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Abstract

In this paper, we investigate valuation of discretely-sampled variance swaps in a �nancial asset price model
with increase in volatility. More precisely, we consider a stochastic di�erential equation model with an
additional parameter which augments volatility. This is to cover the impact of �nancial crunches on pricing
a given asset. Under these settings, calculation of annualized delivery price of a variance swap is not sure
in a closed form. Following the literature, the delivery price can be written as a �nite sum of conditional
expectations. We focus on the computation of these expectations and obtain some interesting results. This
leads to a semi-analytical solution to the variance swaps pricing problems. We also show the advantage of
our model.

Keywords: stochastic di�erential equations, discretely-sampled variance swaps, high volatility model.

1. Introduction

Managing the risk is one of the most important research topic in �nancial mathematics. Financial derivatives
are central tools utilized in risk management. There are di�erent types of derivatives such as options, fu-
tures, forwards, and variance swaps. We are interested in this paper on variance swaps which are built on the
volatility. Volatility can be seen as an indicator of discrepancies in prices of a product. We can distinguish
two sort of volatilities, namely the implied volatility and the realized volatility. The implied volatility is the
current market price of the volatility, which acts like the unbiased volatility price built on the expectation
of the marketplace for movement over a period of time.
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The realized volatility is obtained from the variations in the underlying price over a stated stage. It is called
the historical volatility when the time is in the past and the realized volatility if it is in the future.

Variance and volatility swaps are forward contracts. The underlying is not a �nancial asset but the future
realized volatility of its returns. Variance swaps are forward contracts like volatility swaps, but built on
realized variance which is equal to the square of the future volatility. We are interested in this work on the
valuation of variance swaps. These derivatives allow traders to buy or to sell a volatility just as buying or
selling any given asset. They allow to buy or sell future realized volatility in contrast with the actual value
of the implied volatility.

However, volatility and variance swaps are not regular swaps that consist of a simple swap of money
movements. Actually, the payo� for a long position of a volatility swap at settlement equals to the an-
nualized realized volatility over a given period minus the volatility strike of the contract times a notional
amount of the swap in dollars per annualized volatility point. The payo� at maturity is Notional Amount×
(Volatility˘Volatility Strike).

There exist many articles dealing with managing the risk, see for instance on portfolio optimization or on
calculating a stochastic hedge ratio [8]. On the other hand, the literature contains an abundant amount of
research papers on pricing �nancial derivatives. About pricing variance swaps with di�erent models predict-
ing the underlying asset price trajectory St, we refer to [1], [2], [11] and [10], [13], [14] and [15] for more
details about suggested models and methods in the literature. To the best of our knowledge, pricing variance
swap under a high volatility model has previously never been addressed. In this paper, we price the variance
swap in discretely-sampled for markets with high volatility. The model considered in this work allows the
underlying asset price to have a usual increase of volatility which is more general than normal situations. An
augmented volatility implies a higher risk. This is the importance of considering such a model, which could
cover markets with crunch. We study the crisis model introduced in [3] �rst. In [5], the authors provide
a closed form solution for the European option price under a particular function g(t) which represents the
increase in the volatility. Sensitivities for prices of the same crisis model has been addressed in the work of
[4]. Recently, option pricing under an illiquid with increased volatility model has been shown in [6]. Then,
we investigate the valuation of variance swaps under a high volatility model where the market is under stress
in this paper. More precisely, the problem of determining the fair price for discretely sampled variance swap
is explored. This price is known to be written as sum of expectations and the valuation problem turns out
to calculate these expectations. In this paper, we have obtained a partial formula for these expectations.

The paper is organized as follows. Section 2 brie�y presents a review on discretely-sampled variance swaps.
We investigate the valuation of variance swaps with an increased volatility and we obtain our main result on
calculating the fair variance delivery price in Section 3. In Section 4, a numerical application of our obtained
formula is performed with a comparison to the price during normal situations. Section 5 concludes the paper.

2. Discretely-sampled variance swaps

We �rst review an approach in the case of the Heston stochastic volatility model on �nding the value of
a discretely-sampled variance swap. The method provided here can be found in [13] and [14].

