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Abstract 

In this paper, we give construction of quantum codes over 𝔽𝑞 from (1 − 2𝑤 − 2𝑢𝑣) - constacyclic codes over 

the 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 + 𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞, where 𝑢2 = 𝑢, 𝑣2 = 𝑣,𝑤2 = 𝑤, 𝑢𝑣 = 𝑣𝑢, 𝑢𝑤 = 𝑤𝑢 = 𝑣𝑤 = 𝑤𝑣 = 0, 

𝑞 = 𝑝𝑚, 𝑚 is a positive integer and  𝑝 is an odd prime. We determine the parameters of quantum error 

correcting codes which constructed from (1 − 2𝑤 − 2𝑢𝑣) - constacyclic codes over the 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 +

𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞. 
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𝔽𝒒 + 𝒖𝔽𝒒 + 𝒗𝔽𝒒 +𝒘𝔽𝒒 + 𝒖𝒗𝔽𝒒 Halkası Üzerindeki (𝟏 − 𝟐𝒘 − 𝟐𝒖𝒗) –Sabit Devirli Kodlardan Elde 

Edilen Kuantum Kodlar 

Öz 

Bu çalışmada, 𝑢2 = 𝑢, 𝑣2 = 𝑣,𝑤2 = 𝑤, 𝑢𝑣 = 𝑣𝑢, 𝑢𝑤 = 𝑤𝑢 = 𝑣𝑤 = 𝑤𝑣 = 0, 𝑞 = 𝑝𝑚 , 𝑚 pozitif tam sayı ve  

𝑝 tek asal sayı olmak üzere 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 + 𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞 halkası üzerindeki (1 − 2𝑤 − 2𝑢𝑣)-sabit devirli 

kodlardan 𝔽𝑞 üzerindeki kuantum kodların inşası verilmiştir. Ayrıca, 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 +𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞 halkası 

üzerindeki (1 − 2𝑤 − 2𝑢𝑣) –sabit devirli kodlardan elde edilen hata düzeltici kuantum kodların parametreleri 

belirlenmiştir. 

 

Anahtar Kelimeler: kuantum kod, sabit devirli kod, Gray dönüşümü 

 

1. Introduction 

At the beginning of the twentieth century, people believed that Newton and Maxwell’s 

laws of physics were true. By the 1930’s, however, it had become apparent that these classical 

theories faced serious problems in trying to account for the observed results of certain 

experiments. As a result, a new mathematical framework for physics called quantum 

mechanics was formulated, and new theories of physics called quantum physics were 

developed in this framework (Kaye et al., 2006). 
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Quantum information processing is the result of using the physical reality that quantum theory 

tells us about for the purposes of performing tasks that were previously thought impossible or 

infeasible. Devices that perform quantum information processing are known as quantum 

computers (Kaye et al., 2006). Quantum computers have a great deal of potential, but to 

realize that potential, they need some sort of protection from noise. Classical computers do 

not use error correction. One reason for this is that classical computers use a large number of 

electrons, so when one goes wrong, it is not too serious. A single qubit in a quantum computer 

will probably be just one or a small number of particles, which already creates a need for 

some sort of correction. Classical information can not travel faster than light, while quantum 

information appears to in some circumstances. Classical information can be duplicated, while 

quantum information can not. Also, quantum computers use probabilities, unlike classical 

computers. These probabilities enable more complex structures to be resolved with faster 

processing power. This fast processing power is provided by performing many operations at 

the same time. Quantum computers need subatomic particles to perform many operations 

simultaneously. Quantum error correcting codes provide an efficent way to overcome 

decoherence. Therefore, quantum information is more convenient than classical information. 

The first quantum error correcting code was found by (Shor, 1995). Calderbank et al. 

(1998), gave a method to construct quantum error correcting codes from classical error 

correcting codes. The name given to this method is CSS construction. From then on, the 

construction of quantum error correcting codes from different types of classical codes has 

studied. 

Many quantum error correcting codes have been constructed by constacyclic codes over 

many finite rings (Li et al., 2018; Gao and Wang, 2018; Islam and Parakash, 2020). 

In this paper, motivated by the previous works (Gao and Wang, 2018), (Li et al., 2018), 

(Islam and Prakash, 2020), (Mohan and Durairajan, 2020), we study the quantum codes which 

are obtained from (1 − 2𝑤 − 2𝑢𝑣)-constacyclic codes over the finite ring 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 +

𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞. 

