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Abstract  Öz 

Valvular diseases may affect one or more of the cardiac valves, which 
may need to be replaced or restored for effective treatment. The surgical 
procedure can be guided by a patient-specific and dynamic model 
containing information complementary to the 2D/3D static images of 
the valves. To this end, in this study a novel automated model-free aortic 
valve segmentation method is presented, and its performance is 
evaluated against expert annotations over conventional contrast-
enhanced ECG-gated multislice CT data of the aortic valve at its closed 
position. Detailed evaluation of the proposed method in 19 real cases 
revealed an encouraging performance of 3D region growing over 
Hessian based approach but also demonstrated the complexity of the 
problem.  

 Bir veya birden fazla kalp kapakçığının etkilenebildiği kapakçık 
hastalıklarının etkin tedavisi için bu kapakçıkların onarılması ya da 
değiştirilmesini gereklidir. Kapakçıkların 2B/3B statik görüntülerinden 
elde edilecek bilgiyi tamamlayıcı bilgi içeren hastaya-özgü ve dinamik 
bir model bu girişimsel tedavi rehberlik edebilir. Bu amaçla bu 
çalışmada yeni bir otomatik model-bağımsız aort kapakçığı bölütleme 
yöntemi önerilmiş ve yöntemin doğruluğu aort kapakçığının kapalı 
anına ait geleneksel kontrastlı EKG-güdümlü çok-kesitli BT verisinden 
elde edilen uzman işaretlemeleri ile ölçülmüştür. Yöntemin başarısı 19 
gerçek veride detaylı olarak değerlendirilmiş ve Hessian temelli 
sonucun üzerine bölge büyütme yaklaşımının performansının umut 
vadettiği ama bunun yanı sıra problemin zorluğunu göstermiştir. 

Keywords: Aortic valve, Segmentation, Model-Free, Region growing, 
Hessian, Supravalvular sinus detection, Ascending aorta, Computed 
tomography, Valvular heart diseases. 

 Anahtar Kelimeler: Aort kapakçığı, Bölütleme, Model-Bağımsız, 
Bölge büyütme, Hessian, Supravalvüler sinüs tespiti, Çıkan aort, 
Bilgisayarlı tomografi, Kalp kapakçığı hastalıkları. 

1 Introduction 

Heart disease is the leading cause of death in the Western 
world. Mortality is close to 2% in primary valvular disease, 
where one or more of the four cardiac valves (particularly the 
aortic and mitral) is affected. Roughly 2.5% of the world 
population acquires some form of symptomatic aortic valve 
diseases regardless of age [1]. 

Invasive interventional treatment of valvular disease consists 
of replacement or restoration of the affected valve(s) and, in 
either case, pre-operative planning and procedural outcome 
are greatly affected by the resolution and accuracy of the 
diagnostic information.  However, capturing intricate anatomic 
detail of highly dynamic cardiac sub-structures, such as the 
valves and chordae, can be challenging, particularly when 
diagnostic images are processed with conventional techniques.  
Either 3-D topographic information is sacrificed when dynamic 
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2-D images are viewed, or functional detail is left out from high-
resolution 3-D anatomic renderings. There is an evident need 
for a diagnostic tool, which can offer both 3-D and dynamic 
images of the heart, particularly of the intra-cardiac structures, 
in a patient-specific and real-time setting. Such a 4-D model  
(3 dimensions in space and an additional fourth in time) will 
provide the interventionalist the possibility to carry out a 
detailed and more accurate pre-operative planning of the 
subsequent surgical procedure. 