From now on, the following assumptions and notations are used (unless otherwise stated). We work on a
�ltered probability space (Ω, (Ft)t∈[0,T ],FT , Q), a standard Wiener process (Wt)t∈[0,T ] with Ft := σ(Wt) for
any t ∈ [0, T ] and a known risk-neutral probability Q. The underlying asset price is denoted by (St)t∈[0,T ],
the notional amount of the variance swap in dollars per annualized volatility point squared is L. Moreover,
let σR be the realized volatility (in annual terms) of the underlying asset S computed using arithmetic return.
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The formula for the realized variance de�ning the pay-o� is then given by

σ2
R =

AF

N

N∑
i=1

(
Sti − Sti−1

Sti−1

)2

× 1002. (1)

Assume that there are total of N closing prices Sti of the underlying asset observed at an equally-spaced
time ti. In this case, we multiply by AF = N/T to get the annualized variance in the above formula. Let
the strike be Kvar. At time t the value of variance swap is

Vt = e−r(T−t)EQ
[
L(σ2

R − kvar)|Ft

]
= e−r(T−t)EQ

t [L(σ
2
R − kvar)],

where EQ
t = EQ[.|Ft] is the conditional expectation at time t. Since at inception V0 = 0, we obtain

Kvar =
AF

N

N∑
i=1

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]
× 1002 (2)

by the de�nition of the fair variance delivery price and (1). The problem of pricing variance swap consists
in �nding the fair variance delivery price Kvar. In other words, we need to compute all the conditional
expectations

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]

(3)

for i = 1, · · · , N , which depends essentially on the SDE employed to predict the future values of the under-
lying asset Sti for i = 1, · · · , N . To compute the expectation (3), we use the same way as Rujivan and Zhu
did for the case of Heston model [13]. We start �rst by expanding the above expectation into three parts in
the following lemma.

Lemma 2.1. We have

EQ
0

[(
Sti − Sti−1

Sti−1

)2
]
= 1 + EQ

0

[
1

S2
ti−1

EQ
ti−1

[S2
ti ]

]
− 2EQ

0

[
1

Sti−1

EQ
ti−1

[Sti ]

]
. (4)

Proof. By the tower property, the conditional expectation (3) can be transformed into equation (4), which
has been shown by equation (2.5) in [13].

Now the key idea to compute the two right hand expectations of equation (4) can be summarized in two
steps as follows

� Step 1: calculate the expectations EQ
ti−1

[Sti ] and EQ
ti−1

[S2
ti ].

� Step 2: plug the values of expectations obtained in step 1 into (4) then evaluate the outcome expectation
in the form EQ

0 [.].

Step 1 can be done by computing the conditional expectation of Yt := Sγ
t , which is

EQ
ti−1

[Yt] = EQ
ti−1

[
Yt|(Yti−1 = y, vti−1 = v)

]
for all t ∈ [ti−1, ti], where γ can be any non-zero real number especially 1 and 2 (cf. Proposition 2.1 in [13]).
The second step is accomplished in Proposition 2.2 in [14].

3. Valuation of variance swaps in discretely-sampled for markets with increased volatility

The main result of this section is to address the issue of pricing discretely-sampled variance swaps under
high volatile model. We derive partially the value of the discretely-sampled variance swap.
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3.1. Variance swaps in an increased volatile model

To examine the impact of a high volatility on the value of fair variance delivery strike Kvar, we look
into the variance swap pricing problem when the underlying asset price has an augmented volatility. More
precisely, here we assume that (St)t∈[0,T ] is given by the SDE

dSt = rStdt+ (σSt + βert)dWt, (5)

where r is a �xed short-run risk free rate, σ is the volatility of the asset, β is a constant and the initial value
of the asset S0 > 0. This model presents some practical advantages such as accounting for crisis situations
where the prices are su�ering from unusual and sudden depreciation. Moreover, there exists a closed form
solution for pricing European option in the case of this model. An additional advantage of using this model
is that it is a stochastic volatility model that satis�es the leverage e�ect where the volatility and the asset
price are inversely proportional. The SDE (5) has the solution

St = (S0 +
β

σ
)e(r−

σ2

2
)t+σWt − βert

σ
. (6)

(See [5] for more details on the above solution and derivation of prices for European options.)

3.2. Valuation of discretely-sampled variance swap

This subsection deals with pricing variance swap under the high volatility model (5) by investigating the
valuation of strike Kvar given by (2) which is reduced to the calculation of the conditional expectations (3).
Our way to do this is inspired from the method of [13] employed for Heston model stated in Lemma 2.1 and
steps 1 and 2 in the previous section.

