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A Study On Factors Impacting Length of Hospital Stay of 
COVID-19 Inpatient

COVID-19 Tanısı ile Hastanede Yatan Hastalarda Hastanede Kalış Süresini 
Etkileyen Faktörler Üzerine Bir Araştırma

Aim: Knowing the typical length of hospital stay of COVID-19 patientsand 
which factors affecting the stay time are important for hospital management.A 
factor can impact the stay time in conflicting ways: a condition may,by the 
same mechanism, increase the stay time for a severe patient while decrease 
the time for an even more severe and deceased patient. 

Material and Method: 3184 COVID-19 patients from the Tokat State Hospital 
were examined on arrival to determine if they are required further treatment 
in hospital or not. Among them,404 are inpatients whose hospital stay time is 
available. By a simple  and conditional linear regressions, we examine which 
factors statistically impact the hospital stay time,both overall and after taking 
into account the patient's age or eventual survival status.We also use cause-
specific Cox proportional-hazard regression for competing risk to examine 
contribution from a factor to the rate of event of mortality, and to the event 
of discharge. 

Results: Surviving ICU patients have longer hospital stay time than non-
surviving ICU patients, which in turn longer than non-ICU patients.  Older 
age within acertain range is always correlated with a longer hospital stay.  
The factors with strongest signal in our dataset are C-reactive protein (CRP), 
hemoglobin (HGB)and calcium level: increased CRP level, decreased HGB 
level and calcium level are associated with longer hospital stay, independent 
from the contribution from surviving status.  Other potentially stay-
time-impacting factors include d-dimer, urea, glucose,  white  blood cell 
(WBC) count, neutrophil, but these signals may not be robust against log-
transformation of the stay time, or confounding with age. We also observed 
that glucose is more important than HbA1C or diabetes status in its influence 
on hospital stay time.  

Conclusion: Almost all factors we collected contribute to a faster/slower 
mortality or discharge rate, in particular C-reactive protein and hemoglobin.  
Measurement of the associated factors in COVID-19 patients could be used 
for a better hospital bed management. 

Keywords: COVID-19, Cox proportional-hazard regressions, demographic 
and clinical factors

ÖzAbstract

Şirin Çetin1, Ayse Ulgen2, Hakan Şıvgın3, Wentian Li4

Amaç: COVID-19 hastalarının hastanede kalış süreleri ve kalış sürelerini 
etkileyen faktörlerin belirlenmesi hastane yönetimi için önem arz etmektedir. 
Bir faktör, hastanede kalma süresini çelişkili şekillerde etkileyebilir: bir faktör, 
aynı mekanizma ile ağır bir hasta için kalış süresini arttırırken, daha ağır bir hasta 
için zamanı azaltabilir. 

Gereç ve Yöntem: Tokat Devlet Hastanesin’e başvuran 3184 COVID-19 hastası 
hastaneye gelişlerinde muayene edilip ayakta veya yatarak tedavi edilmelerine 
göre kategorize edildiler. Bunlardan 404'ü hastanede kalış süresi belirtilmiş 
olan yatarak tedavi gören hastalardır. Basit ve koşullu doğrusal regresyonlar 
kullanılarak, hem genel olarak ve hem de hastanın yaşı veya hayatta kalma 
süresi bir faktörün ölüm oranına ve taburcu olma durumuna katkısı dikkate 
alınarak, hastanede kalış sürelerini etkileyen faktörler incelendi. Ayrıca, yarışan 
riskler için Cox orantılı hazard modeli kullanılarak bir faktörün ölüm oranına ve 
taburcu olma durumuna katkısı incelendi.

Bulgular: Hayatta kalan Yoğun Bakım Ünitesi hastalarının, hayatta kalmayan 
Yoğun Bakım Ünitesi hastalarına ve Yoğun Bakım Ünitesi olmayan hastalara 
göre daha uzun hastanede kalış süresine sahip olduğu bulgulandı. Artan 
yaşın, hastanede daha uzun kalış süresiyle ilişkili olduğu gözlemlendi. Yüksek 
C-reaktif protein (CRP), düşük hemoglobin (HGB) ve kalsiyum seviyelerinin, 
hayatta kalma durumunun katkısından bağımsız olarak, hastanede daha uzun 
kalma süresiyle ilişkili olduğu belirlendi. Hastanede kalış süresini etkileyen diğer 
faktörler arasında d-dimer, üre, glikoz, beyaz kan hücresi (WBC) sayısı ve nötrofil 
de bulunmaktadır ancak bu faktörler kalış süresinin log transformasyonu 
veya yaşla ilgili karıştırıcı etkilere karşı stabil olmayabilirler. Ayrıca, glukozun, 
hastanede kalış süresi ile ilgili olarak, HbA1C veya diyabet durumundan daha 
önemli olduğu gözlemlendi.

Sonuç: Çalışmamızda hemen hemen bütün faktörlerin ve özellikle C-reaktif 
protein ve hemoglobinin  daha hızlı/daha yavaş ölüm veya taburcu olma 
oranına katkıda bulunduğu gözlemlenmiştir.  İlgili faktörlerin COVID-19 
hastalarında daha iyi ölçülmesi, daha iyi bir hastane yatak yönetimi için 
kullanılabileceğini düşünmekteyiz.