When the “first-in-line” ultrasound examination proves 
technically difficult due to patient anatomy and/or data it 
provides do not match the clinical picture, evaluations of 
diagnostic accuracy of multislice CT in valvular disorders (such 
as aortic valve stenosis) with respect to ultrasound  is 
advocated [2],[3]. Accordingly cardiac image segmentation 
with CT has been a popular research area, where initial 
methods included mostly semi-automated solutions [4],[5] 
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while recent studies benefit from the popular deep learning 
based solutions [6],[7]. In view of the valvular structures, 
several studies have proposed machine learning based 
algorithms for segmentation of the tract, but ignored valvular 
segmentation [8]-[10]. More recently proposed solutions 
include fully automated approaches that make use of virtual 
heart models for improved segmentation [11]-[18]. However 
state-of-the-art automated segmentation of valvular structures, 
and specifically of the aortic valve, is limited. This is a relatively 
less-studied problem and, to our knowledge, there exist only a 
few works on automated aortic valve segmentation from 
computed tomography (CT) images, all of which have taken 
advantage of 4D models generated from CT data [19]-[22]. 

Preoperative assessment of patients with aortic stenosis (AS), 
the most common valvular disease, requires evaluation of AS 
severity via segmenting the valve with ultrasound (US) data, 
accepted as diagnostic standard; and measuring the aortic valve 
area (AVA). Recent research efforts focused on the feasibility 
and accuracy of contrast-enhanced multidetector computed 
tomography (CT) for this task. Feuchtner et al. [3] manually 
traced the aortic valve on CT and US scans of 46 subjects, and 
compared the AVA to show the reliability of CT for 
identification of patients with degenerative AS. Their results 
showed that CT is 100% sensitive for identification of patients 
with AS. Furthermore, mean AVA on CT data is measured as 
0.94 cm2, and showed good correlation with US data. In another 
study [23], the aortic valve is manually segmented on CT and 
US scans of 40 subjects, and the mean AVA are measured 
respectively as 0.87 and 0.81 cm2 indicating good correlation 
between the two modalities. 

Besides these manual approaches, automated segmentation of 
the aortic valve is an under-investigated topic with only a few 
solutions proposed. Ionasec et al. [19] presented a 
discriminative learning-based method to generate a 
physiological model of the aortic valve using splines together 
with anatomically-driven topological and geometrical 
constraints. They evaluated their method on CT scans of 37 
subjects and reported a mean Bland-Altman systematic bias of 
0.12 cm2 indicating high agreement between expert annotated 
and model-based AVA measurements. Weese et al. [21] 
introduced a study on generating patient-specific heart models 
by adapting generic models to the patient data (16 contrast-
enhanced CT scans used for the valve model). Adaptation of the 
model to the patient data is achieved by generalized Hough 
transform-based organ localization, and iterative application of 
appearance-based boundary detection and linear 
transformations. The accuracy of model adaptation for aortic 
valve is measured by symmetrized mean Euclidean “surface-to-
patch” distance as 0.47 mm. Liang et al. [24] developed a 
machine learning based method to automatically reconstruct 
3D geometry of the aortic valve from 3D CT images, and 
employed this reconstructed geometry for finite element 
modelling to simulate aortic valve closure. The average 
landmark detection error of their approach over 10 CT scans is 
measured as 2.17 mm. 

Simultaneous segmentation of multiple cardiac valves is a far 
less studied topic mainly due to the difficulty of the problem. In 
an early semi-automatic work [25], cardiac valves are manually 
segmented on CT images and the corresponding 3D polygon 
models are generated via marching cubes algorithm using an 
in-house software. Then, a commercial software is used to fit a 
3D NURBS surface to the polygon model at each time frame. 
Unfortunately, the accuracy of the final valve model is not 

evaluated. More recently, Ionasec et al. [20] introduced an 
automatic, hierarchical learning-based  method to capture 
patient-specific models of the aortic and mitral valves. 
Evaluation of the proposed method is performed on a 
heterogeneous set (1516 US and 690 CT scans from 134 
subjects), and the average accuracies are  measured as 1.54 and 
1.36 mm for the US and CT data sets, respectively. Grbic et al. 
[22] employed  a patient-specific 4D CT heart valves model in a 
disciminative learning framework to segment all four cardiac 
valves. Their approach achieved average errors in the range of 
1.22-1.40 mm over 64 cardiac CT volumes. 