2. Materials and Methods 

The commutative ring 𝑅 = 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 + 𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞 with 𝑢2 = 𝑢, 𝑣2 = 𝑣, 𝑤2 =

𝑤, 𝑢𝑣 = 𝑣𝑢, 𝑢𝑤 = 𝑤𝑢 = 𝑣𝑤 = 𝑤𝑣 = 0 introduced, where 𝔽𝑞 is a finite field with 𝑞 

elements, 𝑞 = 𝑝𝑚, 𝑚 is a positive integer and 𝑝 is an odd prime (Mohan and Durairajan, 

2020). Please see (Mohan and Durairajan, 2020) for more details on this ring. 

Let 

𝜀1 = 𝑢 − 𝑢𝑣, 

𝜀2 = 1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣, 

𝜀3 = 𝑣 − 𝑢𝑣, 

𝜀4 = 𝑢𝑣, 
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𝜀5 = 𝑤 

are elements in 𝑅. It can be easily seen that (𝜀𝑖)
2 = 𝜀𝑖, 𝜀𝑖. 𝜀𝑗 = 0 and 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4 +

𝜀5 = 1, where 𝑖, 𝑗 = 1, 2, 3, 4, 5 and 𝑖 ≠ 𝑗. They had 𝑅 = 𝜀1𝑅 ⊕ 𝜀2𝑅 ⊕ 𝜀3𝑅 ⊕ 𝜀4𝑅 ⊕ 𝜀5𝑅. 

By calculation, they obtained that 𝜀𝑖𝑅 ≅ 𝜀𝑖𝔽𝑞 , 𝑖 = 1, 2, 3, 4, 5. Therefore, for any 𝑟 ∈ 𝑅, 𝑟 

can be expressed uniquely as 𝑟 = ∑ 𝜀𝑖𝑎𝑖
5
𝑖=1  , where 𝑎𝑖 ∈ 𝔽𝑞 for 𝑖 = 1, 2, 3, 4, 5 (Mohan and 

Durairajan, 2020). 

A non-empty subset 𝐶 of 𝑅𝑛 (𝔽𝑞
𝑛) is called a linear code of length 𝑛 over 𝑅 (𝔽𝑞) if 𝐶 is 

an 𝑅-submodule of 𝑅𝑛 ( a subspace of 𝔽𝑞
𝑛 ). An element of 𝐶 is called a codeword. Let 𝜎, 𝛾, 𝜏 

be maps from 𝔽𝑞
𝑛 to 𝔽𝑞

𝑛 given by 

𝜎(𝑐0, 𝑐1, … , 𝑐𝑛−1) = (𝑐𝑛−1, 𝑐0, … , 𝑐𝑛−2), 

𝛾(𝑐0, 𝑐1, … , 𝑐𝑛−1) = (−𝑐𝑛−1, 𝑐0, … , 𝑐𝑛−2) 

and 

𝜏(𝑐0, 𝑐1, … , 𝑐𝑛−1) = ((1 − 2𝑤 − 2𝑢𝑣)𝑐𝑛−1, 𝑐0, … , 𝑐𝑛−2), 

respectively. Then 𝐶 is called to be cyclic if 𝜎(𝐶) = 𝐶, negacyclic if 𝛾(𝐶) = 𝐶 and (1 −

2𝑤 − 2𝑢𝑣)-constacyclic if 𝜏(𝐶) = 𝐶. 

The Hamming weight 𝑤𝐻(𝑥) of a codeword 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝔽𝑞
𝑛 is the number of 

nonzero components. The minimum weight 𝑤𝐻(𝐶) of a code 𝐶 is the smallest weight among 

all its nonzero codewords. For 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝔽𝑞
𝑛, 𝑑𝐻(𝑥, 𝑦) =

|{𝑖 ∶ 𝑥𝑖 ≠ 𝑦𝑖}| is called the Hamming distance between 𝑥 and 𝑦. Moreover,  

𝑑𝐻(𝑥, 𝑦) = 𝑤𝐻(𝑥 − 𝑦). 

The minimum Hamming distance between different codewords of a code 𝐶 is called the 

minimum distance of 𝐶 and denoted by 𝑑𝐻(𝐶) or shortly 𝑑𝐻. 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) be any two elements of 𝔽𝑞
𝑛. Then the 

Euclidean inner product of 𝑥 and 𝑦 is defined as 

𝑥 ∙ 𝑦 =∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

. 

The dual code of 𝐶 is defined as 

𝐶⊥ = {𝑥 ∈ 𝔽𝑞
𝑛 ∶ 𝑥 ∙ 𝑦 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝐶}. 

A code 𝐶 is called self-orthogonal if 𝐶 ⊆ 𝐶⊥ and self dual if 𝐶 = 𝐶⊥. 
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Now, recall the definition of the Gray map which was defined by Mohan and 

Durairajan (2020) as follows: 

𝛿: 𝑅 ⟶ 𝔽𝑞
5  

𝛿(𝑎1𝜀1 + 𝑎2𝜀2 + 𝑎3𝜀3 + 𝑎4𝜀4 + 𝑎5𝜀5) = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈ 𝔽𝑞. 

