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Abstract
In this paper, we consider the inverse scattering problem for Sturm-Liouville operator with discontinuity
conditions at some point on the positive half line. The scattering data of this boundary value problem is examined. The
resolvent operator is constructed and the expansion formula with respect to the eigenfunctions of this boundary value
problem is obtained. The main equation or modified Marchenko equation of the inverse scattering problem is derived
and an algorithm of the construction of the potential function according to scattering data of this boundary value
problem is given.
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Pozitif Yar1 Eksende Siireksizlik Kosuluna Sahip Sturm-Liouville
Operatoriiniin Ters Sacilma Problemi
Oz
Bu ¢alismada, pozitif yar1 eksen iizerindeki bir noktada siireksizlik kosuluna sahip Sturm-Liouville operatoriiniin
ters sagilma problemi ele alinmistir. Ele alinan sinir deger probleminin sagilma verileri incelenmistir. Rezolvent
operatorii insa edilmis ve sinir deger probleminin 6zfonksiyonlarina gore ayrigim formiilii elde edilmistir. Ters sagilma

probleminin temel denklemi veya modifiye edilmis Marchenko denklemi elde edilmis ve sinir deger probleminin
sacilma verilerine gére potansiyel fonksiyonun insa edilme algoritmasi verilmistir.

Anahtar kelimeler: Sturm-Liouville denklemi, siireksizlik kosullari, ters sa¢ilma problemi, temel denklem

INTRODUCTION

In physical and mathematical literature, there
are numerous studies based on scattering theory
because of its applications in the quantum mechanics
(see Chadan and Sabatier, 1977; Faddeev and
Takhtajan, 2007; Jaluent and Jean, 1976 and the
references therein) and the investigations on this
subject have been continued in detail. It is well
known in quantum mechanics that the scattering of
particles by a potential field is completely
determined by the asymptotic form of the wave
functions at infinity. Therefore, the following
guestion arises: is it possible to reconstruct the
potential from a knowledge of the asymptotic form
of the wave functions at infinity? and then, if it is
possible, to indicate a method for constructing the
potential. This is known as the inverse problem of
scattering theory. The mathematical side of this

question is comprehensively studied and formalized
in  (Agranovich and Marchenko, 1963) and
(Marchenko, 2011).

In this paper, we will solve the inverse
scattering problem of Sturm-Liouville operator with
discontinuity conditions at some point on positive
half line by using the method of Marchenko. Then,
consider the Sturm-Liouville equation (or
equivalently the time-independent one-dimensional
Schrodinger equation)

—y" +qx)y=2% 0<x<o (1)
with boundary conditions
y'(0) —hy(0) =0 ()
and discontinuity conditions at the point a € (0, o)
y(a—0) =ay(a+0),
y'(@=0)=a'y'(a+0) 3)
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where 1 # a >0, his an arbitrary real number,
q(x) is a real function satisfying the condition
Jy xla(o)ldx < co. @

In case of ¢ =1 i.e. in classical case, the
inverse scattering problem of the boundary value
problem (1)-(3) was completely solved by
Marchenko (1955; 2011) and Levitan (1975; 1987).
The inverse scattering problem for the discontinuous
case on the positive half line was firstly studied by
Gasymov (1977) and Darwish (1994) and also
Guseinov and Pashaev (2002) solved the inverse
discontinuous scattering problem by using the new
integral representation (non-triangular) which was
obtained for the Jost solution of the Sturm-Liouville
equation with discontinuous coefficient. Then, the
direct and inverse scattering problems for
discontinuous  Sturm-Liouville equation under
different boundary conditions were examined with
the help of this integral representation in (C6l, 2015;
El-Raheem and Salama, 2015; Mamedov, 2010;
Mamedov and Cetinkaya, 2015; Mizrak, Mamedov
and Akhtyamov, 2017). Inverse problem for a wave
equation with piecewise constant coefficient was
worked in (Lavrent’ev Jr, 1992). In case of the
Sturm-Liouville  equation  with  discontinuity
conditions (or transmission conditions) at a point on
the positive half line, the direct and inverse
scattering problem with various boundary conditions
and discontinuity conditions were investigated in
(Huseynov and Osmanova, 2007; Huseynov and
Osmanli, 2009; Huseynov and Mammadova, 2013;
Manafov and Kablan, 2013). Moreover, the direct
and inverse scattering problem for Sturm-Liouville
operator with nonlinear spectral parameter in the
boundary conditions were studied in (Goktas and
Mamedov, 2020; Mamedov, 2009; Mamedov and
Kosar, 2010; Mamedov and Kosar, 2011).