Above reports reveal that segmentation of the aortic valve from 
CT images is a challenging task, where the proposed solutions 
are mostly based on either manual delineations or 
automatically deforming a pre-constructed valvular model 
(Table 1). In the present study a novel method for the 
automated model-free segmentation of the aortic valve in its 
closed position using conventional contrast-enhanced ECG-
gated multislice CT data is presented. Performance of the 
proposed method is evaluated on a CT database of real cases 
acquired at the Maltepe University Hospital. 

2 Materials and methods 

In this study, aortic valve segmentation is accomplished on the 
traditionally used cardiac planes (horizontal and vertical long 
axes and short axis) (Figure 1) by successively applying 1) 
contrast-enhanced region detection through histogram 
analysis, 2) circle fitting- and region growing-based ascending 
aorta detection, 3) supravalvular sinus detection using shape 
constraints, and 4) three-dimensional (3D) region growing 
over Hessian based aortic valve segmentation. 

  

Figure 1. Typical horizontal (left) and vertical long axes 
images from the database. 

2.1 Subjects and Image data 

The database employed in this study consists of 55 contrast-
enhanced ECG-gated 3D cardiac CT volumes, which are 
acquired from multiple patients suspected to suffer from 
various cardiovascular diseases (such as coronary artery 
diseases and stroke) at the Maltepe University Hospital. Ethical 
committee approval was secured prior to the study. Written 
informed consent was obtained from all subjects. The 
acquisition parameters were as follows: capture range varying 
from 108 to 220 slices, slice thickness of 1mm, image matrix of 
512x512 pixels, and in-plane resolution of 0.39 mm. 

2.2 Histogram-based contrast enhanced region 
detection 

Our observations revealed that intensity ranges of contrast-
enhanced regions vary largely between scans of different 
subjects (Figure 2), and therefore fixed thresholding does not 
yield reliable results.  
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Table 1. Summary of literature on segmentation and analysis of valvular structures. CT: Computed Tomography, MRI: Magnetic 
Resonance Imaging, US: Ultrasound, NA: Not Available, AVA: Aortic Valve Area. 

Work Valve-of-interest Modality Segmentation method Dataset Quantitative evaluation 

Feuchtner et al. 
2006 [3] 

Aortic 
 

CT, US Manual 46 subjects 
(30 with aortic stenosis)  

Mean AVA (CT): .94cm2, good 
correlation with US.  

Laissy et al. 
2007 [23] 

Aortic CT, US Manual 40 subjects  Mean AVA: .87cm2 (CT), 

.81cm2 (US)  
Ionasec et al. 

2008 [19] 
Aortic CT Automatic 

Hierarchical, learning based 
model estimation and fitting  

37 subjects (364 CT 
scans)  

Mean AVA: .12 cm2 
 

Weese et al. 
2010 [21] 

Aortic CT, MRI Automatic 
Appearance based boundary 
detection and model fitting  

Heart model: 35 CT scans  “Surface-to-patch” distance: 
.47mm 

Liang et al. 
2017 [24] 

Aortic CT AutomaticMachine learning 
based  

10 CT scans Mean “landmark” detection 
error: 2.17mm 

Segars et al. 
2007 [25] 

All cardiac valves CT Semi-automatic 
Marching cubes and model 

fitting 

NA 

 

NA 

 

Ionasec et al. 
2010 [20] 

Aortic, mitral CT, US Automatic 
Hierarchical, learning based 
model estimation and fitting  

134 subjects (690 CT 
scans, 1516 US scans  

Mean “landmark” detection 
error: 1.54 (US) and 1.36 

(CT) mm  
Grbic et al. 
2012 [22] 

All cardiac valves CT Automatic 
Discriminative learning based 

model fitting 

64 CT scans Mean “landmark” detection 
error: 1.22mm 

 

As contrast-enhanced regions correspond to the brightest 
locations on a CT scan (and thus to the highest peak in the 
histogram), the detection of these regions is realized by locating 
the center of the highest peak in the histogram, and hysteresis 
thresholding with the least of 25% or ±150 of the center value 
(Figure 3). The result is then refined by applying morphological 
operations to fill gaps and remove small isolated regions 
(Figure 4). 