Theorem 3.1. Let AF be the annualized factor and N be the number of observations. Assume that

C =

(
S0 +

β
σ

)2
S0 +

β
2σ

e2r∆t − 2β

σ
er(2ti−ti−1) and D =

(
S0 +

β
σ

)2
S0 +

β
2σ

β

2σ
e2rti − β2

σ2
e2rti .

Then, the annualized delivery price for the variance swap of the high volatile model is given by

Kvar =
AF

N

N∑
i=1

[
1 + EQ

0

[
1

S2
ti−1

EQ
ti−1

[S2
ti ]

]
− 2EQ

0

[
1

Sti−1

EQ
ti−1

[Sti ]

]]
× 1002,

where

EQ
0

[
1

Sti−1

EQ
ti−1

[Sti ]

]
= er(ti−ti−1)

and

EQ
0

[
1

S2
ti−1

EQ
ti−1

[S2
ti ]

]
= CEQ

0

[
1

Sti−1

]
+DEQ

0

[
1

S2
ti−1

]
.

To prove the Theorem 3.1, we start by applying Itô formula to have the SDE of stochastic processes power
of St as provided in the next corollary.

Lemma 3.2. Let γ be a non-zero real number and let (Yt)t∈[0,T ] be the process de�ned by Yt = Sγ
t . Then, we

have

dYt = γYt

[(
r +

γ − 1

2
(σ + βertY

− 1
γ

t )2
)
dt+

(
σ + βertY

− 1
γ

t

)
dWt

]
. (7)
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Proof. Applying Itô formula with the function f(x) = xγ and St given by (5). Then

dYt = d(Sγ
t ) = d(f(St)) = f ′(St)dSt +

1

2
f ′′(St)d⟨St, St⟩

= γ(St)
γ−1

[
rStdt+ (σSt + βert)dWt

]
+

1

2
γ(γ − 1)(St)

γ−2
[
(σSt + βert)2dt

]
.

Since

⟨dSt, dSt⟩ = ⟨rStdt+ (σSt + βert)dWt, rStdt+ (σSt + βert)dWt⟩
= (σSt + βert)2dt.

Therefore, we have

dYt = d(Sγ
t ) = γrSγ

t dt+ γ(St)
γ−1(σSt + βert)dWt +

1

2
γ(γ − 1)(St)

γ−2(σSt + βert)2dt

=

[(
r +

1

2
(γ − 1)S−2

t (σSt + βert)2
)
γSγ

t

]
dt+

[
γ(St)

γ−1(σSt + βert)
]
dWt.

=

[(
r +

1

2
(γ − 1)

(
Y

1
γ

t

)−2

(σY
1
γ

t + βert)2

)
γ

(
Y

1
γ

t

)γ
]
dt

+

[
γ

(
Y

1
γ

t

)γ−1

(σY
1
γ

t + βert)

]
dWt.

The last equation can be simpli�ed to get (7). This ends the proof.

Next proposition shows that conditional expectation of the form EQ
ti−1

[Yt], where t ∈ [ti−1, ti] is the solution
of the PDE.

Proposition 3.3. Let t ∈ [ti−1, ti], then there exists a function Uγ
i ∈ C1,2([ti−1, ti]×]0,∞[) such that

Eti−1 [Yt] = Uγ
i (t, Yt). Moreover Uγ

i (t, y) is solution of the following PDE∂tU
γ
i + γYt∂yU

γ
i

(
r +

γ − 1

2
(σ + βertY

− 1
γ

t )2
)
+

1

2
γ2Y 2

t

(
σ + βertY

− 1
γ

t

)2

∂yyU
γ
i = 0,

Uγ
i (ti, y) = y.

(8)

Proof. Using the Markov property of (Yt)t∈[0,T ] we have for any s ∈ [0, t], Es[f(Yt)] = E [f(Yt)|Ys = y] =
Uγ(s, y), with U ∈ C1,2([0, t]×]0,∞[). Consider the function

Uγ
i : [ti−1, ti]×]0,∞[ −→ IR

Uγ
i (t, y) = E [Yti |Yt = y] .