In summary, the results obtained in this paper
can be given as follows: firstly, the scattering data of
the boundary value problem (1)-(3) are examined.
Secondly, the resolvent operator is constructed and
the eigenfunction expansion formula is obtained.
Finally, we examine the inverse scattering problem
that can be stated in the following way: determine a
method of constructing the potential q(x) from the
scattering data of the boundary value problem (1)-
(3). Therefore, the main equation of the inverse
problem is derived and an algorithm for the
construction of the potential function q(x) according
to scattering data is given.
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MATERIAL AND METHODS

To solve this inverse scattering problem, we use
the method of Marchenko, in this method, the
transformation operator is used and the central role
is played by the main equation with respect to the
kernel of the transformation operator. However, due
to the discontinuity conditions (3), the integral
representation  (not  transformation  operator)
obtained in (Huseynov and Osmanova, 2007) is used
and so, the main equation of the problem (1)-(3) is
different from the classical main equation or
Marchenko equation. Hereby, we must specify that
the existence of discontinuity conditions (3) in the
boundary value problem (1)-(3) strongly influences
the structure of the representation of the Jost
solution and the main equation of the inverse
scattering problem.

Now, we give the integral representation of the
Jost solution of the equation (1) with discontinuity
conditions (3) obtained in (Huseynov and
Osmanova, 2007):

For all A from the upper half-plane, the equation
(1) satisfying the conditions (3) and (4) has the Jost
solution e(x, 1) that can be represented in the form

e(x, 1) = ey(x, 1) + fxooK(x, t)etdt (5)
where

i/lx
x>a
eq(x, A { ’
o, 4) = ael’l"+a eh2a-%) <y <a

at = (a + ) for each fixed x € (0,a) U (a, )

the kernel K (x,.) belongs to the space L4 (x, o) and
satisfies the following properties:

K(x,x) = az—+fx°°q(t)dt, x€(0,a) (6)
KGox) =2 [7q)dt, xe(ao) (7)
K(x,2a —x+0) - K(x,2a —x —0) =
== (J; qdt - [ q(t)dt), x € (0,a). (8)

It is seen from this representation that the triangular
property of Jost solution representation is lost and
the kernel function has a discontinuity along the line
t =2a—xforx € (0,a).

The solution e(x, 1) is regular with respect to A
in the upper half plane I'mA > 0 and continuous
for ImA = 0. For real 2 # 0, the function e(x, 1)
and e(x, 1) form a fundamental system of solutions
of equation (1) with discontinuity conditions (3) and
their Wronskian is as follows:
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W{e(x, 1), e(x, /1)} =

=e'(x,De(x, 1) —e(x,Ve'(x, 1) = 2i1. (9)

Let ¢(x, 1) be the solution of the equation (1)

with discontinuity conditions (3) under the initial
conditions

¢(0,D =1, ¢'(0,1) =h.
RESULTS AND DISCUSSION

Scattering Data

Lemma 1. The following identity holds for all real
A=0:

2iA¢p (x,A) v
m = e(x, l) Sh (A)e(x, )L) (10)
where
Sh (l) _ e’(0,A)—he(0,1) (11)

e’(0,A)—he(0,1)
and S, (1) = S, (—2) =[S, (=D)] L.
Proof. Since the functions e(x, 1) and e(x, 1) form
a fundamental system of solutions of the equation

(1) with the condition (3) for all real A # 0, we

obtain

$(x, ) = i,{[e'(o, 2) — he(0,D)]eCx, 2) —

2iA

— e’ - he(O, D e 1)} (12)
Now, let us show that wQ)=¢e'(0,1) —
he(0,1) # 0 for all real 2 # 0. Assume that

(1) =e'(0,1) — he(0,1) = 0.
According to (9), we get
e’(0,1)e(0,1) —e(0,2)e’(0,1) = 2iA.

Then, it follows from the last two equality that 1 =
0, but this contradicts 1 # 0. Thus, we have w(1) =
e'(0,1) — he(0,1) = 0 for real 2 # 0. Taking into
account this in the equality (12), we find (10) and
(11) as claimed. The lemma is proved.

Definition 2. The functionS, (1) expressed by the

formula (11) is called the scattering function of the
problem (1)-(3).

Now, we will examine the zeros of the function
w(R).

Lemma 3. The function w(1) may have only a finite
number of zeros in the half plane ImA > 0 and these
zeros lie on the imaginary axis.

