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Abstract:  The  oxovanadium(IV)  template  was  formed  with  the  reaction  between  vanadyl  sulfate
pentahydrate,  2-hydroxybenzophenone-S-allylthiosemicarbazone,  and  3-methoxysalicylaldehyde.  The
synthesized template complex, along with the starting ligand, was subjected to UV-Vis, FTIR, ESI-mass,
and magnetic measurement. The square pyramidal structure was proven with the single-crystal X-ray
diffraction method. Stronger crystals were formed with π- π interactions, which was also supported by
the corresponding peak in the mass spectrum. Electrochemical measurements was performed using a
conventional three-electrode cell with cyclic voltammetry (CV) method. CV results show that complex 2
gives one-electron reduction (VIVO –VIIIO) couple and one-electron oxidation (VIVO –VVO) couple at the
vanadium center. The total antioxidant capacity of the template compound and the starting ligand was
performed  by  the  CUPRAC  method,  yielding  that  the  complex  was  more  potent  than  the  control
compound, ascorbic acid. 
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INTRODUCTION

Complexes  of  vanadium  have  antimicrobial,
antibacterial,  antitumoral,  and  catalytic  activity
and insulin-enhancing  effects.  Vanadium has  the
potential of displaying oxidation states of III, IV,
and V, and readily forming V-O bonds and binding
nitrogen  and  sulfur.  Nitrogenase  and
haloperoxidases  are  important  vanadium-
containing enzymes (1-3).

Vanadium salts act as insulin-like behavior in the
cells  and in  diabetic  animals,  and this  has  been
known since the 80s. Frequently, diabetic patients

have abnormal levels of glucose and lipids in the
blood,  and  insulin  treatment  can  normalize  this
abnormality.  It  has  been  shown  that,  in  animal
model systems and human beings, treatment with
vanadium  complexes  and  vanadium  salts  could
alleviate the symptoms of diabetes (1,  4,  5).  In
vivo insulin-like activity (6, 7) and in vitro insulin-
mimetic  activities  of  oxovanadium(IV)  complexes
with thiosemicarbazones are also reported (8, 9).

Thiosemicarbazones and related metal complexes
display  important  biological  and  therapeutic
properties, such as catalytic applications (10-12),
sensors (13), antioxidant (14, 15), cytotoxic (16,
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17),  antidiabetic  (18),  antimalarial  (19),  antiviral
(20,  21),  antimicrobial  (17,  22),  antifungal  (23,
24),  antibacterial  (25,  26),  anticancer  (27),  and
antitumoral (16, 28, 29) activities. 

In  this  work,  an  oxovanadium(IV)
thiosemicarbazone  (2)  template  structure  was
prepared  with  2-hydroxybenzophenone  S-
allylthiosemicarbazone  (1)  and  3-
methoxysalicylaldehyde.  The  single  crystals  of
compound  2 were  obtained,  and  cyclic
voltammetry  (CV),  thermogravimetric  analysis
(TGA), and antioxidant efficiency (with the CUPRAC
method)  were  studied.  It  was  found  that
compound  2 was more active than compound  1.
Also, the crystalline structure revealed that there
were interactions of π- π and C- π nature in the X-
ray crystal determination. 

EXPERIMENTAL 

General Remarks
All chemicals were of reagent grade and they were
used  as  received.  For  elemental  analyses,  a
Thermo  Finnigan  Flash  EA  1112  device  and  for
molar  conductivity  measurements,  a  Therma
conductivity  meter  was  employed.  Fourier
transform  infrared  spectral  measurements  were
performed with an Agilent Cary 630 FT-attenuated
total reflectance (ATR) spectrometer between 4000
and  600  cm-1.  For  antioxidant  capacity
measurements,  a  Shimadzu  brand  UV-2600
spectrophotometer  working  in  the  ultraviolet-
visible  range  was  used,  and  a  matched  pair  of
quartz  cuvettes  with  10  mm  path  length  were
equipped.  All  determinations  were  done at  room
temperature. 

For  X-ray  crystallography,  data  collection  was
carried  out  with  a  Bruker  brand,  APEX2  CCD
diffractometer and data were reduced with Bruker
SAINT  (30).  Solving  and  refinement  of  the
structure were performed with SHELXT 2018/2 and
SHELXL-2018/3  (31,  32).  Direct  methods  were
used for the solvation of the structure, which was
refined on F2 using all the reflections.