We have Uγ
i (ti−1, y) = E

[
Yti |Yti−1 = y

]
and Uγ

i (ti, y) = E [Yti |Yti = y] = E[y] = y. Applying Itô formula to
Uγ
i (t, Yt) we obtain

dUγ
i = ∂tU

γ
i dt+ ∂yU

γ
i dYt +

1

2
∂yyU

γ
i d⟨Yt, Yt⟩ (9)

Using (7) we have

d⟨Yt, Yt⟩ = γ2Y 2
t

(
σ + βertY

− 1
γ

t

)2

dt.
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Therefore (9) becomes

dUγ
i =

[
∂tU

γ
i + γYt∂yU

γ
i

(
r +

γ − 1

2
(σ + βertY

− 1
γ

t )2
)

+
1

2
γ2Y 2

t

(
σ + βertY

− 1
γ

t

)2

∂yyU
γ
i

]
dt

+γYt∂yU
γ
i

(
σ + βertY

− 1
γ

t

)
dWt. (10)

Since the process (E[Yt|Fs])s∈[ti−1,ti] is a martingale, then by the martingale representation theorem, the
term in dt of the above equation must vanish. This leads to the PDE (8).

Now we can get the third term of (4).

Lemma 3.4. We have Eti−1 [Sti ] = Sti−1e
r(ti−ti−1) and

EQ
0

[
Sti

Sti−1

]
= er(ti−ti−1), (11)

where Sti is the closing price of the asset at the i-th observation time.

Proof. If we take we apply Proposition 3.3 for γ = 1 then Yt = St and Eti−1 [Sti ] satis�es the PDE∂tUi + ry∂yUi +
1

2
(σy + βert)2∂yyUi = 0

Ui(y, ti) = y.

Let τ = ti − t. Assume that the solution of the PDE is of the form Ui(t, y) = yec(τ). Then,

∂tUi =
∂vi
∂t

=
∂vi
∂τ

∂τ

∂t
= −yec(τ)

dc

dτ
, ∂yUi = ec(τ) and ∂yyUi = 0.

Substituting the above PDE to get the ODE

ec(τ)
dc(τ)

dτ
+ rec(τ) = 0

subject to the initial condition c(0) = 0. This gives dc(τ) = rdτ and c(τ) = rτ. Thus, Ui(t, y) = yerτ .
Therefore,

EQ
0

[
Sti

Sti−1

]
= EQ

0

[
1

Sti−1

Ui(ti−1, y)

]
= EQ

0

[
1

Sti−1

Sti−1 .e
r(ti−ti−1)

]
= er∆t.

The proof is complete.

The second term in (4) can't be computed using the PDE in Proposition 3.3, however it can be reduced to
the computation of conditional expectation in S−1

t .

Proposition 3.5. Let

C =

(
S0 +

β
σ

)2
S0 +

β
2σ

e2r∆t − 2β

σ
er(2ti−ti−1) and D =

(
S0 +

β
σ

)2
S0 +

β
2σ

β

2σ
e2rti − β2

σ2
e2rti .

Then we have

EQ
0

[(
Sti

Sti−1

)2
]
= CEQ

0

[
1

Sti−1

]
+DEQ

0

[
1

S2
ti−1

]
. (12)
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Proof. By equation (4), we have

EQ
0

[
S2
ti

S2
ti−1

]
= EQ

0

[
1

S2
ti−1

EQ
ti−1

[S2
ti ]

]
.

Since

Sti =

(
S0 +

β

σ

)
e(r−

σ
2
)ti+σWti − β

σ
erti = αξti −

β

σ
erti ,

where α = S0 +
β
σ and ξti = e(r−

σ
2
)ti+σWti . Then,

S2
ti = α2ξ2ti +

β2

σ2
e2rti − 2

β

σ
αξtie

rti .

Moreover,

EQ
ti−1

[S2
ti ] = EQ

ti−1
[α2ξ2ti ] +

β2

σ2
e2rti − 2

β

σ
ertiEQ

ti−1
[αξti ].

Now we investigate the calculation of these two conditional expectations in the above equality. The second
expectation can be easily computed using (11). In fact, we have

EQ
ti−1

[αξti ] = EQ
ti−1

[Sti +
β

σ
erti ] = EQ

ti−1
[Sti ] +

β

σ
erti = Sti−1e

r∆t +
β

σ
erti .

To �nd the �rst conditional expectation EQ
ti−1

[α2ξ2ti ], we �rst notice that

α2ξ2ti = α2e2(r−
σ
2
)ti+2σWti = α2e(r2−

σ2
2
)ti+σ2Wti

=

(
α2

S0 +
β
2σ

)[(
S0 +

β

σ2

)
e(r2−

σ2
2
)ti+σ2Wti + γ2(ti)

]
− α2

S0 +
β
2σ

γ2(ti).

