆𝑡𝑑𝑡
∞

𝑥

+ [𝑆0(𝜆) − 𝑆ℎ(𝜆)]𝑒0(𝑥, 𝜆) 

+ ∫ 𝐾(𝑥, 𝑡)[𝑆0(𝜆) − 𝑆ℎ(𝜆)]𝑒𝑖𝜆𝑡𝑑𝑡 −
∞

𝑥

 

−𝑆0(𝜆) ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡
∞

𝑥

 

or equivalently, 

2𝑖𝜆𝜙(𝑥, 𝜆) {
1

𝑒′(0, 𝜆) − ℎ𝑒(0, 𝜆)
− 

                                      −
1

𝑒0
′ (0, 𝜆) − ℎ𝑒0(0, 𝜆)

} + 

    +
2𝑖𝜆 (𝜙(𝑥, 𝜆) − �̃�(𝑥, 𝜆))

𝑒0
′ (0, 𝜆) − ℎ𝑒0(0, 𝜆)

+ 

    +2𝑖𝜆�̃�(𝑥, 𝜆) {
1

𝑒0
′ (0, 𝜆) − ℎ𝑒0(0, 𝜆)

−
1

𝑒0
′ (0, 𝜆)

} 

= ∫ 𝐾(𝑥, 𝑡)𝑒−𝑖𝜆𝑡𝑑𝑡
∞

𝑥

+ [𝑆0(𝜆) − 𝑆ℎ(𝜆)]𝑒0(𝑥, 𝜆) 

    + ∫ 𝐾(𝑥, 𝑡)[𝑆0(𝜆) − 𝑆ℎ(𝜆)]
∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 − 

    −𝑆0(𝜆) ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡.
∞

𝑥

 

 (36) 
Now, let us multiply the both hand side of the 

equality (36) by 
1

2𝜋
𝑒𝑖𝜆𝑦 and integrate with respect to 
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𝜆 ∈ (−∞, ∞). Then, the right hand side of the new 

equality is as follows: 

𝐾(𝑥, 𝑦) +
1

2𝜋
∫ [𝑆0(𝜆) − 𝑆ℎ(𝜆)]𝑒0(0, 𝜆)𝑒𝑖𝜆𝑦𝑑𝜆

∞

−∞

+ 

+ ∫ 𝐾(𝑥, 𝑡) {
1

2𝜋
∫ [𝑆0(𝜆) − 𝑆ℎ(𝜆)]𝑒𝑖𝜆(𝑦+𝑡)𝑑𝜆

∞

−∞

} 𝑑𝑡
∞

𝑥

 

− ∫ 𝐾(𝑥, 𝑡) {
1

2𝜋
∫ 𝑆0(𝜆)𝑒𝑖𝜆(𝑦+𝑡)𝑑𝜆

∞

−∞

} 𝑑𝑡.
∞

𝑥

 

  (37) 

Let us calculate: 
1

2𝜋
∫ 𝑆0(𝜆)𝑒𝑖𝜆(𝑦+𝑡)𝑑𝜆

∞

−∞

. 

It follows from (31) that 

𝑆0(𝜆) = ∑ (
𝛼−

𝛼+
)

𝑛∞

𝑛=0

{(
𝛼−

𝛼+
) 𝑒2𝑖𝜆𝑎(𝑛−1) − 𝑒2𝑖𝜆𝑎𝑛}  

Using this expression, we find 
1

2𝜋
∫ 𝑆0(𝜆)𝑒𝑖𝜆(𝑦+𝑡)𝑑𝜆

∞

−∞

= 

= ∑ (
𝛼−

𝛼+
)

𝑛

{(
𝛼−

𝛼+
) 𝛿(2𝑎(𝑛 − 1) + 𝑦 + 𝑡)

∞

𝑛=0

 

−𝛿(2𝑎𝑛 + 𝑦 + 𝑡)} (38) 
Thus, substituting (32) and (38) into (37) and taking 

into account the relation 𝐾(𝑥, 𝑦) = 0 for 𝑥 > 𝑦 (see 

Huseynov and Osmanova, 2007), it is obtained for 

𝑦 > 𝑥 that the equality (37) is as follows: 

𝐾(𝑥, 𝑦) −
𝛼−

𝛼+
𝐾(𝑥, 2𝑎 − 𝑦) + �̂�𝑆(𝑥, 𝑦) + 

+ ∫ 𝐾(𝑥, 𝑡)𝐹𝑆(𝑦 + 𝑡)𝑑𝑡,
∞

𝑥
     (39) 

where 

�̂�𝑆(𝑥, 𝑦) = {

𝛼+𝐹𝑆(𝑥 + 𝑦) +                                       

+𝛼−𝐹𝑆(2𝑎 − 𝑥 + 𝑦),           0 < 𝑥 < 𝑎

𝐹𝑆(𝑥 + 𝑦),                                      𝑥 > 𝑎.