Synthesis
2-hydroxybenzophenone-S-allylthiosemicarbazone
(1)  was  synthesized  by  applying  slight
modifications  to  the  literature  procedure.  Briefly,
the compound was stirred in ethanol to get rid of
sticky substances, and then 5% sodium hydrogen
carbonate  solution  was  added and  therefore  the
synthetic yield was increased (14, 33).

Triethyl orthoformate (1.0 mL) and vanadyl sulfate
pentahydrate  (1.0  mmol)  in  5.0  mL  of  ethanol
were reacted overnight at room temperature. The
solution was treated with a mixture of compound 1

(1.0  mmol)  and  3-methoxysalicylaldehyde  (1.0
mmol) in ethanol (5.0 mL).  For a few days, the
mixture  was kept  at  room temperature,  and the
black-colored  product  obtained  (2)  was  washed
with  cold  ethanol.  The template  complex  yielded
the  following  experimental  data  which  were
described below.

Oxovanadium(IV)  complex (2):  Black,  m.p.
284.8-285.3  °C,  yield  12%.  Molar  Conductivity
(DMSO,  Ω-1cm2mol-1):  8.2.  Anal.  Calc.  for
C25H23N3O5SV (528.47 g/mol): C, 56.82; H, 4.39;
N,  7.95;  S,  6.07.  Found:  C,  56.43;  H,  4.55;  N,
7.44; S, 5.79%. UV–Vis (CHCl3) [λmax (nm), log ε
(dm3 cm-1 mol-1)]: 239(5.03) 258(4.99) 333(4.83)
359(4.77)  434(4.52).  IR  (cm-1):  ν(C=N1)  1608,
1601;  ν(C=N2)  1574;  ν(N4=C)  1519;  ν(Car–O)
1149,  1104;  ν(N–N)  1025;  ν(V=O)  966,  ν(C–S)
746. MS m/z (%): [(M-H2O)+Na]+ 533.1 (22.91),
[(2M+H2O)+Na]+  1042.8 (100).  

Cyclic Voltammetry
A  conventional  three-electrode  cell  system  was
employed for the electrochemical measurements. A
glassy carbon electrode (GCE) having a diameter
of 3.0 mm was used as the working electrode. A
Ag/AgCl  reference electrode and a platinum wire
counter electrode were also used to complete the
circuit.  The  working  electrode,  before  each  run,
was polished with an alumina slurry, obtained from
Buehler  Micropolish,  on  a  Buehler-102  mm
polishing pad and rinsed with distilled water. 

The  electrochemical  measurements  were
performed  for  compound  (2)  at  1.0  x  10-3  M
concentration  in  electrochemically  pure  dimethyl
sulfoxide, along with, as the supporting electrolyte,
0.1  M  Bu4N+ClO4

- (TBAP)  under  nitrogen
atmosphere. 

CUPRAC study
To  study  the  total  antioxidant  capacity  of  the
compounds, CUPRAC (CUPric Reducing Antioxidant
Capacity)  was  employed  (34).  Under  identical
conditions,  calculations  of  the  molar  absorption
coefficients were performed for every compound.
By  taking  the  selected  compound’s  molar
absorptivity as a fraction of trolox, TEAC (trolox-
equivalent  antioxidant  capacity)  values  were
computed.  Into  a  test  tube  were  placed,  in  this
very order, copper(II) chloride dihydrate (1.0 mL,
10 mM), neocuproine (Nc; 1.0 mL, 7.5 mM), pH =
7  ammonium  acetate  buffer  (1.0  mL,  1.0  M),
antioxidant  sample  solution (x mL),  and distilled
water (1.1 – x mL). The total volume was 4.1 mL,
and after an incubation period of half an hour, the
absorbance  at  450  nm  was  recorded  against  a
blank,  which does not  include the reagents.  The
computation  of  TEAC  coefficients  was  performed
with the following equation:
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T E AC  co e f f i c i en t  =   mo l a r   ab so r p t i v i t y   o f   t h e   c om pound

mol a r   ab so r p t i v i t y   o f   t r o l o x  (1.67  ×104   L  mo l−1 cm−1)
 (Eq. 1)

RESULT AND DISCUSSION

Synthesis
The yield of  synthesis  was poor; it  was because
the complexation reaction was conducted at room
temperature,  and  suitable  single  crystals  were
attempted to isolate, in a dark environment with
no stirring at all, for 3-4 days. Otherwise, X-ray-
suitable crystals could not be obtained. Template
condensations require the presence of a metal ion;
in our case, the oxovanadium(IV) ion was used to
conduct  the  complexation and  provide  the  Schiff
base  condensation  of  the  N4 thioamide  moiety,
which  is  unable  to  react  without  a  template
condensation. The template complexes, as well as
the reagents, are stable in the air, which increases
the application of them. 