Proof. Since w(4) # 0 for all real A # 0, the point
A =20 can be the only possible real zero of the

[JPAS

ijpas@munzur.edu.tr
ISSN: 2149-0910

function w(A). The function w(A) is analytic in the
upper half plane. Therefore, taking into account this
fact and the representation of the solution (5), it is
obtained that the zeros of the function w(4) form
bounded and at most countable set whose unique
limit point may be only a zero.

Now, let us prove that all zeros of the function
w(A) lie on the imaginary axis. Assume that 7; and
T, are two zeros of the function w(4). Then,

w(t;) =€'(0,t;) —he(0,7;,) =0, i =1,2. (13)
Since the functions e(x, ;) and e(x, t,) satisfy the
equation (1), we can write

—e"(x,71) + q()e(x,7,) = t2e(x, 1q),

—e" (x,7) + q()e(x, 1) = T3 e(x, 7o),
and it follows from these equalities that

;_x w {e(x, 75),e(x, Tl)}

2 _—2 A )
= (t2 - 75" )e(x, 1)e(x, 7).
Integrating this equality over the interval (0, ) and
then using the discontinuous conditions (3), we find

(¢2 - ﬁz) f e(x,t)e(x,1,) dx —
0
=0.

-w {e(x, 75),e(x, Tl)}x=0 (14)

In the second expression of the left hand side of
(14), using the relation (13), we have
W{e(x, 1), e(x, Tz)} =
x=0
=¢(0,71)e(0,7;) — e(0,71)e’(0,7,)=0.
Thus, we obtain
(z2 - EZ) foooe(x, 1)e(x,7,)dx =0 (15)

In particular, when 1, = ; is chosen, 2 — ﬁz =0
or T, = il4, here 4; > 0. Consequently, the zeros of
the function w(4) can lie on the imaginary axis.
Moreover, the number of the zeros of the
functions w(A) is finite and this fact is similarly
proved by using the method in (Marchenko, 2011
see Lemma 3.1.6., pp. 186). The lemma is proved.

Lemma 4. The zeros of the function w(A) are
simple.
Proof. Denote

d d
e(x, 1) = ae(x,/l), e'(x, 1) = ae(x,/l).

Consider the following equation

—e""(x, 1) + q(x)e(x, 1) = 2%e(x, ).
Differentiating this equation with respect to 4, we
get
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—e"(x, 1) + q(x)é(x, 1) = 12¢(x, ) + 22e(x, 2).
It follows from these two equalities that

d

EW{e(x, 1), é(x, 1)} = 2[e(x, D]

Integrating this over the interval (0,o) and then

using the discontinuity conditions (3) and the

function w(1) = e'(0,1) — he(0, 1), we calculate
w()e(0,4) — w(A)e(0,2)

+ Zlfoo[e(x,)l)]zdx =0.
0

Let A =it (r > 0) be a zero of the function w ().
Then, we have

20 f le(x, i) |2dx = 6 (i0)e(0, iv).
0

Since fooole(x, it)|?dx > 0, it is obtained that
w(it) # 0 i.e., the zeros of the function w(4) are all
simple. The lemma is proved.

Now, let id;, (A4 >0, k =12,..,n) be the
zeros of the function w (1) and denote

oy 2 (i2)e(0, i
mi? :=f le(x,id)|? dx = @G kz)fe( ' k).
0 Ay

(16)
The numbers m; are called the normalized
numbers of the problem (1)-(3).

Definition 5. A collection

{Sh(ﬂ.), (—00 <A< Oo),ﬂ.k, my, (k = 1,2, ,n)}
is called the scattering data of the boundary value
problem (1)-(3).

Eigenfunction Expansion

The functions
ulx, 1) =e(x, 1) —S,(De(x, 1), (—o <1< »),
17)
ulx,idy) = mpe(x,id,), (k=12,..,n) (18)
are bounded solutions of the boundary value
problem (1)-(3). They form a complete set of
normalized eigenfunctions of this problem.
Consider the operator L with the domain
D(L) = {f(x) € L»(0,):
fQ0), f'(x) € AC[0,a] N AC[a, ®), (f) € Ly (0, )
f'(0)—hf(0)=0,f(a—0)=af(a+0)
f'la=0)=a"'f(a+0)}

where
L) = —f"(x) + q() f(x).
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Assume that A? is not a spectrum point of the
operator L. Then, the resolvent operator R;z(L) =
(L — 22I)~1 exists.
Lemma 6. The resolvent operator is an integral
operator formed by