 

Now, it remains to examine the integral of the 
product of the left hand side of the equality (36) and 
1

2𝜋
𝑒𝑖𝜆𝑦, taken over the real line −∞ < 𝜆 < ∞. Then, 

applying Jordan’s lemma, for 𝑦 > 𝑥 we find  

∑
2𝑖𝜆𝑘𝜙(𝑥, 𝑖𝜆𝑘)𝑒−𝜆𝑘𝑦

�̇�(𝑖𝜆𝑘)
=

𝑛

𝑘=1

∑ 𝑚𝑘
2𝑒(𝑥, 𝑖𝜆𝑘)

𝑛

𝑘=1

𝑒−𝜆𝑘𝑦 

= ∑ 𝑚𝑘
2 {𝑒0(𝑥, 𝑖𝜆𝑘)𝑒−𝜆𝑘𝑦 + ∫ 𝐾(𝑥, 𝑡)𝑒−𝜆𝑘(𝑡+𝑦)𝑑𝑡

∞

𝑥

}

𝑛

𝑘=1

 

 (40) 

Consequently, using (39) and (40), for 𝑦 > 𝑥 we 

derive the equation (33). The theorem is proved. 
 

Definition 9. The equation (33) is called the main 

equation of the inverse problem of the scattering 
theory for the problem (1)-(3). 

Note that this equation is different from the 

classical Marchenko equation and we define the 

equation (33) as the modified Marchenko equation. 
 

Lemma 10. For each 𝑥 ≥ 0, 𝑥 ≠ 𝑎 the main 

equation (33) has a unique solution 𝐾(𝑥, . ) ∈
𝐿2(𝑥, ∞).  
Proof. In case of 𝑥 > 𝑎, the main equation (33) is in 

the form of classical Marchenko equation, so for   

𝑥 > 𝑎 the proof of this theorem is as in (Marchenko, 

2011). Now, suppose that 𝑥 < 𝑎. The equation (33) 
can be written as follows: 

𝑇𝑥𝐾(𝑥, . ) + 𝐹𝑥𝐾(𝑥, . ) = −�̂�(𝑥, . ), 
where 

(𝑇𝑥𝑓)(𝑦) = {
𝑓(𝑦),                                        𝑥 > 𝑎,

𝑓(𝑦) −
𝛼−

𝛼+
𝑓(2𝑎 − 𝑦), 𝑥 < 𝑎,

 

(𝐹𝑥𝑓) = ∫ 𝐹(𝑡 + 𝑦)𝑓(𝑡)𝑑𝑡, 𝑦 > 𝑥.
∞

𝑥

 

The operator 𝑇𝑥  is invertible in the space 𝐿2(𝑥, ∞) 

and the operator 𝐹𝑥  is completely continuous in the 

space 𝐿2(𝑥, ∞) (see Marchenko, 2011, Lemma 

3.3.1). Then, the main equation (33) can be 

expressed as  

𝐾(𝑥, . ) + 𝑇𝑥
−1𝐹𝑥𝐾(𝑥, . ) = −𝑇𝑥

−1�̂�(𝑥, . ), 
where the operator 𝑇𝑥

−1𝐹𝑥  is completely continuous 

operator in 𝐿2(𝑥, ∞). Thus, to prove the theorem, it 
is sufficient to show that the homogeneous equation 

𝑓𝑥(𝑦) −
𝛼−

𝛼+
𝑓𝑥(2𝑎 − 𝑦) + 

+ ∫ 𝐹(𝑡 + 𝑦)𝑓𝑥(𝑡)𝑑𝑡
∞

𝑥

= 0, 𝑦 > 𝑥 

has only trivial solution 𝑓𝑥(𝑦) = 0 in 𝐿2(𝑥, ∞) and 

this fact is similarly obtained as in (Huseynov and 
Osmanli, 2009). 

 

Theorem 11. The potential function 𝑞(𝑥) is 

uniquely determined by scattering data 
{𝑆ℎ(𝜆), (−∞ < 𝜆 < ∞); 𝜆𝑘;  𝑚𝑘 (𝑘 = 1,2, … , 𝑛)}. 
Proof. Using the scattering data {𝑆ℎ(𝜆), (−∞ < 𝜆 <
∞); 𝜆𝑘; 𝑚𝑘 (𝑘 = 1,2, … , 𝑛)} we construct the 

functions 𝐹(𝑥) and �̂�(𝑥, 𝑦) via the formulas (34) 

and (35). Then, with the help of constructed 

functions, we can write the main equation (33). 

From Lemma 10, the main equation has a unique 

solution 𝐾(𝑥, 𝑦) which is the kernel of the integral 
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representation (5) for every 𝑥 ≥ 0, 𝑥 ≠ 𝑎. Hence, 

the potential 𝑞(𝑥) is uniquely constructed according 
to the formulas (6), (7) and (8). 

 

CONCLUSION 

In this paper, we deal with Sturm-Liouville 
operator with discontinuity conditions at the point  

𝑥 = 𝑎 ∈ (0, +∞). Firstly, we examine the scattering 

data of the boundary value problem (1)-(3). Then, 
the expansion formula with respect to the 

eigenfunctions of this problem is obtained. Finally, 

we solve the inverse scattering problem by using the 

method of Marchenko. In this method, the main 
equation (or Marchenko equation) with respect to 

the kernel of the transformation operator plays the 

central role. However, the existence of the 
discontinuity conditions (3) strongly influences the 

structure of the representation of the Jost solution, so 

Jost solution is not in the form of transformation 
operator, is in the form of integral representation. 

Therefore, we use this integral representation of the 

Jost solution when solving the inverse scattering 

problem. Consequently, we derive the main equation 
of the inverse scattering problem and we give an 

algorithm for the construction of the potential 

function 𝑞(𝑥) according to scattering data. 
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