 

Figure 2. Histograms of multiple subjects’ data included in the 
study in normal (top-right) and zoomed views. Notice the 

large variance in the intensity of contrast-enhanced regions 
within the database.  

 

Figure 3. Histogram of a single-subject data depicting the peak, 
and the lower (T1) and higher (T2) thresholds detected. 

 

Figure 4. Visual examples of the proposed supravalvular sinus 
detection method. Top row, left-to-right: Original horizontal 

long axis image corresponding to the candidate ascending 
aorta, result of histogram-based contrast-enhanced region 

detection, result of morphological filtering, and result of 
ascending aorta detection using circle fitting. Bottom row: 

vertical long axis image showing slice levels corresponding to 
the candidate ascending aorta and supravalvular sinus (left), 
and the segmentation result of the aorta at the supravalvular 

sinus location.  

2.3 Segmentation of ascending aorta 

The aorta is a quasi-circular cylindrical tube, and the ascending 
aorta is greater in diameter than its descending counterpart 
[26]. Accordingly, detection of the ascending aorta is realized 
by processing the horizontal long axis views in the caudal 
direction in a hierarchical fashion as follows.  

First, a candidate ascending aorta region is identified by 
applying circle fitting on the contrast-enhanced regions found 
in the previous step and retaining the largest circle-like 
structure in the view. Then, adjacent slices (from head-to-toe) 
are sequentially processed towards the next segment of the 
ascending aorta by applying region growing with the geometric 
center of the previously segmented aorta region used as a seed 
point. Segmentation result of each slice is further refined by 
morphological operations to fill possible gaps and remove 
isolated regions (Figure 4). 
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2.4 Detection of supravalvular sinus 

For full automatization of the aortic valve segmentation from 
conventional CT data, the search algorithm must first detect an 
anatomic landmark and use it as the starting point in the 
subsequent search steps. The supravalvular sinus may serve as 
a unique marker due to its peculiar geometry which allows 
relatively little inter-patient variabilty. 

Analyses on the horizontal long axis views disclose that, as one 
approaches the aortic valve starting from a distal location, the 
shape of the aorta deviates from its circular form and the aorta 
increasingly drifts from the superior-inferior orientation. 
Consequently, the shape change is captured by analyzing 
pairwise ratios of the aortic diameter measured at 0°, 45°, 90°, 
and 135°. 

Finally, the supravalvular sinus detection is achieved by 
locating the corresponding horizontal long axis slice level, 
where shape change exceeds 18% (set empirically). 

2.5 Segmentation of Aortic Valve 

In order to accomplish segmentation of the aortic valve, 
different approaches like thresholding, 3D region growing and 
Hessian based approach [27] are utilized. In all approaches, 
segmentation is realized starting from the supravalvular sinus 
level towards the left ventricle in 3D, and is constrained within 
the ascending aorta region as previously defined. The 
parameters of each approach (such as the threshold for region 
inclusion in region growing, and scale range searched by the 
Hessian based approach) are set empirically to obtain the best 
segmentation possible. 

In region growing, the inclusion criteria for a candidate voxel is 
based on similarity with the mean region intensity. The seed 
point for initialization of region growing is automatically found 
via histogram analysis as the lowest luminance value in the 
constrained region, which corresponds to the point of central 
leaflet coaptation. 

In the Hessian based approach, a vessel enhancement filter 
based on the multiscale second order local structure of the 
image (Hessian) is computed, and a vesselness measure is 
obtained from the eigenvalues of the Hessian. Additionally, one 
can examine the eigenvectors of the Hessian to group voxels 
having similar gradient direction (referred to as angular 
similarity here). To this end, in this work we explore the 
segmentation performance of region growing applied on 
vesselness only, vesselness x original image, and vesselness x 
angular similarity. 