Anahtar Kelimeler: COVID-19, Cox orantılı hazard modeli, demografik ve klinik 
faktörler
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INTRODUCTION
The COVID-19 pandemic since the year of 2019 infected 126 
million people worldwide and caused 2.77 million deaths 
so far (March 26, 2021 data from www.worldometers.info/
coronavirus/). This modern pandemic is often compared to the 
1918 pandemic as both being a once in every century event in 
term of its global scale and, to a lesser extent, the number of 
deaths caused.[1] One particular issue in the COVID-19 pandemic 
is that, due to the fast transmission of virus by asymptomatic 
carriers, the number of patients can increase very fast in a short 
period of time. Even if only a percentage of them need medical 
care, the hospitals can be flooded with patients requiring beds, 
and an even smaller percentage needs Intensive Care Unit 
(ICU) and ventilators. The number of both the regular beds and 
ICU beds in a hospital are limited, and during peak time for the 
number of infected, a hospital can be in a crisis. To manage the 
crisis, it is very important to know what patient’s information can 
potentially be used to predict their hospital stay length. With that 
information, it is possible to anticipate if the number of beds are 
sufficient.
A hospitalized patient may have two outcomes: mortality/death 
and discharge. Although there is a third possibility at the time 
of data collection, i.e., the patient is still in the hospital, it is less 
common for COVID-19 patients. A COVID-19 patient may be 
either discharged or die in the matter of days. If the two outcomes 
are treated separately, the time-to-event data is usually dealt with 
by the competing-cause or competing-risk survival analysis.[2] For 
example, one can first focus on the time-to-mortality data, and 
consider the discharged- from-hospital as right-censored data.[2-5]

For the issue of hospital stay, the two types of events are 
equivalent: a bed will become available whether the patient is 
discharged or has died. Therefore, the competing-cause survival 
analysis can become a regular survival analysis if there are right-
censored data. If there are no right-censored data, the analysis 
strategy is even simpler: it is a simple analysis relating a factor, 
which can either be categorical/discrete or continuous, and the 
hospital stay time. We have carried out both linear regression and 
cause-specific survival analysis of competing risks, for a Turkish 
cohort with more than 400 inpatients. The advantage of the first 
analysis is that it models the hospital stay time more directly from 
a factor, though it does not give a clear explanation of why. The 
advantage of the second analysis is that it clearly distinguishes 
the two types of event (mortality and discharge), both related to 
hospital stay time, and provides a clear argument on why a factor 
may affect the two different events. The goal of our work is to 
determine factors influencing the hospital stay time.

MATERIAL AND METHODS
Patient data: Initially we have n=3184 COVID-19 patient 
information from the Tokat State Hospital. In all COVID-19 
outpatients or inpatients, initially examinations were made on 
arrival to the hospital. As a result of these examinations in the 
hospital, a patient was decided to be hospitalized and treated as 
inpatients, or as an outpatient.

Excluding outpatients, we have n=404 inpatients whose hospital 
stay time is available. The patients were treated in COVID-19 
regular wards with COVID-19 services, intermediate care, and 
intensive care units (ICU), run by different departments. All 
patients are confirmed to be infected with SARS-CoV-2 virus by 
reverse-transcriptase-polymerase-chain-reaction (RT- PCR) test 
of nasopharyngeal swab. Patients are excluded from this dataset 
due to one of the following reasons: (1) those who left the 
hospital against doctor’s advice; (2) those who were transferred 
to other hospitals; (3) those who remained in hospital on April 
1, 2021. The time to event (either mortality or discharge from 
hospital) is measured in the unit of days. The use of the data is 
approved by the ethics committee of the Tokat Gaziosmanpa¸sa 
University, as well as by the Turkey Ministry of Health (01.04.2021; 
83116987/376).
Admission data included demographics (gender, age), diabetes 
status, blood test results (d-dimer, Alanine Aminotransferase 
(ALT), Aspartate Aminotransferase (AST), Lactate De- 
hydrogenase (LDH), urea, C-reactive protein (CRP), hemoblobin 
A1C (HbA1C), calcium, chlo- rine, potassium, sodium, creatinine 
(CR), hemoglobin (HGB), white blood cell count (WBC), 
neutrophil cell count (NEU), lymphocyte cell count (LYM), platelet 
count (PLT). Blood test measurements were done within the first 
24 hours of hospitalization. We have also added these derived 
quantities: NEU/LYM ratio (NLR), BUN/CRE ratio (BCR) (BUN for 
blood urea nitrogen), and PLT/LYM ratio (PLR).
Linear regression: Denotes y for a patient’s hospital stay 
(in days), and x is a factor. The factor can be binary/discrete/
categorical, then it is coded as 1 for presence and 0 for absence; 
and the factor can also be continuous. The impact of a factor 
on the length of hospitalization can be studied by the linear 
regression: y=a+bx. The sign of b provides information on 
whether the presence of a factor (for binary factor) or an 
increase of the factor value (for continuous factor) lengthens 
the hospital stay or shortens it. The p-value concerns the 
test of null hypothesis b=0. Although traditionally, p-value is 
often judged to be significant if it is smaller than 0.01 or 0.05, 
we adopt a more stringent requirement for p-value<0.005. 
The reasons for this requirement can be found in (e.g.).[6-8] If 
a continuous factor x does not follow a normal distribution, 
whereas its log-transformed value does, we will use log(x) in the 
linear regression. We run linear regression twice, once with y as 
stay time, and another with log-stay-time.
For linear regression conditional on age, we use y=a+bx+cx2 
where x2 is age. The p-value concerns the test of the null 
hypothesis of b=0. Similarly, For linear regression conditional 
on the mortality/discharge status, we use the x2=1, 0 variable 
for these two status. The analysis was carried out by R (www.r-
project.org): e.g., lm() for linear regression.
Cause-specific Cox proportional hazard regression for competing-
risk survival analysis: The Cox proportional hazard model (Cox 
regression) assumes hazard (rate of event to occur conditional 
on being alive), after the time-dependent functional is removed 
by a ratio, and after a log-transformation, can be modeled as a 

