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Objective: The aim of this study was to evaluate the proprioceptive sense of elbow flexion through a
robot-assisted rehabilitation system, RehabRoby, and to understand the usability of RehabRoby as a
robotic system in physiotherapy. 
Methods: The study included 20 volunteer, healthy students studying either physiotherapy (PT) (5
females and 5 males) or electrical and electronics engineering (EEE) (5 females and 5 males). Using
the RehabRoby, they were asked to flex their elbow joints in pronation actively and then against a
comfortable resistance to the target angles (20º, 45º and 90º), with eyes open and closed. Angle of
movement and applied torque for each target angle and error of movement with respect to the target
angle (error of matching) were recorded as absolute values. Participants’ socio-demographic and phys-
ical features were also evaluated. 
Results: Physiotherapy students had less matching error at 45º with eyes opened than EEE students. A
negative correlation was found between resistive elbow flexion and applied torque while eyes closed at
20º (p<0.05). Biceps brachii strength and being female were significant predictive factors for the least
matching error in active elbow flexion at 20º with eyes closed. Error of matching at 45º without vision
was lower in the PT group (-0.31) than in the EEE group (0.77). In addition, it was noticed that biceps
brachii muscle strength played an important role in the proprioceptive sense of the motion at 20º.
Conclusion: The RehabRoby can be considered a usable system for the evaluation of joint proprio-
ception sense. With future validity studies, the RehabRoby may be used to assess, diagnose and
improve the proprioceptive sense of patients. 
Key words: Control architecture; elbow flexion; exoskeleton robot; proprioception; robot-assisted
rehabilitation system; torque.

Robot-assisted exercise systems have become an area of
active research in rehabilitation programs.[1-11] End-
effector-based systems, such as MIT-MANUS,[1]

MIME[2] and GENTLE/S[3] or exoskeleton type robots
such as ARMin,[4-7] T-WREX,[8] Pneu-WREX,[9] L-

Exos,[10] and Selford Rehabilitation Exoskeleton[11] were
developed to assist patients in upper-extremity exercis-
es. Robot-assisted rehabilitation has been shown to
improve motor outcomes, degree of recovery, and sen-
sory and motor stimulation in stroke patients.[12-17]
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Recent studies have revealed significant benefits of
repetitive robot-assisted therapy in patients with
chronic motor impairments.[18-20]

The success of functional joint movements depends
on the kinesthetic and proprioceptive properties of the
musculoskeletal structures of the joints.[21] The diagno-
sis and improvement of proprioceptive deficiency are
important for both clinicians and physiotherapists.
Robotic systems have also been shown to improve pro-
prioception in stroke patients.[22] It is assumed that
repeated active exercises have a positive influence not
only on motor deficits but also on defective proprio-
ception after traumatic injuries or orthopedic opera-
tions.[23]

One such exoskeleton robotic system, the
RehabRoby, can provide assistance to patients during
therapy exercises. The RehabRoby is designed to assist
patients during single joint movements (elbow flexion,
shoulder abduction), such as reaching for a cup, and
multi joint movements such as hair combing and face
washing. 

The aim of this pilot study was to evaluate the pro-
prioceptive sense of healthy participants in order to
provide clues on how the proprioceptive sense affects
the functions of participants using the RehabRoby.
Additionally, we aimed to investigate the usability of
the RehabRoby for the rehabilitation of the functional
activities that may require fine shoulder/elbow coordi-
nation. 

Materials and methods
The proprioceptive sense of the volunteers was evalu-
ated during the execution of dominant elbow joint flex-
ion in pronation, both actively and against a comfort-
able resistance to replicate the reference-target angles
(20º-45º-90º) using the RehabRoby system. The study
included 20 students (mean age: 21±3.5 years) studying
either physiotherapy (PT) or electrical and electronics
engineering (EEE). Each group had 10 students (5
females and 5 males). Mean body weight was 67.85±
12.93 kg, height was 1.73±0.08 m, and body mass index

(BMI) was 22.60±3.00 kg/m2 (Table 1). Physical activ-
ity interests and health history in relation to their
upper extremities was taken (Table 2). The right hand
was dominant in 19 participants and the left in one. 