2.6 Performance evaluation 

Quantitative performance evaluation of the proposed method 
is realized based on two criteria: (1) supravalvular sinus 
detection, and (2) segmentation of the aortic valve. For the 
former, location in each CT scan of the dataset was visually 
identified (in 3D) by two experts based on consensus 
agreement. These manually identified locations are then 
compared with those automatically found by the proposed 
method, and the Euclidean difference (in mm) between the two 
measurements is reported. In the latter, aortic valve leaflets in 
CT scans of nineteen subjects were manually delineated by the 
same experts in order to assess aortic valve segmentation 
accuracy. The 3D CT scans correspond to the cardiac phase 
showing maximal aortic valve closure. The nineteen subjects 
were selected to provide a challenging test set that reflects 
diverse pathological, anatomical, and image acquisition related 

variations (e.g. five subjects had normal functioning aortic 
valves, while the others had undergone valvular repair, bypass, 
and aneurysm surgeries).  

Quantitative evaluation of aortic valve segmentation is realized 
by comparing manual and automated results, and reported by 

𝐷𝑖𝑐𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

𝐹𝑃 + 2 × 𝑇𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

where TP, FP and FN correspond to the total number of true 
positives, false positives, and false negatives, respectively.  
Ideally all three measures having high scores reflect better 
segmentation. In both evaluation stages, the data utilized for 
testing (20 for supravalvular sinus detection and 19 for aortic 
valve segmentation) were excluded from the training set  
(31 for supravalvular sinus detection and 36 for aortic valve 
segmentation) used to optimize the method. 

3 Results 

We first demonstrate the performance of the proposed 
supravalvular sinus detection algorithm on 20 contrast-
enhanced ECG-gated 3D cardiac CT volumes, which were 
acquired from multiple patients suspected to suffer from 
various cardiovascular diseases.  The proposed supravalvular 
sinus detection method achieved an absolute error (in mm) of 
0.81±0.79 and 1.25±1.12 (average ± standard deviation) for the 
training and the test sets, respectively. Figure 5 presents the 
errors per case, where a zero-error rate is attained for most 
cases both in training and test sets. In a single case, the method 
misses the supravalvular sinus by large (4 mm error for Case 
17 of the test set). 

 

 

Figure 5. Absolute errors of the proposed supravalvular sins 
detection method for the training (top) and test sets. In each 

graph, solid red lines indicate mean errors, while shaded areas 
correspond to mean ± standard deviation/2.  
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Following supravalvular sinus detection, we demonstrate the 
performance of the proposed aortic valve segmentation 
methods. First, the effect of constraining the region growing on 
Hessian based segmentation method with the automatically 
extracted aortic region is evaluated (Figure 6), where 
constraining the segmentation method with the aort mask 
considerably improves the segmentation performance 
(average Dice score improves by more than 50%). 

 

Figure 6. Effect of constraining the segmentation with aort 
mask. Average Dice scores for the segmentation results of the 

proposed method with and without the aort mask are 
measured as 0.468 and 0.301, respectively. Error bars 

represent one standard deviation.  

Figure 7 shows the performances of all three methods 
constrained with the aort mask: 1) thresholding of Hessian 
based outcome, 2) region growing on original image, and 3) 
region growing on Hessian based outcome. Both visual and 
quantitative evaluations via Dice score have shown that highest 
segmentation accuracy is achieved by the proposed region 
growing on Hessian based outcome (average Dice 
score=0.468), whereas the worst performance belongs to the 
method of thresholding Hessian based outcome (average Dice 
score=0.108). 

 

Figure 7. Performance comparison of all methods measured 
via Dice overlap score with manual segmentations. RG refers 

to region growing. Error bars represent one standard 
deviation.  

The segmentation performance of the best method (region 
growing applied on Hessian based outcome and constrained 
with the aort mask) is evaluated on the data of nineteen test 
subjects using precision and recall measures, and 
demonstrated in Figure 8. Average precision and recall values 
are measured as .694 and .369, respectively. Highest scores 
attain .55 recall and .70 precision values (two rightmost 
datapoints in the figure), while the lowest ones (two bottom-
most datapoints) exhibit precision figures less than .5 mainly 
due to the lower contrast between the valvular region and the 
surrounding bood-filled (contrast-enhanced) inner aorta. 