http://www.worldometers.info/coronavirus/)
http://www.worldometers.info/coronavirus/)
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linear regression on independent variables. The right-censored 
samples can be handled in the Cox regression. For cause-specific 
Cox regression with two types of events, one may run two rounds 
of regular Cox regressions. In the first round, the second type of 
event is treated as right-censored; and in the second round, the 
first type of event is treated as right-censored.[2-5,9-11] We chose 
cause-specific survival analysis over the subdistribution survival 
analysis because our two types of events are mutually exclusive.
[4,5,12] The R function coxph in the R package survival are used for 
the Cox regressions.
Dimension reduction by UMAP: A high-dimensional space can 
be projected to a low- dimensional one by a dimension reduction 
technique. There are many techniques available and we use only 
one of them in this paper: uniform manifold approximation and 
projection, or UMAP.[13] UMAP constructs a graphic representation 
of a high-dimensional space, then optimizes a low-dimensional 
representative graph which is as similar to the original graph as 
possible. The R package umap is used for the umap run.

RESULTS
Graphic illustration of distribution of the hospital stay time: 
The n=404 hospitalized patients can be grouped into three 
types: (1) non-ICU patients; (2) ICU patients who survived; (3) ICU 
patients who did not survive. We use multiple graphic displays to 
illustrate the distribution of hospital stay time.
Figure 1A shows a simple histogram for log-transformed stay 
time. Though the exact shape of the histogram may depend 
on the bin size, it is clear that surviving ICU patients have the 
longest stay time, followed by the non-surviving ICU patients, 
and the shortest stay time belong to non-ICU patients. It should 
be noted that the histogram of the original stay time, without a 
log-transformation, does not show a normal-like distribution. An 
implication is that one should consider log(stay-time) in analysis 
where the normal assumption is used.
Figure 1B shows the cumulative distribution of hospital stay 
time in three groups (x-axis in log scale). Cumulative distribution 
always provides a smoother version of the density distribution. 
Our previous conclusion, that surviving ICU patients have 
longer hospital stay time than non-surviving ICU patients, and 
non-surviving ICU patients have longer stay time than non-ICU 
patients, can be seen clearly.
To investigate the impact of age and gender on stay time, Figure 
1C-D show the stay time (or log-transformed stay time, in Figure 
1D) as a function of patient’s age. Three groups of samples are 
in three different colors: non-ICU in green, surviving ICU in 
blue, and non-surviving ICU in black. We have the following 
observations: (1) stay time increases within certain age range 
(e.g. 50-80); (2) the conclusion from Figure 1A-B is confirmed 
in Figure 1D, where the median±MAD or mean±standard 
deviation bars, of the three groups, show the order of (surviving 
ICU/blue)>(non-surviving ICU/black)>(non-ICU/green); (3) 
Non-surviving ICU patients have a larger variance/spread of 
stay time compared to other groups.