Equivalently, if 𝑟 = 𝑎1
′ + 𝑢𝑎2

′ + 𝑣𝑎3
′ + 𝑤𝑎4

′ + 𝑢𝑣𝑎5
′ ∈ 𝑅, then 

𝛿(𝑟) = (𝑎1
′ + 𝑎2

′, 𝑎1
′, 𝑎1

′ + 𝑎3
′, 𝑎1

′ + 𝑎2
′ + 𝑎3

′ + 𝑎5
′, 𝑎1

′ + 𝑎4
′). 

This map can be extended naturally to the case over 𝑅𝑛. 

For any element 𝑟 = 𝑎1𝜀1 + 𝑎2𝜀2 + 𝑎3𝜀3 + 𝑎4𝜀4 + 𝑎5𝜀5 ∈ 𝑅, define the Lee weight of 𝑟 as 

𝑤𝐿(𝑟) = 𝑤𝐻(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), where 𝑤𝐻 denotes the ordinary Hamming weight for codes 

over 𝔽𝑞. 

The Lee distance between 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑅
𝑛 is defined by 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦) =∑𝑤𝐿(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

. 

The minimum Lee distance between different codewords of a code 𝐶 is called the minimum 

distance of 𝐶 and denoted by 𝑑𝐿(𝐶) or shortly 𝑑𝐿. 

Theorem 2.1.The Gray map 𝛿 is a distance-preserving map or isometry from 𝑅𝑛 (Lee 

distance) to 𝔽𝑞
5𝑛 (Hamming distance) and it is also 𝔽𝑞-linear (Mohan and Durairajan, 2020). 

Theorem 2.2. Let 𝐶 be a linear code of length 𝑛 over 𝑅 with |𝐶| = 𝑀 and Lee distance 

𝑑𝐿(𝐶) = 𝑑. Then 𝛿(𝐶) is a 𝑞-ary linear code with parameter (5𝑛,𝑀, 𝑑). 

Proof. From Theorem 2.1, we see that 𝛿(𝐶) is 𝔽𝑞-linear, which implies that 𝛿(𝐶) is 𝔽𝑞-linear 

code. By definition of the Gray map 𝛿, 𝛿(𝐶) is of length 5𝑛. Moreover one can check that 𝛿 

is bijective map from 𝑅𝑛 to 𝔽𝑞
5𝑛, which implies that |𝐶| = |𝛿(𝐶)|. Finally, the property of 

preserving distance of 𝛿 leads to 𝛿(𝐶) having the minimum Hamming distance 𝑑. 

∎ 

3. Results and Disscussion 

(𝟏 − 𝟐𝒘 − 𝟐𝒖𝒗)-Constacyclic Codes over 𝑹 

Let  

𝐴1⊗⋯⊗𝐴5 = {(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) ∶ 𝑎𝑖 ∈ 𝐴𝑖, 𝑖 = 1, 2, 3, 4, 5} 



Quantum Codes from (𝟏 − 𝟐𝒘 − 𝟐𝒖𝒗)-Constacyclic Codes over the 𝔽𝒒 + 𝒖𝔽𝒒 + 𝒗𝔽𝒒 +𝒘𝔽𝒒 + 𝒖𝒗𝔽𝒒 

50 

 

and 

𝐴1⊕⋯⊕𝐴5 = {𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 ∶ 𝑎𝑖 ∈ 𝐴𝑖, 𝑖 = 1, 2, 3, 4, 5}. 