Molar Conductivity
Compound (2) had a molar conductivity of 8.2 Ω-1

cm2  mol-1 in  a  10-3 M  DMSO  solution  at  room
temperature.  This value is indicative of the non-
electrolytic  nature  of  the  complex;  according  to
references, this means the absence of anions (35-
37).

Crystallographic Studies
The oxovanadium(IV)  complex  (2)  crystallized in
the  triclinic  space  group  P-1  (2)  with  Z  =  2.
Compound  2’s several properties are displayed in
Table 1 (bond lengths), Table 2 (bond angles) and
Table 3 (torsion angles) and Tables S1a (atomic
coordinates) and S2a (hydrogen bonds). Figures 1,
2,  and  3 summarize  structural  refinement
parameters and principal crystalline data.

Figure 1: Perspective view of oxovanadium(IV)
complex (2) with atom numbering.

Figure 2: π- π stacking interactions for the oxovanadium(IV) complex (2).
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Table 1: Crystalline data and structure refinement for the oxovanadium(IV) complex (2).
Identification code Oxovanadium(IV) complex (2)

Empirical formula C25 H25 N3 O5 S V

Formula weight 530.45

Temperature 293(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 9.5801(10) Å, α= 100.737(10)°

b = 11.9561(14) Å, β= 100.758(9)°

c = 12.1053(14) Å,  = 111.107(10)°

Volume 1221.2(3) Å3

Z 2

Density (calculated) 1.443 mg/m3

Absorption coefficient 0.536 mm-1

F(000) 546

Crystal size 0.16 x 0.11 x 0.08 mm3

Theta range for data collection 3.339 to 27.779°.

Index ranges -8<=h<=11, -15<=k<=13, -13<=l<=15

Reflections collected 7210

Independent reflections 4774 [R(int) = 0.0344]

Completeness to theta = 25.242° 98.4 % 

Max. and min. transmission 0.7457 and 0.5092

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4774 / 1 / 328

Goodness-of-fit on F2 1.024

Final R indices [I>2sigma(I)] R1 = 0.0785, wR2 = 0.1929

R indices (all data) R1 = 0.1335, wR2 = 0.2305

Extinction coefficient n/a

Largest diff. peak and hole 0.722 and -0.657 e.Å-3

Table 2: Selected bond distances [Å] and angles [°] for oxovanadium(IV) complex (2).
Atoms Distances [Å] Atoms Angles [°]
V(1)-O(4) 1.603(4) O(4)-V(1)-O(3) 111.6(2)
V(1)-O(3) 1.894(4) O(4)-V(1)-O(2) 108.35(17)
V(1)-O(2) 1.947(3) O(3)-V(1)-O(2)     87.82(15)
V(1)-N(3) 2.036(5) O(4)-V(1)-N(3) 108.07(19)
V(1)-N(4) 2.043(4) O(3)-V(1)-N(3) 139.47(17)
S(1)-C(9) 1.758(6) O(2)-V(1)-N(3) 87.40(16)
S(1)-C(23) 1.787(7) O(4)-V(1)-N(4)      103.90(18)
O(1)-C(2) 1.343(7) O(3)-V(1)-N(4) 86.67(16)
O(1)-C(7) 1.423(6) O(2)-V(1)-N(4) 147.02(18)
O(2)-C(1) 1.306(6) N(3)-V(1)-N(4)      76.12(17)
O(3)-C(16) 1.319(6) C(1)-O(2)-V(1) 128.9(3)
N(2)-C(9) 1.295(7) C(16)-O(3)-V(1) 127.1(3)
N(2)-N(4) 1.405(6) C(8)-N(3)-V(1) 126.1(4)
N(3)-C(8) 1.326(6) C(9)-N(3)-V(1) 112.9(4)
N(3)-C(9) 1.410(6) C(10)-N(4)-V(1) 128.0(4)
N(4)-C(10) 1.317(6) C(10)-N(4)-N(2) 114.5(4)