Factors impacting hospital stay time from six linear 
regressions:  Table 1 shows the linear regression of hospital stay 
time or its log-transform (regardless the ending event is discharge 
or mortality) over individual factor values. These factor values are 
log-transformed because the latter is more normally distributed: 
ALT, AST, urea, CRP, creatinine, NEU/LYM ratio, BUN/CR ratio, and 
PLT/LYM ratio. The following factors are significant at 0.005 level 
for either stay time or log(time) or both: gender (male patients 
stay longer), age (older patients stay longer), ending event status 
(non-surviving patients stay longer), d-dimer, glucose, urea, CRP, 
WBC, NEU/LYM ratio, BUN/CR ratio (for all above factors, higher 
values lead to longer stay), calcium, HGB (for these two factors, 
lower values lead to longer stay).
The conclusion that non-surviving patients stay in hospital 
longer then surviving ones might seem to be contradictory to 
our previous results in Figure 1, where surviving ICU patients 
stay longer than deceased ICU patients. In fact, there is no 
contradiction: if non-ICU patients are included in the surviving 
patient group, as a whole, they stay in hospital for shorter time.
Because age and surviving status are such important factors 
impacting hospital stay time, we would like to check if a factor is 
influencing hospitalization time through age, or through surviving 
status. Towards this, we run the linear regression conditional on 
age or on event ending status. The resulting p-values are shown 
in Table 1. The factors CRP and HGB remain to be significant at 
0.005 level, indicating that even after considering the age factor, 
or considering the surviving status, they still have great influence 
on the stay time.
There are other factors that are significant at 0.01 or 0.05 levels, 
either in univariate regression or in conditional regression in Table 
1, e.g., ALT, neutrophil, lymphocyte, platelet, platelet/lymphocyte 
ratio. These results may need a larger sample size data to confirm, 
or need a more careful analysis conditional on other factors. Note 
that the purpose of carrying out multiple similar regressions/
tests is to examine the robustness of a result, and not a fishing 
expedition to increase the chance to find significant result. They 
should not be treated with multiple testing corrections.
Factors influencing faster mortality or faster discharge by 
cause-specific Cox proportional hazard regression: Because 
contribution from a factor to hospital stay time is essentially 
rooted in its contribution to severity of the disease, we have two 
conflicting situations. The first is when severity exceeds a break 
point and the patient dies quickly. The second is when the severity 
is not insurmountable and patient still has a fighting chance. The 
end result can either result in the survival or non-survival of the 
patient, but the hospitalization lasts a long time. The relationship 
between stay time and a factor value is a complex consequence 
of these two conflicting paths. In order to separate the two 
situations, we ran a cause-specific survival analysis for competing 
risks with Cox proportional hazard ratio. We ran the cause-
specific Cox regression twice, once with mortality as the event 
and discharge as being right-censored, and another time with 
discharge as the event and mortality as being right-censored. 
This practice has been described in.[3-5,9-11] 
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Figure 1. Various view of the hospitalization stay time in three groups: non-ICU (green), surviving ICU (blue), and deceased-ICU (black) patients: (A) histogram; 
(B) cumulative distribution; (C) stay time (y) vs. age (x); noise is added to both x and y value; (D) log-stay-time (y) vs. age (x). Zero stay time is converted to 0.5 
and noise is added to both x and y. (ICU): Intensive Care Unit

Table 1. The N column is the number of samples whose factor value is available.
Factor N direction  pv pv(log-y) pv(x+A) pv(log-y,x+A) pv(x+D) pv(log-y, x+D)
gender
age

404
404

M > F
+

0.018
5.4e-7

0.00094
2.7e-9 0.018 0.00094 0.034

0.00013
0.0015
1.8e-8

diabetes
death

226
404 D > S

0.66
0.00014

0.99
0.051

0.66
0.00014

0.99
0.051 0.99 0.82

d-dimer 349 + 0.0005 0.0054 0.022 0.21 0.046 0.023
glucose 404 + 0.00024 0.0043 0.027 0.31 0.015 0.022
(log) ALT 404 0.21 0.93 0.11 0.64 0.020 0.56
(log) AST 403 0.84 0.71 0.54 0.17 0.072 0.15
(log) urea 404 + 0.0032 0.047 0.52 0.16 0.73 0.39
(log) CRP 289 + 5.5e-6 4e-6 0.00022 0.00043 0.00015 1.4e-5
HbA1C 226 0.42 0.65 0.59 0.90 0.94 0.92
calcium 403 - 5.1e-6 7.2e-5 0.016 0.22 0.0048 0.00039
chlorine 391 0.71 0.81 0.53 0.59 0.28 0.74
(log) creatinine 404 0.19 0.38 0.064 0.079 0.28 0.74
(log) LDH 386 0.011 0.15 0.25 0.76 0.68 0.66
potassium 403 0.15 0.091 0.42 0.34 0.67 0.22
sodium 404 0.42 0.089 0.97 0.41 0.49 0.30
WBC 386 + 0.0011 0.0023 0.037 0.11 0.16 0.011
NEU 349 0.0076 0.0062 0.17 0.25 0.52 0.021
LYM 348 0.48 0.34 0.017 0.37 0.038 0.65
HGB 386 - 6.2e-10 2.1e-06 3.7e-07 0.00093 1.9e-07 8.7e-06
PLT 386 0.77 0.13 0.48 0.039 0.24 0.048
(log) NEU/LYM (NLR) 348 + 0.014 0.0024 0.56 0.43 0.94 0.0045
(log) BUN/CRE (BCR) 404 + 0.0024 0.036 0.088 0.67 0.060 0.13
(log) PLT/LYM (PLR) 348 0.32 0.19 0.025 0.99 0.040 0.35
P-values from linear regression of (stay) ∼ (factor) (or log-factor) or (log-stay) ∼ (factor) (or log-factor). A p-value smaller than 0.005 is marked by boldface. The next two columns are p-values for similar linear 
regression with age as a co-variate. The last two columns are p-values for similar linear regression with mortality status as a co-variate. The “direction” column (for significant at 0.005 level factors only) indicates if 
the linear regression coefficient is positive or negative. For the discrete factors, M > F means male has longer hospital stay then female, and D > S means deceased patients have longer stay than survived patients 
(for the unconditional linear regression). ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, LDH:Lactate De hydrogenase
CRP: C-reactive protein , HbA1C: hemoblobin A1C , HGB: hemoglobin, WBC: white blood cell count, NEU: neutrophil cell count, LYM :lymphocyte cell count, PLT: platelet count 
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Table 2 and 3 shows the p-values from the two cause-specific 
Cox regression for competing- risk. We put a +/- sign on the 
p-value to indicate the direction of the hazard ratio (HR): if 
HR>1, it’s positive, and if HR<1 it’s negative. It can be seen that 
almost all factors are significant (testing the null hypothesis of 
cause-specific HR=1) at 0.005 level. The following factors are 
significant at the p < 1E-9 level: age, d-dimer, urea, calcium, 
creatinine, sodium, WBC, NEU, LYM, HGB, NLR, BCR, PLR.
We also see that the two cause-specific HRs have different 
“signs”. This means that a factor causing a faster mortality (HR>1 
when mortality is the event) would at the same time cause a 
slower discharge (HR<1 when discharge is the event).[4,5]