Figure 9 presents typical segmentation results of the best 
method overlaid on original images and displayed in 
comparison to the manual segmentations. As compared to the 

manual delineations, the automated method can lead to 
promising overall segmentation results in some cases (e.g. left 
and center columns), whereas it can result in under-
segmentation and only partially capture the leaflets in others 
(e.g. right column and the upper-right leaflet in center column). 
Nevertheless, it is worth to note that the proposed 
segmentation method generally does not leak out of the leaflet 
region. 

 

Figure 8. Performance evaluation of the proposed method 
over nineteen test subjects demonstrated via precision-recall 

scatter matrix. Average over all subjects is marked with a 
square.  

 

Figure 9. Typical segmentation results achieved by the 
proposed region growing on Hessian based outcome 

(constrained with the aort mask) method displayed together 
with the corresponding manual delineations (bottom row). 

Segmentations are overlaid on original CT scans and 
appropriately cropped for better visualization.  

Finally, we demonstrate the segmentation performance of the 
proposed method relative to manual delineation in terms of 
surface mesh representation for a single subject data  
(Figure 10). As observed, the proposed method results in a 
valve model with consistent topology - despite slightly thicker 
leaflets and subtle differences in the roots (notice the missing 
part at the root of the leaflet on the left) - as compared to 
manual delineation. 

 

Figure 10. Surface meshes built from automated (left) and 
manual segmentation results for a single subject. Meshes are 
appropriately oriented and cropped for better visualization. 
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4 Discussion 

This work presents a novel automated model-free method for 
segmenting aortic valve in its closed position from conventional 
contrast-enhanced ECG-gated multislice CT data. The proposed 
method successively applies 3D histogram analysis based 
contrast-enhanced region detection, ascending aorta detection 
using circle fitting and region growing, supravalvular sinus 
detection via shape constraints, and 3D region growing over 
Hessian based outcome constrained in the ascending aorta. 

The performance is evaluated on real CT images based on two 
criteria: 1) supravalvular sinus detection, and 2) segmentation 
of the aortic valve. Experimental results show that the method 
is highly accurate in the former, while less precise in the latter 
mainly due to the low contrast between the valve area and the 
neighboring tissue. Regarding supravalvular sinus detection, 
the method achieves an average (absolute) error rate of  
1.25 mm, which is better than [20],[24] or almost at par [22] 
with the state-of-the-art. Case-by-case investigation of the 
results reveals that most errors are at the ±1 mm range, while 
only a single case exhibits a large error (4 mm) due to the 
coarse measurement of shape change in the supravalvular 
sinus detection step. This can be overcome by measuring shape 
change at a finer angular resolution or using a more generic 
approach such as the compactness measure.  

Regarding aortic valve segmentation, comparative evaluations 
show that applying 3D region growing over Hessian based 
result and constraining the segmentation within the ascending 
aorta gives the most accurate results as compared to the state-
of-the-art solutions such as region growing over original 
images. On the nineteen real cases accuracy of the proposed 
method is observed to be promisingly high (average Dice score 
superior to. 46), while in two cases inaccurate segmentation is 
achieved due to the lower contrast between the valvular region 
and the surrounding bood-filled inner aorta. Performance 
comparison of the proposed aortic valve segmentation method 
with the state-of-the-art is difficult, because the studies in the 
literature (e.g. [3],[23]) generally include manual segmentation 
only and report just the mean aortic valve area values without 
any overlap measure like the Dice score. 

The proposed work was part of a research project where the 
aim is to segment and model valvular structures from 4D 
cardiac CT data. The output of the aortic valve segmentation 
method proposed here can therefore be extended for 
segmenting full cardiac cycle CT sequences. Besides, we believe 
the performance of the proposed automated aortic valve 
segmentation method will be improved if 1) better 
representation of higher resolution imaging data were in use 
(such as employing oblique slices at the valve plane via 
multiplanar reformatting), and 2) an aortic valve model were 
exploited. Lastly, reliability of the proposed method should 
further be evaluated on a larger cohort and validated against 
the state-of-the-art imaging modalities used in clinical settings, 
such as ultrasound. 
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