Symmetry transformations used to generate equivalent atoms.
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Table 3: Hydrogen bonds for oxovanadium(IV) complex (2) [Å and °].
D-H...A d(D-H) d(H...A) d(D...A) <(DHA)
 C(4)-H(4)...O(4)#1 0.93 2.65 3.483(7) 149.3
 C(8)-H(8)...O(4)#2 0.93 2.61 3.371(7) 139.4
 C(18)-H(18)...O(3)#3 0.93 2.43 3.295(7) 153.8
 O(5^a)-H(5A^a)...O(1) 0.85 2.41 2.988(14) 126.2
 O(5^a)-H(5A^a)...O(2) 0.85 2.58 3.354(13) 152.8
 O(5A^b)-H(5AA^b)...O(4) 0.85 2.39 2.991(13) 128.3

Symmetry transformations used to generate equivalent atoms: 
#1 x-1,y, z    #2 -x+1,-y,-z+1    #3 -x+2,-y+1,-z+1      

Vanadium template  complex  forms  two  six-  and
one  five-membered  rings.  In  the  six-membered
rings, the bond angles are very close with O(3)-
V(1)-N(4) being 86.67 Å while O(2)-V(1)-N(3) is
87.40 Å. The five-membered ring has a N(3)-V(1)-
N(4)  angle  of  76.12°.  When  dealing  with  bond
distances, the shortest bond was 1.603 Å for V(1)-
O(4) while the longest bond was 2.043 Å for V(1)-
N(4).  Experimental  results  show  that  vanadium-
oxygen bonds are shorter than vanadium-nitrogen
bonds (38, 39). The previous publication could be
accessed for detailed crystalline data and related
comments  about  S-allyl  thiosemicarbazone  (1)
(14).

A  disordered  water  molecule  (O5  and  O5A)  is
present  in  the  asymmetric  unit  and  this  was
computed  over  two  positional  site  occupancies,
0.576 and 0.424, respectively. Moreover, the allyl
group C23-C24-C25 is quite a lot disordered and
the modeling of this disorder did not give better
refinement values; therefore it was left as it is. 

The stacking-type π- π interactions forge a link for
compound  2.  In  these  interactions,  complexes’
aromatic  rings  are  linked  on  adjacent  parallel
planes  containing  the  other  complex’s  ligand
portion.  Figure  2  shows  the  π-  π stacking  for
compound 2. It is concluded that the π- π stacking
works in the stabilization of the structure (40).

Figure 3: The CH∙∙∙∙O hydrogen bonds forming a 2D hydrogen bond network for (2).

Addison tau parameter (39) gives an indication of
the closeness of the structure, either to the ideal
square  pyramidal  or  to  the  trigonal  bipyramidal
geometry. Equation (1) was computed with O(2)-
V(1)-N(4) as β (147.02°) and O(3)-V(1)-N(3) as α
(139.47°) (Table 3) for compound (2) to find the
Addison tau parameter. Tau parameter being equal
to  zero  leads  to  the  ideal  square  pyramidal

geometry, and the result is very close to zero (τ
=0.13) (41).

τ=  (β−   α )
60

(Eq. 2)

Electrochemistry
Cyclic  voltammetry  was  performed,  for  getting
information about the electrochemical behavior of
the compound (2),  within -1.4 to +1.4 V versus
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Ag/AgCl  reference  electrode  in  TBAP/DMSO
electrolyte system (Figure 4). In DMSO, complexes
containing different metal ions displayed excellent
behaviors of voltammetry, with redox processes of
the metal  and ligand centers.  To characterize all
the  electrode processes,  peak-to-peak separation
(Δep)  and  the  ratio  of  anodic  to  cathodic  peak
currents  (Ipa /  Ipc)  were  used.  Table  4  lists  the
electrochemical parameters from the CV at 0.1 V s-

1 scan rate. 

Cyclic  voltammogram  of  the  complex  (2)  in
electrochemically  pure  DMSO containing TBAP as
electrolyte  demonstrated  a  wave  at  0.56  V
(reversible)  and  another  wave  at  -0.77  V
(irreversible) vs. Ag/AgCl reference electrode (43).