A questionnaire was used to assess socio-demo-
graphic information (weight, height, hand dominance,
participation in sports and/or physical exercise, chronic
diseases, injury of the upper extremities, regular medica-
tion). Elbow joint flexion, extension and rotation
(pronation and supination) tests using a goniometer and
elbow flexor (biceps brachii, brachialis), extensor (triceps
brachii) and rotator (pronator-supinators) tests using the
Myometric Test (JTech Dynamometer®; JTech
Medical, Salt Lake City, UT, USA) were performed to
assess the physical condition of the participants. 

The RehabRoby is designed to provide upper-
extremity movements (Fig. 1). Range of motion
(ROM), joint torques, velocities and accelerations for
RehabRoby have been determined using the measure-
ments of the movements of a healthy participant dur-
ing two activities of daily living (ADL) tasks (drinking
soup and coffee).[4,5] The control architecture was
developed to take into account therapist decisions, to
decide on the plan of action and to provide assistance
to patients to complete a rehabilitation task.[24,25]

RehabRoby has been interfaced with MATLAB
Simulink/Realtime Workshop to allow fast and easy
system development. A Humusoft MF624 model data
acquisition board is used for communication of the
computer and electrical hardware. Maxon models of
brushed direct current (DC) motors are selected to
actuate the joints of the RehabRoby. High-resolution
digital incremental encoders are coupled with DC
motors to obtain high accuracy in joint position meas-
urements. All experiments were performed in a room
where the temperature ranged between 20º and 25º C.
This room temperature is convenient to obtain consis-
tent performance in electrical and mechanical parts of
RehabRoby. A 19-inch LCD screen was positioned in
front of the participant at a distance of about 1 m to
display the movements.

Age (yrs) Height (m) Weight (kg) BMI (kg/m2)

PTS (n=10) 20.40±3.50 1.73±0.89 69.40±13.30 23.14±3.00
EEES (n=10) 23.50±3.06 1.73±0.78 66.30±13.06 22.59±3.00
Total (n=20) 21.95±3.58 1.73±0.08 67.85±12.93 22.60±3.00

F: 0.003 p: 0.957 F: 0.910 p: 0.353
F: 0.081 p: 0.779 F: 0.000 p: 0.984

PTS: physiotherapy students; EEES: electrical-electronics engineering students

Table 1. The mean values of age, height, weight and BMI of the subjects.



334 Acta Orthop Traumatol Turc

The thermoplastic arm splint designed for the
RehabRoby has humeral and forearm supports with
velcro straps, and a thermoplastic inner layer that is
covered by a soft material (Plastazote®). A force sensor
(Kistler-9313AA1; Kistler France, Les Ulis, France)
was placed in the inner surface of the dorsal plate
attached to the forearm splint. The speed of the move-
ment controlled by the RehabRoby was in the range of
5º/sec.

This study was approved by the Institutional
Review Board of Yeditepe University Hospital (IRB
#032). Participants were informed about the experi-
ment protocol and an orientation was given.

Participants were seated in the height-adjustable
chair. The shoulder joint was positioned at extension
and abduction (10º) and the elbow at extension and
supination. Since the movement was an open kinetic
loop, the hand and the wrist were left free in a neutral
position. 

Elbow range of motion degrees for ADL have been
defined in the literature of 16º to 123º.[26-28] We used
the most commonly used ADL elbow joint angles of
20º, 45º and 90º for activities such as putting a fork to
the mouth (45 to 90º) and carrying a weight (16 to
30º).[27]

The amount of comfortable resistance was defined
using an admittance controller.[25] Resistance value var-
ied according to changes in the velocity and accelera-
tion of the motion (maximum and minimum resistance
was 2.75 Nm and 0 Nm, respectively). 