For a linear code 𝐶 of length 𝑛 over 𝑅, define 

𝐶1 = {
𝑎1 ∈ 𝔽𝑞

𝑛 ∶ ∑𝑎𝑖𝜀𝑖

𝑛

𝑖=1

∈ 𝐶,

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈ 𝔽𝑞
𝑛

} 

𝐶2 = {
𝑎2 ∈ 𝔽𝑞

𝑛 ∶ ∑𝑎𝑖𝜀𝑖

𝑛

𝑖=1

∈ 𝐶,

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎1, 𝑎3, 𝑎4, 𝑎5 ∈ 𝔽𝑞
𝑛

} 

𝐶3 = {
𝑎3 ∈ 𝔽𝑞

𝑛 ∶ ∑𝑎𝑖𝜀𝑖

𝑛

𝑖=1

∈ 𝐶,

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎1, 𝑎2, 𝑎4, 𝑎5 ∈ 𝔽𝑞
𝑛

} 

𝐶4 = {
𝑎4 ∈ 𝔽𝑞

𝑛 ∶ ∑𝑎𝑖𝜀𝑖

𝑛

𝑖=1

∈ 𝐶,

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎1, 𝑎2, 𝑎3, 𝑎5 ∈ 𝔽𝑞
𝑛

} 

𝐶5 = {
𝑎5 ∈ 𝔽𝑞

𝑛 ∶ ∑𝑎𝑖𝜀𝑖

𝑛

𝑖=1

∈ 𝐶,

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝔽𝑞
𝑛

} 

Clearly, 𝐶𝑖 is a linear code of length 𝑛 over 𝔽𝑞 for each 𝑖 = 1, 2, 3, 4, 5. Moreover, 

𝐶 = 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕ 𝜀4𝐶4⊕𝜀5𝐶5. 

Theorem 3.1. Let 𝐶 be a linear code of length 𝑛 over 𝑅. Then 𝛿(𝐶) =⊗𝑖=1
5 𝐶𝑖, |𝐶| = ∏ |𝐶𝑖|

5
𝑖=1  

and 𝑑𝐿(𝐶) = 𝑚𝑖𝑛{𝑑𝐻(𝐶𝑖), 𝑖 = 1, 2, 3, 4, 5} (Mohan and Durairajan, 2020). 

A generator matrix of 𝐶 is a matrix whose rows generate 𝐶. Two codes are equivalent 

if one can be obtained from the other by permuting the coordinates. If 𝐺𝑖 are the generator 

matrices of 𝑞-ary linear codes 𝐶𝑖, 𝑖 = 1, 2, 3, 4, 5, respectively, then the generator matrix of 𝐶 

is 

𝐺 =

(

 
 

𝜀1𝐺1
𝜀2𝐺2
𝜀3𝐺3
𝜀4𝐺4
𝜀5𝐺5)

 
 

 



Quantum Codes from (𝟏 − 𝟐𝒘 − 𝟐𝒖𝒗)-Constacyclic Codes over the 𝔽𝒒 + 𝒖𝔽𝒒 + 𝒗𝔽𝒒 +𝒘𝔽𝒒 + 𝒖𝒗𝔽𝒒 

51 

 

and the generator matrix of 𝛿(𝐶) is  

𝛿(𝐺) =

(

 
 

𝛿(𝜀1𝐺1)

𝛿(𝜀2𝐺2)

𝛿(𝜀3𝐺3)

𝛿(𝜀4𝐺4)

𝛿(𝜀5𝐺5))

 
 
. 

Theorem 3.2. Let 𝐶 be a linear code of length 𝑛 over 𝑅. Then 𝛿(𝐶⊥) = (𝛿(𝐶))
⊥

 (Mohan and 

Durairajan, 2020). 

Theorem 3.3. Let 𝐶 be a linear code of length 𝑛 over 𝑅. Then 𝐶 is self-orthogonal, so is 𝛿(𝐶) 

(Mohan and Durairajan, 2020). 

Theorem 3.4. Let 𝐶 = 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕𝜀4𝐶4⊕ 𝜀5𝐶5 be a linear code of length 𝑛 over 

𝑅. Then 𝐶 is a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code of length 𝑛 over 𝑅 if and only if 𝐶1, 𝐶2, 𝐶3 

are cyclic codes and 𝐶4, 𝐶5 are negacyclic codes of length 𝑛 over 𝔽𝑞. 

Proof. Let 𝛼𝑖 = 𝜀1𝑎𝑖 + 𝜀2𝑏𝑖 + 𝜀3𝑐𝑖 + 𝜀4𝑑𝑖 + 𝜀5𝑒𝑖, for any 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝐶1, 𝑏 =

(𝑏1, 𝑏2, … , 𝑏𝑛) ∈ 𝐶2, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) ∈ 𝐶3, 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) ∈ 𝐶4, 𝑒 = (𝑒1, 𝑒2, … , 𝑒𝑛) ∈

𝐶5, 𝑖 = 1,… , 𝑛. Then 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝐶. If 𝐶 is a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code 

over 𝑅, then 

𝜏(𝛼) = ((1 − 2𝑤 − 2𝑢𝑣)𝛼𝑛, 𝛼1, … , 𝛼𝑛−1) 

= ((1 − 2𝑤 − 2𝑢𝑣)(𝜀1𝑎𝑛 + 𝜀2𝑏𝑛 + 𝜀3𝑐𝑛 + 𝜀4𝑑𝑛 + 𝜀5𝑒𝑛), 𝜀1𝑎1 + 𝜀2𝑏1 + 𝜀3𝑐1 + 𝜀4𝑑1

+ 𝜀5𝑒1, … , 𝜀1𝑎𝑛−1 + 𝜀2𝑏𝑛−1 + 𝜀3𝑐𝑛−1 + 𝜀4𝑑𝑛−1 + 𝜀5𝑒𝑛−1) 