Comparing the test results between Table 1 (linear regression 
of stay time over a factor) and Table 2 and 3 (contribution of 
a factor to a faster non-surviving rate or to a faster releasing 

rate) is harder. The two factors which stand out in linear 
regression, CRP and HGB, are simply among many other 
significant factors in cause-specific survival analysis. Further 
investigation is needed to understand the exact relationship 
between the two different types of analyses.
Two factors significantly associated with hospital stay 
time: CRP and HGB: In order to examine the two most 
significant factors influencing the stay time (Table 1), CRP and 
HGB, we plot the raw data directly in Figure 2, where y-axis is 
the hospital stay time (in log scale) and x-axis is the CRP (in log 
scale) or HGB. The linear regression line (after the necessary 
log transformation of either y or x variable) is shown in Figure 
2, which is positive for CRP and negative for HGB. The p-values 
related to the CRP association is around p<E-4~E-9, and that 
with HGB is around p<E-4~E-9 (Table 1).

Table 3. Similar for Table 2 for time-to-discharge event cause-specific 
survival analysis for competing risks.

factor HR (95% CI) pvL pvL 
(+age)

pvL 
(+icu)

sex 1.43 (1.1-1.8) 0.0019 0.22 0.22

age 0.97 (0.97-0.98) 1.4e-27 0.0094 0.01

diabetes 0.8 (0.58-1.1) 0.17 0.25 0.25

ddimer 0.51 (0.44-0.61) 3e-15 0.072 0.076

glucose 0.99 (0.99-1) 8.7e-08 0.00085 0.00089

(log) ALT 0.89 (0.8-0.99) 0.029 0.066 0.066

ALT 0.997 (0.994-0.999) 0.0022 0.00019 0.00021

(log) AST 0.68 (0.58-0.8) 2e-06 0.055 0.057

AST 0.993 (0.989-0.997) 0.0014 8.1e-05 8.6e-05

(log) urea 0.46 (0.38-0.54) 1.2e-19 0.13 0.13

urea 0.982 (0.978-0.987) 3.5e-14 0.00094 0.001

(log) CRP 0.82 (0.77-0.87) 1.2e-09 0.063 0.061

CRP 0.992 (0.988-0.995) 2.4e-06 0.0014 0.0013

HbA1C 0.91 (0.84-0.99) 0.025 0.048 0.048

calcium 1.8 (1.6-2) 3.1e-21 0.098 0.097

chlorine 0.98 (0.96-1) 0.036 0.015 0.014

(log) cretinine 0.57 (0.47-0.68) 2.9e-10 0.13 0.12

cretinine 0.601 (0.508-0.711) 2.6e-09 0.046 0.049

(log) LDH 0.31 (0.24-0.4) 8.6e-19 0.092 0.1

LDH 0.996 (0.995-0.997) 1e-14 4.2e-05 4.5e-05

potassium 0.73 (0.63-0.85) 7.3e-05 0.096 0.093

sodium 0.95 (0.93-0.97) 1.6e-05 0.017 0.016

WBC 0.86 (0.83-0.89) 1.1e-17 0.01 0.011

NEU 0.84 (0.8-0.87) 1.2e-17 0.01 0.011

LYM 1.19 (1.1-1.3) 1e-04 0.23 0.19

HGB 1.27 (1.2-1.3) 7.3e-19 0.048 0.049

PLAT 1.0006 (0.9997-1.0001) 0.19 0.00095 0.00083

NEU/LYM 
(NLR) 0.54 (0.48-0.61) 9.2e-24 0.11 0.11

BUN/CRE 
(BCR) 0.55 (0.43-0.69) 3.5e-07 0.19 0.18

PLA/LYM (PLR) 0.81 (0.71-0.93) 0.0025 0.12 0.11
ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, LDH:Lactate De hydrogenase
CRP: C-reactive protein, HbA1C: hemoblobin A1C , HGB: hemoglobin, WBC: white blood cell count, 
NEU: neutrophil cell count, LYM :lymphocyte cell count, PLT: platelet count 