Initially, participants were required to flex their
elbows actively (isotonic) to reach the target angle
(TA) (participant active/robot passive-PARP). Then
participants repeated the same ipsilateral matching
against a comfortable resistance applied by the
RehabRoby (participant active/robot resistive-PARR).
Each participant was asked to monitor the graphic
(with visual feedback [wVF]) while flexing their
elbows. Later, participants were asked to close their
eyes (without visual feedback [woVF]) and repeat the
same PARP and PARR protocol.

Movement angle, the applied torque in each angle
and the error of movement with respect to the TA
(error of matching)[29] were recorded. Each participant
had breaks of 3 to 5 minutes between trials. Each
experiment took less than 30 minutes. 

Participants completed 3 questionnaires on the
usability of the RehabRoby. One questionnaire was
designed for the assessment of technical applicability
of the RehabRoby. The Perceived Rate of Exertion
(PRE)[30] was applied to understand the amount of exer-
tion the participants felt during the task execution and
the Visual Analog Scale (VAS)[31] to assess the amount
of difficulty experienced while using the RehabRoby. 

PTS (n=10) EEES (n=10) Total (n=20)

Yes No Yes No Yes No

Sports attendance 6 4 0 10 6 14

Operation 2 8 0 10 2 18

Chronic diseases 2 8 0 10 2 18

Regular medication 1 9 0 10 1 19

PTS: physiotherapy students; EEES: electrical-electronics engineering students

Table 2. The physical activity interest and health history related with upper extremity.

Fig. 1. Participant with RehabRoby. [Color figure can be viewed in
the online issue, which is available at www.aott.org.tr]

Emergency 
buttons

Force sensor 
placed under 

the splint



Özkul et al. Evaluation of elbow joint proprioception with RehabRoby: a pilot study 335

The least error of matching of the participants’
with and without visual feedback for each angle was
recorded. The Wilcoxon and Mann-Whitney U tests
were used for comparisons within and between the
groups for paired and unpaired data using SPSS v.16.0
software (SPSS Inc., Chicago, IL, USA). The course of
a variable within a specific group of participants was
compared using the Wilcoxon test for paired-samples.
Pearson’s correlation coefficients were calculated to
investigate the correlations between the error of
matching to the target angles, and the torque values at
each angle during active (PARP) and resistive (PARR)
elbow flexion wVF and woVF. Linear regression mod-
els were used to determine PARPwoVF, PARPwVF,
PARRwoVF, and PARRwVF predictors. P values of
less than 0.05 were considered statistically significant. 

Results
There were no statistically significant differences for
age, weight, height and BMI between PT and EEE
students. BMI (normal: 20 to 25.9 kg/m2N) was higher
in the PT group (23.14±3.00) than EEE group
(22.04±7.69). There was no significant difference
between genders with respect to BMI values (p=0.984)
and age (p=0.957).

Elbow flexion matching errors for both groups in
PARPwVF/woVF and PARRwVF/woVF are present-
ed in Table 3. The wVF minimum matching error 45º
was lower in the PT group (-0.31±0.31) than in the
EEE group (0.77±0.59) (p<0.05). A positive correlation
between biceps brachii strength and the least error of
matching during PARRwVF at 45º (p<0.05) and
PARRwoVF at 20º (p<0.05) was observed.

There was a positive correlation between the
torque and the least error of matching during PARP
(p<0.05) and a negative correlation during PARR
woVF (p<0.05) at 20º (Table 4). 

Proprioceptive perception error was significantly
higher in woVF during both PARP and PARR applica-
tions at 20º and 45º. However, this was not significant
at 90º (Table 5). 

In the linear regression analysis, being female
(p=0.023, R2=0.38) and biceps brachii strength
(p=0.015, R2=0.38) were significant predictors of the
least error of matching for PARPwoVF at 20º. Cubital
angle (p=0.005, R2=0.54) and biceps strength (p=0.011,
R2=0.54) were significant predictors of the least error
of matching for PARRwoVF at 20º (Table 6). 