The cathodic redox couple is assignable to the VIVO
to  VVO oxidation  process  at  a  scan  rate  of  100
mVs-1.  ΔEp value of this redox couple was 80 mV
and  the  ipa/ipc value  was  almost  unity,  which  is
indicative  of  the  reversible  character  of  this
process. An irreversible redox couple (ΔEp, 100 mV
and Ipa/Ipc, 0.20) was attributable to the reduction
of VIVO to VIIIO at -0.77 V. Although the ΔEp value
of  the  reduction  couple  seemed  to  be  a  quasi-
reversible redox process, the tiny Ipa/Ipc ratio (0.2)
explains the irreversibility (44). There is a shoulder
at -0.65 V and this value was mentioned of in a
previous report (38), which is possibly indicative of
an  electrode/electrolyte  interface  adsorption
process (45, 46). 
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Figure 4: CV of the oxovanadium(IV) complex (2) in 0.1 M TBAP/DMSO solution at 0.1 Vs-1 scan rate
(left) and other different scan rates (right).

Table 4: Electrochemical parameters of 1.0 x 10-3M oxovanadium(IV) complex (2) in DMSO/TBAP at 0.1
Vs-1 scan rate.

Peak Parameters

Complex Redox Process aE1/2(V) bipa/ipc
cΔEp (mV)

2
VIV/VO 0.56 1.1 80

VIV/IIIO -0.77 0.2 100

a E1/2 = (Epa + Epc)/2  Epa and Epc are the cathodic and anodic peak potentials, respectively.
bipa and ipc are the anodic and cathodic peak currents, respectively.
cΔEp is peak-to-peak separation (ΔEp = |Epa − Epc|).

Thermogravimetric data
Table 5, Figure 5, and Figure S1-S2 present the
TGA and DTG results for the starting compound (1)
and  the  vanadium  complex  (2)  in  detail.  The
starting compound (1)  underwent degradation in

two  steps,  and  sulfur  (S)  remained intact.  First,
allyl group (-CH2-CH=CH2) left, then 2-OH-(C6H5)2-
C=N-N=C-NH2 degraded. 
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The vanadium complex (2) underwent degradation
in two steps, and VO + S remained intact. First, -
CH2-CH=CH2 + O-CH3 and coordinated water left
the compound, then 2-OH-(C6H5)2-C=N-N=C-N=C-
(C6H5)  degraded.  Both  structures  are  stable  at

room  temperature,  and  they  degrade  at  high
temperatures (38, 47). Thermogravimetric analysis
shows  that  the  oxovanadium(IV)  complex  (2)  is
stable even in high temperatures. 

Figure 5: TGA-DTGA curves of S-allyl thiosemicarbazone (black, 1) and oxovanadium(IV) complex (red,
2).

Table 5: Thermogravimetric data for compound 1 and 2.
Compound Step Temperature

Range (°C)
DTG
(°C)

Weight loss
(%)

Found
(Calcd.)

Residue

1 1st 153-223 171 13.07(13.18)
2nd 460-581 553 76.74(76.84) 10.19(10.27)

2 1st 240-321 279 17.13(17.05)
2nd 402-531 501 64.15(64.21) 18.79(18.72)

Electronic spectra
Ultraviolet-visible  spectra  were  obtained between
200-900 nm in a chloroform solution. At 260 nm,
there  was  the  starting  material’s  (1)  π-π*
transition.  For  the  oxovanadium  complex,  this
transition was spotted at 266 nm. This is caused
by the presence of the benzophenone ring system.

The  azomethine-  and  thioamide-originated  n-π*
transitions  were  observed  at  306  and  340  nm,
while  in  compound  2, these  transitions  were
observed  at  338  and  361  nm.  In  addition,  the
vanadium  complex  featured  a  ligand-to-metal
transition (LMCT) at 440 nm in the Figure 6. These
transitions support the square pyramidal structure
(42, 48). 

Figure 6: UV spectra of S-allyl-thiosemicarbazone (1), oxovanadium(IV) complex (2).
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Infrared spectra 
The ν(OH) stretching vibration for compound (1)
was  observed  at  3468  cm-1. Asymmetric  NH2

vibration,  symmetric  NH2 vibration,  and  NH2

deformation peaks were seen at 3329, 3284, and
1630  cm-1,  respectively.  Azomethine (C=N1)  and
(C=N2) vibrations were observed at 1600 and 1561
cm-1, respectively. At the end of template reaction,
the  OH,  asymmetric  NH2,  and  symmetric  NH2

vibrations  disappeared,  as  expected.  In  addition,

ν(N4=C)  was  observed  at  1519  cm-1 as  a  new
band,  which  confirmed  the  template  synthesis.
ν(V=O) band was seen at 966 cm-1. This could be
used  as  an  indicator  of  template  complexation.
Disappearance  or  appearance  of  the
aforementioned peaks serve as a confirming entity
of  the  template  reaction and  thus,  the  template
complex (2) in the Figure 7 (14, 38). The infrared
spectrum  of  compound  (1)  is  available  in  the
supplementary material (Fig. S3).