= ((𝑢 − 𝑢𝑣)𝑎𝑛 + (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝑏𝑛 + (𝑣 − 𝑢𝑣)𝑐𝑛 − 𝑢𝑣𝑑𝑛 − 𝑤𝑒𝑛, (𝑢 − 𝑢𝑣)𝑎1
+ (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝑏1 + (𝑣 − 𝑢𝑣)𝑐1 + 𝑢𝑣𝑑1 +𝑤𝑒1, … , (𝑢 − 𝑢𝑣)𝑎𝑛−1
+ (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝑏𝑛−1 + (𝑣 − 𝑢𝑣)𝑐𝑛−1 + 𝑢𝑣𝑑𝑛−1 +𝑤𝑒𝑛−1) 

= (𝑢 − 𝑢𝑣)𝜎(𝑎) + (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝜎(𝑏) + (𝑣 − 𝑢𝑣)𝜎(𝑐) + 𝑢𝑣𝛾(𝑑) + 𝑤𝛾(𝑒) ∈ 𝐶. 

Therefore, 𝐶1, 𝐶2, 𝐶3 are cyclic codes and 𝐶4, 𝐶5 are negacyclic codes of length 𝑛 over 𝔽𝑞. 

On the other hand, let 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛), 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛), 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛), 𝑑 =

(𝑑1, 𝑑2, … , 𝑑𝑛), 𝑒 = (𝑒1, 𝑒2, … , 𝑒𝑛), for any 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝐶, where 𝛼𝑖 = 𝜀1𝑎𝑖 +

𝜀2𝑏𝑖 + 𝜀3𝑐𝑖 + 𝜀4𝑑𝑖 + 𝜀5𝑒𝑖 and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑒𝑖 ∈ 𝔽𝑞 , 𝑖 = 1,… , 𝑛. Then 𝑎 ∈ 𝐶1, 𝑏 ∈ 𝐶2, 𝑐 ∈

𝐶3, 𝑑 ∈ 𝐶4, 𝑒 ∈ 𝐶5. If 𝐶1, 𝐶2, 𝐶3 are cyclic codes and 𝐶4, 𝐶5 are negacyclic codes of length 𝑛 

over 𝔽𝑞, then 𝜎(𝑎) ∈ 𝐶1, 𝜎(𝑏) ∈ 𝐶2, 𝜎(𝑐) ∈ 𝐶3, 𝛾(𝑑) ∈ 𝐶4, 𝛾(𝑒) ∈ 𝐶5. Hence (𝑢 −

𝑢𝑣)𝜎(𝑎) + (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝜎(𝑏) + (𝑣 − 𝑢𝑣)𝜎(𝑐) + 𝑢𝑣𝛾(𝑑) + 𝑤𝛾(𝑒) ∈ 𝐶. However, 

𝜏(𝛼) = (𝑢 − 𝑢𝑣)𝜎(𝑎) + (1 − 𝑢 − 𝑣 − 𝑤 + 𝑢𝑣)𝜎(𝑏) + (𝑣 − 𝑢𝑣)𝜎(𝑐) + 𝑢𝑣𝛾(𝑑) + 𝑤𝛾(𝑒) ∈

𝐶, which implies that 𝜏(𝛼) ∈ 𝐶. 
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Therefore 𝐶 is a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code over 𝑅. 

∎ 

Theorem 3.5. Let 𝐶 be a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code of length 𝑛 over 𝑅. Then 

𝐶 = 〈𝜀1𝑔1(𝑥), 𝜀2𝑔2(𝑥), 𝜀3𝑔3(𝑥), 𝜀4𝑔4(𝑥), 𝜀5𝑔5(𝑥)〉, where 𝑔𝑖(𝑥) are the generator 

polynomials of 𝐶𝑖, 𝑖 = 1, 2, 3, 4, 5, respectively. Moreover, 𝐶⊥ = 𝜀1𝐶1
⊥⊕𝜀2𝐶2

⊥⊕ 𝜀3𝐶3
⊥⊕

𝜀4𝐶4
⊥⊕𝜀5𝐶5

⊥ is also a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code over 𝑅 and 

𝐶⊥ = 〈∑𝜀𝑖ℎ𝑖
∗(𝑥)

5

𝑖=1

〉, 

where ℎ𝑖
∗(𝑥), 𝑖 = 1, 2, 3, 4, 5, are the reciprocal polynomials of  

𝑥𝑛−1

𝑔1(𝑥)
 , 
𝑥𝑛−1

𝑔2(𝑥)
 , 
𝑥𝑛−1

𝑔3(𝑥)
 , 
𝑥𝑛+1

𝑔4(𝑥)
 and 

𝑥𝑛+1

𝑔5(𝑥)
 , respectively. 