¥, A) =Rz (L)f = [,” gl t, DF ()t (19)
with the kernel
_ 1 fe(x, Dot 1), t<x,
gt =35 {e(t, D), x<t. 0

Proof. Let f(x) € D(L) be a finite function at
infinity. To obtain the resolvent operator of L,
consider the following boundary value problem

=y +q()y =A%y + f (),

y'(0) — hy(0) =0,
y(la—0)=ay(a+0),y'(a—0)=a 1y (a+0).
Seek the solution of this problem as in the form:

y(x, ) = ¢ (x, DP(x, 1) + cz(x, De(x, 1),
where the functions ¢(x,1) and e(x, 1) are the
solutions of homogeneous problem for ImA > 0.
Consequently, applying the method of variation of
parameters, we find (19) and (20).

Theorem 7. The eigenfunctions expansion formula
of the boundary value problem (1)-(3) is as follows:
n

5(t —x) = Z wCe, i u(t, idy)

k=1
1 [ _
b f w(e, Dt ) dA
2 J,

(21)
where §(x) is a Dirac delta function.
Proof. Let f(x) € D(L) be a twice continuously
differential function and be finite at infinity. Then,
for ImA > 0 we can write from (19) and (20) that

[oe)

Y, 2) = j 900t Df @D de =
0

1 X
=2, e(x, ) ¢(t, Df (H)dt
1 [0 0}
_mjx e(t, Vp(x, Df (t)dt
el (*
T 220 )
A (7
_fz(z(s i [—e"(t, 1) + q(®)e(t, D]f (t)dt.
Integrating by parts for both cases x < a and x > a,
we calculate

(x,4)

[—¢" (&, D) + q(O¢(t, VIf (dt

(22)
where
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206, 2) = f 900 & D" + g F(O]de.
0

Assume that ', denote the positively oriented
contour formed by the circle of radius R and center
at zero. Consider D; = {z:|z| < R,|Imz| = €} and
D, ={z:|z| < R,|Imz| < €}. Denote by T';. the
positive oriented boundary contour of D; and Ty .

the negative oriented boundary contour of D,. Then,
we can use the properties of the integration as

follows:

fF;?,e - fFR + fr;?,,e (23)
Now, multiplying both sides of the expression (22)
by Zim and then integrating along the contour T'p
with respect to 1, we get

1 f(x)
— =—— A
oy rRly(x AdA = 2ni b, —=dA+ Ziz(x),
(24)
where
z(x, 1)
Z —_—
R(x) - 1 da,

and since

I/%Iim supxzolz(x Al =0 which is
obtained from the expressions of the functions
e(x,1), ¢(x,2) and w(1), we have Zz(x) -0

uniformly to x as R — oo. According to (23), we can
write

21 Jp
Re
1 1
= —f Ay(x,)dA +—_f Ay(x, A)dA.
2ni Jr, 2mi Jpur

(25)
It follows from (24) and (25) thatas R —» o« and € —
0

Ay(x, 1)dA =

Ay(x, D)dA =
2t Jyy (e d)

=—f(x)+ %f::/l[y(x,/l +i0) —y(x,A —i0)]dA

On the other hand, using the residue theorem, we
have

Ay(Cx, D)dA =
2mi Jyr o)

n
= Z Res;—ip Ay(x,A) + Z Res;—_i3, Ay (x, A).

k= k=
It is found from the last two relations that
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fl)=- Z Resj=i Ay(x,2)
k=1

n
- z RQS)L:_i)Lk)l}/(x; A)
k=1
1 f " 10)]d2
+o > [y i0)]
(26)

Next, let us examine the right hand side of the
equation (26). Denote by ¥(x, 1) the solution of
equation (1) with the discontinuity conditions (3)
satisfying the initial conditions
P(O,1) =0, ¥'(0,2)=-1.

Moreover, W{¢(x,1),¥(x,A)} = 1. Therefore, we
have

e(x, 1) =e(0,)p(x, 1) — w(DY(x, ).
Using the expression (20) and (27), we can write
fort <x

(, A +i0) —y(x, A —

(27)

A
glx, t,1) = — e((&)) dCe, D, 1) +P(x, DNp(t, 1),
forx <t
glx, t, 1) = ((/1)) PO, Dp(t, A) + dp(x, Dp(t, 1)
and for ImA > 0, we have
B e(0,1) ®
Y6, 2) = o) f 0 Dt DF(Ode +
+ f W0 D DDt +
0
+ f 6 Ce, (e, DF(E)dt.