Figure 7: FT-IR spectrum of the oxovanadium(IV) complex (2).

Mass Spectrometry
The electron spray ionization (ESI) mass spectrum
of compound 2 showed the molecular ion peak at
m/z  528.47,  featuring  a  molecular  formula  of
C25H25N3O5SV. In the spectrum, the molecular ion
peak relative ratio was 22.91 for 533.1 [(M-H2O) +
Na]. The (M-H2O) peak's ratio  was 9.46 and the
position  was  at  511.1  [(2M-2H2O)  +  Na]  peak
supported  the  π-  π interaction  in  the  molecule,
with a relative ratio of 100% and relative m/z of
1042.8.  During  the  recording  of  the  mass
spectrum,  coordinated  water  molecule  left  the
complex  (38).  The  detailed  mass  spectrum  is
available in the supplementary material (Fig. S4).

Antioxidant efficiency 
The antioxidant efficiency was referenced against
trolox, which is the water-soluble analog of Vitamin
E.  CUPRAC  method  was  applied  in  this

determination,  and  the  results  were  reported  as
µmol trolox equivalent per gram of sample. In the
determination,  the  redox chemistry  of  copper(II)
to  copper(I)  in  a  neocuproine  complex  was
assayed  and  reported.  The  trolox-equivalent
antioxidant  capacity  (TEAC)  value  of  the
oxovanadium(IV)  complex  (TEACCUPRAC =  3.10  ±
0.01)  was higher  than the starting material,  (1)
(TEACCUPRAC =  0.30  ±  0.01)  and  ascorbic  acid
(TEACascorbic  acid=1.00  ±  0.01).  Therefore,  the
compound 2 could serve as a powerful antioxidant.
Benzophenone  thiosemicarbazone-based
oxovanadium(IV)  complexes  have  higher
antioxidant  activities  than  those  containing
naphthaldeyhde-based  oxovanadium(IV)
complexes (14, 38, 49).
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CONCLUSION

2-Hydroxybenzophenone  S-allylthiosemicarbazone
(1) was reacted with vanadyl sulfate to obtain the
template  complex  (2),  and  UV-Vis,  FTIR,
electrochemistry,  and  copper  ion  reducing
antioxidant  capacity  measurements  were
conducted. The UV-Vis spectra showed π-π* and n-
π* transitions for the ligand and LMCT peak for the
complex. FTIR was useful to point to the vibrations
present before complexation, and they disappeared
after  the  formation  of  the  template  structure.
Similarly, new bands were obtained after template
complex formation. Thermogravimetric analysis of
compounds 1 and 2 revealed that they were stable
at  high temperatures.  Mass spectra  showed that
the π- π and C- π interactions were present in the
complex. 

Electrochemistry of the complex, supplied valuable
information for the redox chemistry of vanadium-
centered template; an oxidation couple from VIV to
VV were clearly identified. A further reduction from
VIV to  VIII was  also  recorded.  Oxidation  of  the
ligand was not observed. 

Copper  ion  reducing  antioxidant  capacity
experiment showed that the complex 2 is a potent
antioxidant  and  its  trolox-equivalent  antioxidant
capacity is at least three times more powerful than
ascorbic acid. A less positive oxidation potential is
a requirement for  a powerful  reducing agent,  as
shown  by  electrochemical  measurements.
Oxovanadium(IV)  complex  (2)  has  this
requirement  and  it  is  a  better  reducing  agent.
CUPRAC results  are  confirmed by  a  high  ligand-
based  reduction  potential  and  complex  2 is
suitable as an antioxidant agent (14).
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Figure S1: TGA-DTGA curves of S-allyl-thiosemicarbazone (1).
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Figure S2: TGA-DTGA curves of oxovanadium(IV) complex (2).
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Figure S3: FT-IR spectra of S-allyl-thiosemicarbazone (1).