Quantum Codes from (𝟏 − 𝟐𝒘 − 𝟐𝒖𝒗)-Constacyclic Codes over 𝑹 

Let 𝐻 be a Hilbert space of 𝑞 dimension over the complex numbers ℂ. Define 𝐻⊗𝑛 to be 𝑛-

fold tensor product of the Hilbert space 𝐻, that is, 𝐻⊗𝑛 =  𝐻 ⊗  𝐻 ⊗ · · · ⊗ H (𝑛-times). 

Then 𝐻⊗𝑛 is a Hilbert space of 𝑞𝑛 dimension. A quantum code having the length 𝑛 and the 

dimension 𝑡 over 𝔽𝑞 is defined to be the Hilbert subspace of 𝐻⊗𝑛. A quantum code with 

length 𝑛, dimension 𝑡 and minimum distance 𝑑 over 𝔽𝑞 is denoted by [[𝑛, 𝑡, 𝑑]]
𝑞
. 

Lemma 4.1. Let 𝐶 be a cyclic or negacyclic code with the generator polynomial 𝑔(𝑥) over 𝔽𝑞. 

Then 𝐶 contains its dual code if and only if 

𝑥𝑛 − 𝜅 ≡ 0(𝑚𝑜𝑑𝑔(𝑥)𝑔∗(𝑥)), 

where 𝜅 = ±1 (Li et al., 2018). 

Theorem 4.2. Let 𝐶 = 〈𝜀1𝑔1(𝑥) + 𝜀2𝑔2(𝑥) + 𝜀3𝑔3(𝑥) + 𝜀4𝑔4(𝑥) + 𝜀5𝑔5(𝑥)〉 be a (1 − 2𝑤 −

2𝑢𝑣)-constacyclic code of length 𝑛 over 𝑅. Then 𝐶⊥ ⊆ 𝐶 if and only if 

𝑥𝑛 − 1 ≡ 0(𝑚𝑜𝑑𝑔𝑡(𝑥)𝑔𝑡
∗(𝑥)) 

and 

𝑥𝑛 + 1 ≡ 0(𝑚𝑜𝑑𝑔𝑗(𝑥)𝑔𝑗
∗(𝑥)), 

where 𝑡 = 1, 2, 3 and 𝑗 = 4, 5. 

Proof. Let 𝐶 = 〈𝑔(𝑥)〉 be a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code of length 𝑛 over 𝑅, where 

𝑔(𝑥) = 𝜀1𝑔1(𝑥) + 𝜀2𝑔2(𝑥) + 𝜀3𝑔3(𝑥) + 𝜀4𝑔4(𝑥) + 𝜀5𝑔5(𝑥). Then 𝐶 = 𝜀1𝐶1⊕𝜀2𝐶2⊕

𝜀3𝐶3⊕ 𝜀4𝐶4⊕ 𝜀5𝐶5, where 𝐶𝑖 = 〈𝑔𝑖(𝑥)〉, 𝑖 = 1, 2, 3, 4, 5. If  
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𝑥𝑛 − 1 ≡ 0(𝑚𝑜𝑑𝑔𝑡(𝑥)𝑔𝑡
∗(𝑥)) 

and 

𝑥𝑛 + 1 ≡ 0(𝑚𝑜𝑑𝑔𝑗(𝑥)𝑔𝑗
∗(𝑥)), 

then 𝐶𝑡
⊥ ⊆ 𝐶𝑡 and 𝐶𝑗

⊥ ⊆ 𝐶𝑗, where 𝑡 = 1, 2, 3 and 𝑗 = 4, 5. Therefore,  

𝜀𝑡𝐶𝑡
⊥ ⊆ 𝜀𝑡𝐶𝑡 

and 

𝜀𝑗𝐶𝑗
⊥ ⊆ 𝜀𝑗𝐶𝑗 , 

which implies that 

𝜀1𝐶1
⊥⊕ 𝜀2𝐶2

⊥⊕ 𝜀3𝐶3
⊥⊕𝜀4𝐶4

⊥⊕ 𝜀5𝐶5
⊥ ⊆ 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕ 𝜀4𝐶4⊕𝜀5𝐶5. 