Then

EQ
ti−1

[α2ξ2ti ] =
α2

S0 +
β
2σ

[
EQ

ti−1
[S2ti ]− γ2(ti)

]
,

where S2ti = Sti(r2, σ2) and γ2(ti) =
−β
2σ e

2rti . Let γ(ti) =
−β
σ erti . Then,

EQ
ti−1

[α2ξ2ti ] =
α2

S0 +
β
2σ

(
Sti−1e

2r∆t +
β

2σ
e2rti

)
,

and

EQ
ti−1

[S2
ti ] = ASti−1 +B + γ2(ti) + 2γ(ti)[Sti−1e

r∆t − γ(ti)]

= [A+ 2γ(ti)e
r∆t]Sti−1 +B − γ2(ti),

where A = α2

S0+
β
2σ

e2r∆t and B = β
2σe

2rti α2

S0+
β
2σ

. Thus, we have

EQ
ti−1

[S2
ti ] = CSti−1 +D,

where C =
(S0+

β
σ )

2

S0+
β
2σ

e2r∆t − 2β
σ er(2ti−ti−1) and D =

(S0+
β
σ )

2

S0+
β
2σ

β
2σe

2rti − β2

σ2 e
2rti Finally, we get

EQ
0

[(
Sti

Sti−1

)2
]
= EQ

0

[
1

S2
ti−1

(CSti−1 +D)

]
= CEQ

0

[
1

Sti−1

]
+DEQ

0

[
1

S2
ti−1

]
.

This ends the proof.

Combining all aforementioned results, we �nish the proof of Theorem 3.1.
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4. Applications

In this section, we apply our result from previous section on valuation of variance swaps. An illustration
for the sensitivity of fair delivery price to the additional parameter β is provided. It shows the volatility
increase's impact on the a variance swap delivery price.

Let the annualized risk-free interest rate r = 0.02, the number of observations N = 252 (trading days) and
the life time T = 1 (year). The annualized factor AF = N/T = 252. Assume that the parameter σ of the
underlying asset S is 0.01.

Then, we use the Monte Carlo method to simulate the annualized delivery price for the variance swap of the
high volatile model with respect to β. After running 5000 times for each β, we have the following Figure
1. From this �gure, we can see that the annualized delivery price for the variance swap of the high volatile
model is proportional to the value of β.

Figure 1: The annualized variance delivery price Kvar with respect to β.

Now we �x the parameter β = 0.0001. After running 5000 times for each σ of the underlying asset S, we
have the following Figure 2. From this �gure, we can see that there is no signi�cant change in the annualized
delivery price for the variance swap of the high volatile model with small di�erence of the value of σ .
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Figure 2: The annualized variance delivery price Kvar with respect to σ.

Note that when we take β = 0, the high volatile model degenerates to the Black Scholes model.

model
B-S model high volatile model
β = 0 β = 0.0001 β = 0.00015 β = 0.0002 β = 0.00025 β = 0.0003

Kvar 4.953× 104 4.957× 104 4.993× 104 5.031× 104 5.115× 104 5.146× 104

Table 1: Comparison of the annualized variance delivery price Kvar between the high volatile model and the Black-

Scholes model.

The above table shows the annualized delivery price for the variance swap of these two models under the
same assumptions.

Finally, we compare the annualized delivery price for the variance swap of the Black Scholes model and the
high volatile model with respect to σ by the following �gure.
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Figure 3: Comparison of the annualized variance delivery price Kvar between the Black Scholes model and the high

volatile model with respect to σ.

5. Conclusions

Pricing �nancial derivatives is an important problem in mathematical �nance since these instruments
are used extensively in hedging against risk. Therefore, obtaining an accurate price for a �nancial derivative
product is decisive in risk management. However, the valuation of such products is primary depending on
modeling its underlying asset.

In this paper, we study the evaluation of variance swaps during situations where the volatility is abnormally
increased. A �nancial crunch is a typical example of such situation. During this period when risk is higher,
an accurate price for the swaps is essential. The paper investigates a solution to the pricing of discretely-
sampled variance swaps in markets with high volatility. The obtained result is expected to improve the
accuracy of the fair delivery price during �nancial crisis. Numerical simulations show that variance swap
prices are proportional to volatility increase.
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