Table 2. Hazard ratio/p-values of the cause-specific Cox regression 
competing-risk survival analysis using time-to-mortality for individual 
factors.
factor HR (95% CI) pvD pvD( +age) pvD(+icu)
sex 1.02 (0.667-1.56) 0.93 0.22 0.22
age 1.05 (1.03-1.07) 6.8e-08 0.0094 0.01
diabete 1.51 (0.922-2.46) 0.1 0.25 0.25
d-dimer 1.54 (1.34-1.77) 9.9e-10 0.072 0.076
glucose 1.0032 (1.002-1.005) 6.1e-05 0.00085 0.00089
(log) ALT 1.36 (1.19-1.56) 8.2e-06 0.066 0.066

ALT 1.0004 
(1.00001-1.00077) 0.042 0.00019 0.00021

(log) AST 1.42 (1.28-1.59) 2.4e-10 0.055 0.057

AST 1.0002 
(1.00003-1.00034) 0.022 8.1e-05 8.6e-05

(log) urea 3.35 (2.62-4.27) 3.3e-22 0.13 0.13
urea 1.008 (1.006-1.01) 1.7e-19 0.00094 0.001
(log) CRP 1.1 (0.97-1.25) 0.14 0.063 0.061
CRP 1.004 (1.001-1.006) 0.0025 0.0014 0.0013
HbA1C 1.13 (1.03-1.25) 0.013 0.048 0.048
calcium 0.5 (0.419-0.6) 6.2e-14 0.098 0.097
chlorine 1.08 (1.05-1.12) 7.9e-08 0.015 0.014
(log) cretinine 2.62 (2.07-3.32) 7.4e-16 0.13 0.12
cretinine 1.372 (1.259-1.495) 5.6e-13 0.046 0.049
(log) LDH 1.97 (1.66-2.34) 4.7e-15 0.092 0.1

LDH 1.0001 
(1.00002-1.0001) 0.016 4.2e-05 4.5e-05

potassium 1.41 (1.16-1.71) 0.00056 0.096 0.093
sodium 1.11 (1.08-1.15) 8.1e-11 0.017 0.016
WBC 1.08 (1.06-1.1) 2.1e-14 0.01 0.011
NEU 1.08 (1.06-1.1) 2.2e-16 0.01 0.011
LYM 0.25 (0.163-0.39) 6.6e-10 0.23 0.19
HGB 0.86 (0.786-0.946) 0.0018 0.048 0.049
PLT 0.997 (0.995-0.999) 0.0016 0.00095 0.00083
(log) NEU/LYM 
(NLR) 2.71 (2.21-3.31) 3.5e-22 0.11 0.11

(log) BUN/CRE 
(BCR) 1.84 (1.3-2.6) 0.00056 0.19 0.18

(log) PLT/LYM 
(PLR) 1.86 (1.46-2.36) 3.5e-07 0.12 0.11

The time-to-discharge events are treated as right-censored. The last two columns are p-values from 
a similar run conditional on age, or on ICU as a co-variate. P-values smaller than 0.005 are marked 
as boldface. For some factors, both the log-transformed value and the original level are used for the 
survival analysis.
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From Figure 2 we can see some patients who died/
discharged on the same day he/she was admitted (we 
convert stay=0 day to 0.5 in order to take the log). Is it 
possible that their HGB level more reflects their near-
end (near-mortality or near-discharge) status instead of a 
baseline pre-condition predictor? On the other hand, we 
also see that the value of HGB for these patients range 
between small to large without a trend. If we remove these 
short stayed patients, the negative slope in Figure 2B 
remains. We conclude that negative association between 
hospital stay and HGB is not an artifact of patients whose 
stay time is less or equal to one day.

Comparing inpatients with outpatients: Although this 
paper is focused on hospital stay time, and outpatients would 
have zero stay time, we can still compare factor values be- 
tween inpatients and outpatients. Table 4 shows the mean 
and standard deviation of all factors (or log-transformed 
factor values) in four different groups: outpatients, non-
ICU inpatients, surviving ICU inpatients, and deceased 
ICU inpatients. These factors are log transformed because 
they are better characterized as a single-peak normal-like 
distribution: ALT, AST, urea, CRP, creatinine, LDH, NLR, BUN/
CR, and PLR.
To have a more complete picture of the difference between 
these four groups, we imagine each patient as a point in a 
high-dimensional space, each dimension representing a 
factor. That point in the high-dimensional space can be 
projected to a 2-dimensional space for visualization. Many 
dimension reduction techniques can be used, and we apply 
the UMAP technique.[13] After some preprocessing steps 
(removing factors with too much missing value, standardize 
each factor to have the same variance, etc.), Figure 3 
shown one version of the UMAP representation. Only these 
factors are used: glucose, ALT, AST, urea, calcium, chlorine, 

creatinine, LDH, potassium, sodium, WBC, HGB, platelet. 
Only 276 outpatients are used because other had too much 
missing information. Those factors better represented by 
log- transformed version are log-transformed. Figure 3 
shows that deceased ICU inpatients tend to form a cluster 
which are separated from other patients.[14]