Thus, 

〈𝜀1ℎ1
∗ + 𝜀2ℎ2

∗ + 𝜀3ℎ3
∗ + 𝜀4ℎ4

∗ + 𝜀5ℎ5
∗〉 ⊆ 〈𝜀1𝑔1 + 𝜀2𝑔2 + 𝜀3𝑔3 + 𝜀4𝑔4 + 𝜀5𝑔5〉. 

Therefore, 𝐶⊥ ⊆ 𝐶. 

Conversely, if 𝐶⊥ ⊆ 𝐶, then 

𝜀1𝐶1
⊥⊕ 𝜀2𝐶2

⊥⊕ 𝜀3𝐶3
⊥⊕𝜀4𝐶4

⊥⊕ 𝜀5𝐶5
⊥ ⊆ 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕ 𝜀4𝐶4⊕𝜀5𝐶5, 

which implies that 𝐶𝑡
⊥ ⊆ 𝐶𝑡 and 𝐶𝑗

⊥ ⊆ 𝐶𝑗, where 𝑡 = 1, 2, 3 and 𝑗 = 4, 5. Therefore, 

𝑥𝑛 − 1 ≡ 0(𝑚𝑜𝑑𝑔𝑡(𝑥)𝑔𝑡
∗(𝑥)) 

and 

𝑥𝑛 + 1 ≡ 0(𝑚𝑜𝑑𝑔𝑗(𝑥)𝑔𝑗
∗(𝑥)). 

∎ 

By Theorem 4.2, we have the following corollary directly. 

Corollary 4.3. Let 𝐶 = 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕ 𝜀4𝐶4⊕𝜀5𝐶5 be a (1 − 2𝑤 − 2𝑢𝑣)-

constacyclic code of length 𝑛 over 𝑅. Then 𝐶⊥ ⊆ 𝐶 if and only if 𝐶𝑖
⊥ ⊆ 𝐶𝑖, 𝑖 = 1, 2, 3, 4, 5. 

Theorem 4.4. (CSS Construction) Let 𝐶 be a linear code with parameters [𝑛, 𝑘, 𝑑] over 𝔽𝑞. If 

𝐶⊥ ⊂ 𝐶, then an [[𝑛, 2𝑘 − 𝑛,≥ 𝑑]] quantum code can be obtained (Li et al., 2018). 

By Corollary 4.3 and Theorem 4.4, the quantum codes can be constructed as follows. 
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Theorem 4.5. Let 𝐶 = 𝜀1𝐶1⊕ 𝜀2𝐶2⊕ 𝜀3𝐶3⊕𝜀4𝐶4⊕ 𝜀5𝐶5 = 〈𝜀1𝑔1(𝑥) + 𝜀2𝑔2(𝑥) +

𝜀3𝑔3(𝑥) + 𝜀4𝑔4(𝑥) + 𝜀5𝑔5(𝑥)〉 be a (1 − 2𝑤 − 2𝑢𝑣)-constacyclic code of length 𝑛 over 𝑅, 

where 𝑔𝑖(𝑥), 𝑖 = 1, 2, 3, 4, 5, are the generator polynomials of 𝐶𝑖, respectively. If 𝐶𝑖
⊥ ⊆ 𝐶𝑖, 

then 𝐶⊥ ⊆ 𝐶 and there exists a quantum error-correcting code with parameters [[5𝑛, 2𝑘 −

5𝑛, ≥ 𝑑𝐿]], where 𝑑𝐿 is the minimum Lee distance of the code 𝐶 and 𝑘 is the dimension of the 

linear code 𝛿(𝐶). 

Example 4.6. Let 𝑅 = 𝔽5 + 𝑢𝔽5 + 𝑣𝔽5 + 𝑤𝔽5 + 𝑢𝑣𝔽5 and 𝑛 = 19. We have 

𝑥19 − 1 = (𝑥 − 4)(𝑥9 + 3𝑥7 + 2𝑥6 + 2𝑥5 + 2𝑥4 + 4𝑥3 + 2𝑥2 + 4𝑥 + 4)(𝑥9 + 𝑥8 + 3𝑥7

+ 𝑥6 + 3𝑥5 + 3𝑥4 + 3𝑥3 + 2𝑥2 + 4) ∈ 𝔽5[𝑥] 

and  

𝑥19 + 1 = (𝑥 + 1)(𝑥9 + 3𝑥7 + 3𝑥6 + 2𝑥5 + 3𝑥4 + 4𝑥3 + 3𝑥2 + 4𝑥 + 1)(𝑥9 + 4𝑥8 + 3𝑥7

+ 4𝑥6 + 3𝑥5 + 2𝑥4 + 3𝑥3 + 3𝑥2 + 1) ∈ 𝔽5[𝑥]. 