X
Then, it is obtained from this expression that
n n
z Resy_iz Ay(x,2) + Z Resj—_iz Ay(x,2) =
k=1 k=1
n
Now, taking into account the relation y(x, 1 —

y(x, A +i0), we find
y(x,A+i0) — y(x,A +i0) =

—Zi)lke(O, llk) * . .

—L e | binde @t
29)

i0) =

1 e(x, ) e(x A)
=j0 it )]gb(t Df)dt +
e(t, /1) e(t, 1)
+ o A)[ el )]f( e

and using (27) in this expressmn, we get
y(x, A +i0) —y(x,A+i0) =
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|w(/1)|2f $x, Do (e, Df (t)dt.

Thus, it follows from the last equality that
1 ® . .
Z_mf Aly(x, 2 +i0) — y(x,A—i0)]dA =

[e9) /12
=;f PRNEAG A)f b (t,2) f(£)dedA.
0
(29)

Consequently, substituting (28) and (29) into (26),
we calculate

f(x2=
2i1,e(0,il,) [
- Z %] P (x, i) P(t, i) f (t)dt

2 (° 22
+= f SOE A)f B, DF(H)dtdA.

Moreover, in the last expression considering
e(x,1) =e(0,)p(x, 1), (16), (17) and (18), the
eigenfunction expansion formula (21) is obtained.
The theorem is proved.

Inverse Scattering Problem

In this section, we will reconstruct the potential
q(x) by scattering data of the boundary value
problem (1)-(3). The problem (1)-(3) has bounded
solutions (17) and (18) and as x — oo, the following
asymptotic formulas are satisfied:

u(x, 1) = e — 5, (D)e* 4+ 0(1), (—o0 < A < )
u(x,idy) = mee (1 +0(1)), (k=12,..,n).
Then, it must be specified that the scattering data

{Sh(ﬂ.), (—00 <A< OO), Ak;mk, (k = 1,2, ,n)}
provides a complete description of the behavior at
infinity of the normed eigenfunctions u(x, 1) of the
problem (1)-(3).

When q(x) =0 in the equation (1),

following relation which is similar to (10) is valid:

= e D) — Sy ey, ), (30)
where ¢ (x, 1) is a solution of the equation (1) with
(3) under the initial conditions

$0O,N) =1 ¢'(0,1) =0,

maoreover,
e (0) _ —at+a"e 2
at—q—e2ira

So(0) = 52 = (31)
and we have S,(1) —S,(1) =0 G) as || - oo.

Thus, the function Sy(1) — S,(1) € Ly(—o0, ) is
the Fourier transform of the function
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Fs(x) = 5= [ [So(A) — S, (D] e*d2
which belongs to the space L, (—, o).

(32)

Theorem 8. For each x =0, x #a the kernel
K (x,y) of the integral representation (5) satisfies the
following equation

o
K(x,y)—a—+K(x,2a—y)+

+15(x,y)+f K(x,)F(y+t)dt=0, x <y,
X

(33)
where
F(x) = Fs(x) + Xjo, mpe M (34)
and
atF(x+y)+
ﬁ(x,y)={+aF(2a—x+y), 0<x<a
F(x +y), x> a.
(35)
Proof. It is obtained from (10) and (30) that
2id¢p(x, 1) 2iAp(x, 1)
e’(0,1) — he(0,1)  e;(0,1)

- f KCx, )e=Edt + [Sy (1) — Sy (D]eo ()

X

+ me(x, )[So (1) = S (D)]eAtdt —

—So (A)f K(x,t)e*tdt
X
or equivalently,

2i¢(x, /1){ !

e’(0,1) —he(0,1)

1
" en(0, ) — heo(0, ,1)} +
20 (p(x, 1) — p(x, 1))
ey (0,1) — hey(0,21)

N 1
+2iA¢(x, 1) {66(0’ 1) — hey(0,2) B e, (0, /1)}

= jooK(x, e M dt + [Sy (1) — S (D]eo(x, 1)
+ j ooK(x, )[Se(1) — S, (V)] etdt —

—SO(/'D.[ K(x, t)el*tdt.
X

(36)
Now, let us multiply the both hand side of the
equality (36) by i e and integrate with respect to
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A € (—0,0). Then, the right hand side of the new
equality is as follows:

1 ® )
KGoy) +o f [So(A) — S (D]eo(0, e da +

+ f Tk {% J 150 — sh(A)]eWy”)dA} dt

© 1 r® .
- f K(x,t) {— f SO(/l)e"l(y”)d)l}dt.
X 2m ) _o
(37)
Let us calculate
— f So(V)er+D 4y,
It follows from (31) that

So(1) = Z (Z—;)n {(Z—;) e2ila(n-1) _ ezuan}

n=0
Using this expression, we find

zi f So(Detr+0d) =

[ee)

Z( >{< )5(2a(“—1)+y+t)

n=0

—6(an+y +t)} (38)
Thus, substituting (32) and (38) into (37) and taking
into account the relation K(x,y) = 0 for x > y (see
Huseynov and Osmanova, 2007), it is obtained for
y > x that the equality (37) is as follows:

(04 ~
K(x,y) —FK(x,Za —y) + FEs(x,y) +

+ [ K(x, OFs(y + t)dt, (39)
where
atFs(x+v) +
Fs(x,y) ={+a " FsQa —x + ), 0<x<a
Fs(x + ), x> a.
Now, it remains to examine the integral of the

product of the left hand side of the equality (36) and
iﬂei’ly, taken over the real line —oo < A < 0. Then,
applying Jordan’s lemma, for y > x we find

L n
202 (x, idy e~ MY
Z kP, i) - Z mie(x, idy) e~
k=1

- @(idy)
n

= Z mlzc {eo (.X, ilk)e_/-{ky + f K(X, t)e—ﬂk(t+y)dt}
k=1 x

(40)
Consequently, using (39) and (40), for y > x we
derive the equation (33). The theorem is proved.
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Definition 9. The equation (33) is called the main
equation of the inverse problem of the scattering
theory for the problem (1)-(3).

Note that this equation is different from the
classical Marchenko equation and we define the
equation (33) as the modified Marchenko equation.

Lemma 10. For each x>0, x #a the main
equation (33) has a unique solution K(x,.) €
Ly (x, ).

Proof. In case of x > a, the main equation (33) is in
the form of classical Marchenko equation, so for
x > a the proof of this theorem is as in (Marchenko,
2011). Now, suppose that x < a. The equation (33)
can be written as follows:

T.K(x,.) + EK(x,.) = —F(x,.),

where
f», x> a,
L) = {f(y) -—f@a-y), x<aq
(Fef) = f F(t+y)f(®dt, y>x.

X
The operator T, is invertible in the space L,(x, o)

and the operator F, is completely continuous in the
space L,(x,») (see Marchenko, 2011, Lemma
3.3.1). Then, the main equation (33) can be
expressed as
K(x,.) + Ty YEK(x,.) = =T, 'F(x,.),

where the operator Ty 1E, is completely continuous
operator in L, (x, o). Thus, to prove the theorem, it
is sufficient to show that the homogeneous equation

)~ e - )+

+fooF(t+y)fx(t)dt=0, y>x

has only trivial solution f,(y) = 0 in L,(x, ) and
this fact is similarly obtained as in (Huseynov and
Osmanli, 2009).

Theorem 11. The potential function q(x) is
uniquely  determined by  scattering  data
{Sh(l), (—00 <A< 00), Ak, my (k =1,2, ...,n)}.

Proof. Using the scattering data {S;, (1), (—w < 1 <
0); A; my (k=1,2,...,n)} we construct the
functions F(x) and F(x,y) via the formulas (34)
and (35). Then, with the help of constructed
functions, we can write the main equation (33).
From Lemma 10, the main equation has a unique
solution K(x,y) which is the kernel of the integral
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representation (5) for every x = 0, x # a. Hence,
the potential g(x) is uniquely constructed according
to the formulas (6), (7) and (8).

CONCLUSION

In this paper, we deal with Sturm-Liouville
operator with discontinuity conditions at the point
x = a € (0, +). Firstly, we examine the scattering
data of the boundary value problem (1)-(3). Then,
the expansion formula with respect to the
eigenfunctions of this problem is obtained. Finally,
we solve the inverse scattering problem by using the
method of Marchenko. In this method, the main
equation (or Marchenko equation) with respect to
the kernel of the transformation operator plays the
central role. However, the existence of the
discontinuity conditions (3) strongly influences the
structure of the representation of the Jost solution, so
Jost solution is not in the form of transformation
operator, is in the form of integral representation.
Therefore, we use this integral representation of the
Jost solution when solving the inverse scattering
problem. Consequently, we derive the main equation
of the inverse scattering problem and we give an
algorithm for the construction of the potential
function q(x) according to scattering data.
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