Diabetes and stay time: Diabetic disease is shown to be a 
comorbidity for COVID-19, however its impact on hospital 
stay time is unclear.[15] We plot the stay time vs glucose and 
HbA1C level in Figure 4. It can be seen that no trend is seen 
in HbA1C plot, as patients with high HbA1C level spread 
from short (die faster) to long stay time. However, there is a 
positive trend for glucose level. The p-value testing the slope 
to be zero is significant (see Table 1). On the other hand, 
the trend in Figure 4A seem to be an average result, and it 
would be very hard to predict individual’s stay time based on 
glucose level alone.
In a recent study, COVID-19 patients with high glucose 
(hyperglycemia) tend to have worse outcome, regardless of 
their diabetes status.[16] In other words, long-term and short-
term blood sugar level should be treated separately, which 
is consistent with our finding in Figure 4. In order to further 
examine the connection between glucose and HbA1C, we carry 
out the bi-variate regression: (stay)~(glucose) +(A1C), or (log-
stay)~(glucose) +(A1C). In both regressions, the p-values for 
the glucose term (p-value=0.03 and 0.14) are more significant 
than that for the HbA1C term (p-value=0.75 and 0.75). These 
results cast doubt on the contribution from diabetes to 
COVID-19 severity (and the consequent hospital stay time). On 
the other hand, it is not impossible that high glucose level is a 
consequence of COVID-19 instead of a cause, and an association 
analysis is not the same as causal inference.

Figure 2. The hospital stay time (y) is plotted against (A) CRP (in log scale) and 
(B) HGB in three groups of patients: non-ICU (green), surviving ICU (blue), and 
deceased ICU (black). The linear regression line is also shown.

Figure 3. UMAP (McInnes et al., 2018) plot of four types of samples: 
outpatients (grey), non-ICU inpatients (green), surviving ICU inpatients (blue), 
and non-surviving ICU inpatients (black). Several preprocessing steps are 
taken and only a small subset of all outpatients are used. UMAP: uniform 
manifold approximation and projection, (ICU): Intensive Care Unit
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DISCUSSION
In this paper, we aim at finding which factors are associated 
with long hospitalization stay time for COVID-19 inpatients. 
This question is related, but not identical, to the question 
of which factors are associated with severity of COVID-19 
disease. More specifically, the associated factor should cause 
severity of the disease, but not too severe so that the patient 
dies earlier. Comparing our two associated factors, CRP and 
HGB, there had been reports linking CRP level to severity of 
COVID-19 disease, and discussion on how anemia affects the 

quality of life in elder COVID-19 patients.[17-19] Interestingly, it 
was pointed out by a literature analysis that hemoglobin level 
may decrease in severe COVID-19 patients but the cause-
effect direction is unclear.[20]

As for cause-specific survival analysis, we have found even 
more factors to be associated with the rate of mortality or 
rate of discharge of a COVID-19 patient. Almost all factors 
we measured are associated with the rate of event (Table 
2,3). Although these results are not directly on the hospital 
stay time, they show potential mechanisms linking a factor 
with the stay time. As we have argued already, that the same 
mechanism can either cause a patient to stay longer in the 
hospital or cause another patient to stay less time. How to 
reconcile the results from Table 2, and 3 with Table 1 worth 
further studies. All associations shown in Table 2 and 3 can be 
found in the literature.
Besides CRP and HGB which had been discussed already, 
these factors are also discussed in research articles: d-dimer, 
glucose, urea, calcium, creatinine, potassium, sodium, WBC, 
neutrophile, lymphocyte, NEU/LYM ratio, BUN/CR ratio, PLT/
LYM ratio.[21-34] The fact that every single one of the factors we 
found to be significantly associated with rate of mortality/
discharge in Tables 2 and 3 had also been discussed in the 
literature, not only confirm our findings, but also show an 
extensive dysregulation in COVID-19 patients.
Outpatients, with their zero hospitalization stay time, do not 
contribute to my analysis concerning stay time. However, 
because we have a large number of these outpatients with 
certain blood test results, we can still compare them with the 
inpatients (as in Table 4, and in Figure 3 for a small proportion 

Table 4. The average level (mean and standard deviation) for factors (or log-factors if the log-transformed variable is closer to normal distribution) of 
individual factors for four groups of patients: outpatients, non-ICU inpatients, surviving ICU patients, and deceased ICU patients.