Figure S4: Mass spectra of the oxovanadium(IV) complex (2).
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Table S1: Anisotropic displacement parameters (Å2x 103) for the oxovanadium (IV) complex.  The 

anisotropic displacement factor exponent takes the form:  -22[ h2 a*2U11 + ...  + 2 h k a* b* U12]

U11 U22 U33 U23 U13 U12

V(1) 32(1) 51(1) 47(1) 18(1) 2(1) 13(1)
S(1) 56(1) 88(1) 53(1) 35(1) 10(1) 20(1)
O(1) 45(2) 94(3) 59(3) 35(2) 1(2) 21(2)
O(2) 36(2) 70(2) 50(2) 28(2) 7(2) 17(2)
O(3) 38(2) 61(2) 64(3) 32(2) 6(2) 15(2)
O(4) 45(2) 55(2) 60(2) 12(2) 6(2) 17(2)
N(2) 36(2) 54(3) 49(3) 18(2) 3(2) 11(2)
N(3) 39(2) 44(2) 46(3) 17(2) -2(2) 11(2)
N(4) 35(2) 48(3) 46(3) 16(2) 5(2) 9(2)
C(1) 34(3) 44(3) 54(3) 10(3) 3(2) 11(2)
C(2) 37(3) 53(3) 54(3) 18(3) 7(2) 17(2)
C(3) 36(3) 60(3) 66(4) 24(3) 0(3) 15(3)
C(4) 36(3) 60(4) 85(5) 30(3) 15(3) 18(3)
C(5) 45(3) 58(3) 66(4) 31(3) 17(3) 21(3)
C(6) 42(3) 48(3) 55(3) 17(3) 13(3) 19(2)
C(7) 59(4) 116(6) 68(4) 41(4) -10(3) 27(4)
C(8) 45(3) 48(3) 46(3) 21(2) 10(2) 15(2)
C(9) 44(3) 45(3) 48(3) 12(2) 3(2) 14(2)
C(10) 35(3) 40(3) 51(3) 12(2) 5(2) 10(2)
C(11) 35(3) 52(3) 47(3) 9(3) 0(2) 10(2)
C(12) 36(3) 98(5) 53(4) 24(3) 2(3) 18(3)
C(13) 38(3) 113(6) 62(4) 24(4) 12(3) 6(3)
C(14) 50(3) 74(4) 62(4) 26(3) 15(3) 11(3)
C(15) 45(3) 57(3) 55(4) 22(3) 6(3) 15(3)
C(16) 37(3) 38(3) 51(3) 9(2) 2(2) 12(2)
C(17) 38(3) 50(3) 45(3) 14(2) 3(2) 16(2)
C(18) 41(3) 54(3) 53(3) 17(3) 2(3) 8(3)
C(19) 51(3) 72(4) 53(4) 12(3) -2(3) 7(3)
C(20) 53(4) 101(5) 55(4) 29(4) -2(3) 34(4)
C(21) 67(4) 83(5) 69(4) 34(4) 10(3) 42(4)
C(22) 51(3) 56(3) 63(4) 22(3) 8(3) 19(3)
C(23) 81(5) 109(6) 58(4) 40(4) 8(4) 33(4)
C(24) 1900(80) 2030(80) 430(40) -400(70) -400(70) 1960(80)
C(25) 880(60) 360(20) 80(9) 79(13) -21(19) 410(30)
O(5) 163(12) 169(12) 124(10) 55(8) 55(9) 78(9)
O(5A) 111(11) 147(12) 83(9) 8(8) 33(8) 81(10)

______________________________________________________________________________

Table S2: Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) for the
oxovanadium (IV) complex.

  x y z U(eq)     x y z U(eq)
H(3) 440 1192 1980 67 H(20) 15143 3873 9072 84
H(4) -141 464 3541 72 H(21) 13267 1921 8056 83
H(5) 1778 510 5002 65 H(22) 11175 1691 6579 70
H(7A) 2474 2435 94 129 H(23A) 8286 1110 8894 100
H(7B) 1418 2489 931 129 H(23B) 9212 2079 8319 100
H(7C) 1314 1198 250 129 H(24) 8786 2524 10334 1584
H(8) 4430 1220 5983 57 H(25A) 9519 3652 8618 626
H(12) 13339 4184 5204 79 H(25B) 10880 3869 9693 626
H(13) 14149 5014 3779 95 H(25C) 9621 4383 9869 626
H(14) 12397 5241 2341 78 H(5A) 5313 1723 1094 217
H(15) 9812 4453 2242 65 H(5B) 6371 1605 488 217
H(18) 12929 5400 7095 65 H(5AA) 6626 121 1356 162
H(19) 14924 5609 8654 81   H(5BB) 7215 1048 872 162
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