Let 𝑔(𝑥) = 𝜀1(𝑥
9 + 3𝑥7 + 2𝑥6 + 2𝑥5 + 2𝑥4 + 4𝑥3 + 2𝑥2 + 4𝑥 + 4) + 𝜀2(𝑥

9 + 3𝑥7 +

2𝑥6 + 2𝑥5 + 2𝑥4 + 4𝑥3 + 2𝑥2 + 4𝑥 + 4) + 𝜀3(𝑥
9 + 3𝑥7 + 2𝑥6 + 2𝑥5 + 2𝑥4 + 4𝑥3 +

2𝑥2 + 4𝑥 + 4) + 𝜀4(𝑥
9 + 3𝑥7 + 3𝑥6 + 2𝑥5 + 3𝑥4 + 4𝑥3 + 3𝑥2 + 4𝑥 + 1) + 𝜀5(𝑥

9 +

3𝑥7 + 3𝑥6 + 2𝑥5 + 3𝑥4 + 4𝑥3 + 3𝑥2 + 4𝑥 + 1) be the generator polynomial of 𝐶. Since 

𝑔𝑡(𝑥)𝑔𝑡
∗(𝑥) divides 𝑥19 − 1 and 𝑔𝑗(𝑥)𝑔𝑗

∗(𝑥) divides 𝑥19 + 1, where 𝑡 = 1, 2, 3 and 𝑗 = 4, 5, 

then by Theorem 4.2, we have 𝐶⊥ ⊆ 𝐶. Also, 𝛿(𝐶) is a linear code over 𝔽5 with parameters 

[95, 50, 7]. Now, using Theorem 4.5, we get a quantum code with parameters [[95, 5, ≥ 7]]. 

Example 4.7. Let 𝑅 = 𝔽11 + 𝑢𝔽11 + 𝑣𝔽11 +𝑤𝔽11 + 𝑢𝑣𝔽11 and 𝑛 = 15. We have 

𝑥15 − 1 = (𝑥 + 2)(𝑥 + 6)(𝑥 + 7)(𝑥 + 8)(𝑥 + 10)(𝑥2 + 𝑥 + 1)(𝑥2 + 3𝑥 + 9)(𝑥2 + 4𝑥

+ 5)(𝑥2 + 5𝑥 + 3)(𝑥2 + 9𝑥 + 4) ∈ 𝔽11[𝑥] 

and  

𝑥15 + 1 = (𝑥 + 1)(𝑥 + 3)(𝑥 + 4)(𝑥 + 5)(𝑥 + 9)(𝑥2 + 2𝑥 + 4)(𝑥2 + 6𝑥 + 3)(𝑥2 + 7𝑥

+ 5)(𝑥2 + 8𝑥 + 9)(𝑥2 + 10𝑥 + 1) ∈ 𝔽11[𝑥]. 

Let 𝑔(𝑥) = 𝜀1(𝑥
2 + 4𝑥 + 5) + 𝜀2(𝑥

2 + 9𝑥 + 4) + 𝜀3(𝑥
2 + 10𝑥 + 5) + 𝜀4(𝑥

2 + 7𝑥 + 5) +

𝜀5(𝑥
2 + 6𝑥 + 3) be the generator polynomial of 𝐶. Since 𝑔𝑡(𝑥)𝑔𝑡

∗(𝑥) divides 𝑥15 − 1 and 

𝑔𝑗(𝑥)𝑔𝑗
∗(𝑥) divides 𝑥15 + 1, where 𝑡 = 1, 2, 3 and 𝑗 = 4, 5, then by Theorem 4.2, we have 

𝐶⊥ ⊆ 𝐶. Also, 𝛿(𝐶) is a linear code over 𝔽11 with parameters [75, 65, 3]. Now, using 

Theorem 4.5, we get a quantum code with parameters [[75, 55, ≥ 3]]. 
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4. Conclusion: 

 In this paper, we have obtained quantum codes from (1 − 2𝑤 − 2𝑢𝑣) -constacyclic codes 

over 𝑅 = 𝔽𝑞 + 𝑢𝔽𝑞 + 𝑣𝔽𝑞 + 𝑤𝔽𝑞 + 𝑢𝑣𝔽𝑞, where 𝑢2 = 𝑢, 𝑣2 = 𝑣,𝑤2 = 𝑤, 𝑢𝑣 = 𝑣𝑢, 𝑢𝑤 =

𝑤𝑢 = 𝑣𝑤 = 𝑤𝑣 = 0, 𝑞 = 𝑝𝑚 and  𝑝 is an odd prime. We have the parameters of quantum 

codes which are obtained from (1 − 2𝑤 − 2𝑢𝑣) -constacyclic codes over 𝑅. 
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