Factor outpatient
mean±sd

non-ICU
mean±sd

ICU-surviving
mean±sd

ICU-deceased
mean±sd

age 37.253±14.915 54.037±21.554 64.353±15.501 74.17±9.174
d-dimer 0.438±0.718 0.616±0.873 1.169±1.121 2.366±1.426
glucose 107.355±43.681 124.591±59.682 132.635±52.857 197.677±101.463
log(ALT) 3.033±0.638 3.152±0.836 2.912±0.893 3.769±1.464
log(AST) 3.131±0.418 3.307±0.629 3.113±0.516 4.375±1.494
log(urea) 3.269±0.363 3.415±0.496 3.561±0.495 4.716±0.643
log(CRP) 0.227±1.616 1.59±2.038 1.817±1.795 2.79±2.205
HbA1C 6.045±1.311 6.717±1.707 6.716±1.887 7.871±2.548
calcium 9.485±0.559 9.133±0.825 8.96±0.736 7.665±0.738
chlorine 9.485±0.559 9.133±0.825 8.96±0.736 7.665±0.738
log(creatinine) -0.361±0.329 -0.251 0.508 -0.258±0.474 0.664±0.768
log(LDH) 5.307±0.34 5.507±0.453 5.587±0.31 6.398±0.736
potassium 4.29±0.407 4.316±0.502 4.238±0.51 4.809±1.201
sodium 138.982±2.836 139.391±3.495 140.062±4.072 143.989±7.022
WBC 7.137±2.743 6.848±2.864 8.761±4.952 15.824±8.197
NEU 4.703±2.409 4.654±2.786 6.942±5.059 14.463±7.999
LYM 1.712±0.948 1.648±0.995 1.455±0.98 0.79±0.773
HGB 13.493±1.843 12.658±1.952 11.221±1.81 10.294±2.166
PLT 223.019±67.189 251.301±96.611 251.324±134.888 193.169±107.113
log(NLR) 1.025±0.728 1.012±0.781 1.555±1.042 3.063±0.909
log(urea/CR) 2.869±0.307 2.905±0.406 3.058±0.441 3.292±0.484
log(PLR) 4.961±0.49 5.079±0.59 5.251±0.652 5.605±1.13
ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, LDH:Lactate De hydrogenase
CRP: C-reactive protein,    HbA1C:  hemoblobin A1C,   HGB:  hemoglobin, WBC: white blood cell count,  NEU: neutrophil cell count, LYM :lymphocyte cell count, PLT: platelet count  

Figure 4. The hospital stay time (y) is plotted against (A) glucose and (B) 
HbA1C level in three groups of patients: non-ICU (green), surviving ICU (blue), 
and deceased ICU (black). The linear regression line is also shown.
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of them). On average, outpatients do exhibit different blood 
test measurement values from either inpatients as a whole, 
or ICU inpatients, or deceased ICU inpatients. However, on 
individual person’s level, we do see some outpatients being 
similar to non-surviving ICU inpatients (see Figure 3).
Our cause-specific survival analysis provides a quantitative 
estimation of the hospitalization time saved. Take Table 3 
for example: if HGB level increases by one unit, the time-
to-discharge is on average reduced to 1/1.27 or 0.79 or the 
baseline population, a reduction of 21%. This is under the 
assumption that person eventually survives. On the other 
hand, if the person does not survive, increasing HGB level by 
one unit, the time-to-mortality is increased to 1/0.86 or 1.16 
of the baseline population. By incorporating the chance for 
a person to survive, and considering the actual HGB level 
(because the impact on the rate of event may be nonlinear), 
it is possible to construct a calculator on the number of days 
saved or prolonged.
Among publications on the topic of hospital stay time for 
COVID-19 patients, some of them only address the overall 
statistics or difference between countries, on bed types and not 
on factors which might impact the stay time.[35] For example, 
it was reported that median hospital stay is 14 days in China, 
whereas it is 5 days outside of China.[36] Another overview paper 
estimates the majority of ICU hospital stay time is between 7 
to 11 days.[37] These are comparable to our hospital stay values.
For studies of association between factors and hospital stay 
time, although the types of data varies (e.g. some only include 
non-severe COVID-19 patients), or the analysis plan is different 
(e.g., hospital stay time is binarized into longer or shorter than 
14 days), we do find some interesting comparisons.[38,39] In 
another article, 99 surviving (“discharged”) patients’ hospital 
stay time is examined for potential association with risk 
factors.[40] It was observed that patients with low lymphocyte 
count (lymphopenia) stay in hospital longer with a log-rank 
test p-value of 0.027 for Kaplan-Meier curve.[40] This can 
be compared to our negative result concerning potential 
association between lymphocyte with hospital stay (Table 1).
Other analyses of hospital stay time applying the survival 
analysis techniques can be found in the literature and Factors 
potentially associated with hospital stay time, e.g, obesity, 
which may have a nonlinear impact on COVID-19 severity, the 
prescription of drugs ACEi and/or ARB.[41-46]  Due to a lack of 
related information in our dataset, we are unable to compare 
with these published results. 

CONCLUSION
Due to a potentially complex and conflicting contribution 
from a factor to hospitalization stay time, those factors 
known to be associated with COVID-19 severity cannot be 
automatically assumed to be associated with stay time. 
In this paper, we identify two factors, CRP and HGB, to be 
associated with stay time, and these results should be 
validated in other datasets.
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