There was no significant relationship between pro-
prioception perception errors and VAS and PRE

Task to Target  
perform Participants angles Error during elbow flexion

wVF (°) X±SD woVF (°) X±SD Z P

20° -0.12±0.27 -4.74±6.19 -2.191 0.028

PT 45° -0.20±0.36 -3.42±8.93 -1.376 0.169

90° -0.51±0.60 5.44±11.56 -1.784 0.074

20° -0.60±1.12 -4.76±2.84 -2.497 0.013

PARP EEE 45° -0.53±0.64 -4.42±5.48 -2.293 0.022

90° -0.33±0.52 -2.27±7.63 -0.663 0.508

20° -0.36±0.84 -4.74±4.69 -3.397 0.001

Total 45° -0.37±0.54 -3.93±7.23 -2.539 0.011

90° -0.42±0.56 1.59±10.33 -0.859 0.391

PTS 20° -0.67±3.70 -4.68±3.08 -2.701 0.007

45° -0.31±0.31 -3.79±4.44 -2.191 0.028

90° -0.72±0.33 1.00±4.24 -0.866 0.386

20° -2.65±4.11 -4.14±2.84 -1.682 0.093

PARR EEES 45° -0.77±0.59 -7.05±7.17 -2.701 0.007

90° -0.80±0.31 -3.56±8.52 -1.172 0.241

20° -1.67±3.02 -4.41±2.90 -3.099 0.002

Total 45° -0.55±0.52 -5.42±6.04 -3.435 0.001

90° -0.76±0.61 -1.28±6.96 -0.411 0.681

PARP: participant active/robot passive; PARR: participant active/robot resistive; wVF: with visual feedback; woVF: without visual feed-
back. Bold values indicate p<0.05.

Table 3. The mean values of error of matching at 20°, 45°, 90° with/without visual feedback (w/woVF).
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scores. The participants’ acceptance of RehabRoby was
found as 37.10±4.45 over 50 points. Participants
reported that the RehabRoby was difficult to use with-
out visual feedback and with resistive motion during
task execution.

Discussion
The proprioceptive sense of healthy participants using
the RehabRoby system was evaluated during elbow
flexion (0°-160° N) in this study.[32] Our hypothesis was
that PT students would have less error than the EEE
students due to their increased awareness of body
image and kinesthetic sense. Body image is affected by
intellectual, psychological and social experiences as
well as biology.[33] Thus, PT students were assumed to
be more familiar with movement patterns and joint
positions.  

The contribution of proprioceptive and visual
information in controlling the distance of rapid single-
joint reaching movements involving the elbow joint
has been previously examined.[34] Bagesteiro et. al[34]

studied the replication of the elbow joint target angles
of 115 and 125 degrees starting from 90, 95, 100 and
105 degrees. Meanwhile, Walsh et al. investigated the
effects of fatigue on the position sense of the forearm
at the matching angles of 15, 30 and 45 degrees.[35] This
study selected the angles of 20, 45 and 90 degrees, as
these are frequently used in ADL.

The ability of the subject to match the TA was been
evaluated to understand their proprioceptive acuity.
Gravitational forces acting on the forearm differ
according to the position of the elbow (close to vertical
at 20°, oblique at 45° and horizontal at 90°).[34] Forearm
position sense is affected by the torque as the angle
becomes steeper and the error increases to 90° of flex-
ion when the voluntary contraction is at maximum
level due to gravitational forces.[34] Additionally, elbow
joint torque increases as the forearm positions horizon-
tally due to increased gravitational forces.[34] However,
we only found a positive relationship between torque
and matching error at 20° PARPwoVF and
PARRwoVF (p<0.005). This relationship may be due
to the increase in torque and demand of voluntary
movement resulting from higher proprioceptive
inputs.[21] Additionally, a relationship between the force
of the biceps brachii muscle and the least error of

Task to Target 
perform angles R p

20º 0.272 0.246
PARPwVF 45º -0.104 0.663

90º -0.089 0.710

20º 0.466 0.038
PARPwoVF 45º 0.008 0.975

90º -0.202 0.394

20º -0.366 0.113
PARRwVF 45º -0.325 0.162

90º -0.026 0.915

20º -0.546 0.013
PARRwoVF 45º -0.162 0.494

90º -0.223 0.359

PARP: participant active/robot passive; PARR: participant active/robot resistive; wVF:
with visual feedback; woVF: without visual feedback. Bold values indicate p<0.05.

Table 4. The relationship between torque (T) and proprioception
perception errors at 20°, 45°, 90° w/woVF.

Task to perform R p

20º -3.397 0.001

PARP wVF-woVF 45º -2.539 0.011

90º -0.859 0.391

20º -3.099 0.002

PARR wVF-woVF 45º -3.435 0.001

90º -0.411 0.681

PARP: participant active/robot passive; PARR: participant active/robot resistive; wVF:
with visual feedback; woVF: without visual feedback. Bold values indicate p<0.05.

Table 5. Effect of visual feedback on the error of matching dur-
ing active (PARP) and resistive (PARR) elbow flexion of all
participants.

Standardized 
Task to perform Predictors coefficients (ββ) Significance (p)

Gender (being female) -0.49 0.023
PARP Biceps brachii strength 0.53 0.015

Constant 0.003

Cubital angle 0.617 0.005
PARR Biceps brachii strength 0.520 0.011

Constant 0.040

PARP: R=0.62; R2=0.38, adjusted R2=0.31. PARR: R=0.73, R2=0.54, adjusted R2=0.45. Bold values indicate p<0.05.

Table 6. Predictors of PARP and PARR woVF at 20º by linear regression analysis.



Özkul et al. Evaluation of elbow joint proprioception with RehabRoby: a pilot study 337

matching at 20° was found during PARRwoVF
(p<0.05). Thus, the relationship between torque and
proprioception sense at different angles should be
investigated to understand their impact on the passive
and resistive movements of ADL.

It was found that proprioception sense is the over-
whelming factor in the transformation of the spatial
information received via vision into the motions that
result in muscle force and joint torques.[33]

Proprioception accuracy was significantly decreased
during elbow flexion at 20° and 45° when the task was
performed woVF (p<0.01). Ultimately, these results
support the effectiveness of vision on motor activity.
However, according to Cruise et al., when vision is
removed, visual input may have a mirror effect during
the execution of elbow flexion.[36] In this case, the ‘seen’
position of elbow joint range is associated with its “felt”
position relating to the previous history of contraction
in the memory, and muscle length changes.[37] Thus,
the effect of vision should be further investigated in
different circumstances in future robotic studies.

Biceps brachii muscle strength played an important
role in the proprioceptive sense of motion at 20º dur-
ing PARRwoVF. It has previously been pointed out
that the strength imbalance among trunk flexor mus-
cles is the key factor in the lack of proprioception after
fatigue in patients with chronic low back pain.[38] The
cubital angle also had an effect on the proprioception
sense at 20º during PARRwoVF. Female students’ suc-
cess was higher at 20º woVF, suggesting that gender
differences in proprioception be investigated further. 

Studies have demonstrated that the accumulation of
fat tissue may reduce body balance and contribute
towards falls among extremely obese teenage and adult
patients.[39] Additionally, postural balance deteriorates
with an increase in body mass as expressed by BMI.[40]

However, in this study BMI was not a predictor for
matching error in both groups, which may be due to
the similar BMI of all participants.

Participants found the task more difficult when per-
formed with resistance woVF. They thought that on
the whole the RehabRoby as safe, easy to use and easi-
ly mounted. 

The relatively small sample size can be considered
a limitation of this study. Additionally, more studies
should be completed at different functional angles to
comparatively study the RehabRoby system for the
assessment of the upper limbs.

We consider this study is a preliminary investiga-
tion of the RehabRoby as an assessment and rehabilita-
tion tool. It can be used to diagnose and rehabilitate

proprioceptive deficiencies to determine the amount of
the deficiencies by comparing with the intact side and
to understand matching error at the target activity.
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