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Abstract

We study a system of rational di�erence equations in this article. For equilibrium points, we present the
stability conditions. In addition, we show that the system encounters period-doubling bifurcation at the
trivial equilibrium point O and Neimark-Sacker bifurcation at the non-trivial equilibrium point E. To
control the chaotic behavior of the system, we use the hybrid control approach. We also verify our theoretical
outcomes at the end with some numerical applications.
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1. Introduction

Owing to their uses in various directions, nonlinear di�erential equations have considerable signi�cance.
It is of great interest to study the existence and qualitative characteristics of the solutions to equilibrium
points for nonlinear discrete systems. The nonlinear di�erence equations system, such as [1, 2], has been
extensively studied by several researchers.

In [3], the author studied the following system{
xn+1 =

a1xn−1

a2ynxn−1+a3
,

yn+1 =
b1yn−1

b2xnyn−1+b3
,
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where a1, a2, a3, b1, b2, b3 and starting values x0, y0, x−1, y−1 are all real parameters.
The author researched the following 3rd order system in [4]

xn+1 =
a1xn−2

a2ynzn−1xn−2+a3
,

yn+1 =
b1yn−2

b2znxn−1yn−2+b3
,

zn+1 =
c1zn−2

c2xnyn−1zn−2+c3
,

where ai, bi, ci( i ∈ {1, 2, 3}), and initial conditions x−j , y−j , z−j(j ∈ {0, 1, 2}) are all real parameters.
Q. Din (2014) researched the following system of di�erence equations in [5],{

xn+1 =
a1yn

a2+a3yn
,

yn+1 =
b1yn

b2+b3xn
.

(1)

In [5], the author studied local and global stability of equilibrium points of the system (1) when initial
conditions and all parameters are positive. It will be interesting to discuss the model (1) when initial
conditions and all parameters are real numbers. In this paper we extended the work of [5] by considering
initial conditions and all parameters real numbers. Moreover, we discussed Neimark-Sacker bifurcation,
period-doubling bifurcation and hybrid control strategy to control bifurcation in the system (1). In [5], the
author did not discuss bifurcation and chaos control. For detailed stability analysis and bifurcation theory
we refer the readers to [6, 7, 8, 9].

In the �rst part of the paper, we discuss the stability of equilibrium points of the system (1) for wider
domain of parameters and initial values by taking them as all real numbers. In the second part of the paper,
we study the period-doubling bifurcation and the Neimark-Sacker bifurcation of the system (1) at those
equilibrium points, which were not discussed in [5]. At the end, we utilize the hybrid control technique to
control bifurcation and chaotic behavior of the system (1).

2. Topological Classi�cation of Equilibrium Points

Two equilibrium points of the system (1) are

E0 (0, 0) and E1

(
b1 − b2

b3
,

a2(b1 − b2)

a1b3 + a3b2 − a3b1

)
.

The jacobian matrix of (1) calculated at point (x, y) is

J(x, y) =

[
0 a1

a2+a3y
− a1a3y

(a2+a3y)2

− b1b3y
(b2+b3x)2

b1
b2+b3x

]
.

Proposition 2.1. The equilibrium point E0(0, 0) of (1) is
(i) locally asymptotically stable if | b1b2 | < 1, b2 ̸= 0,

(ii) unstable if | b1b2 | > 1, b2 ̸= 0,

(iii) non-hyperbolic point if either b1 = b2 ̸= 0 or b1 = −b2 ̸= 0.

Proof. The Jacobian matrix of (1) evaluated at E0(0, 0) is

J(E0) =

[
0 a1

a2

0 b1
b2

]
.

The matrix J(E0) have eigenvalues λ1 = 0 and λ2 =
b1
b2
.
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Proposition 2.2. The point E1 of (1) is locally stable if and only if one of the following holds:
(i) 0.25 +K > 0 and

√
0.25 +K < 0.5,

(ii) 0.25 +K < 0 and |0.5 +
√
0.25 +K| < 1.

Proof. The Jacobian matrix evaluated at the equilibrium point E1 is

J(E1) =

[
0 (a3(−b1+b2)+a1b3)2

a1a2b3
2

a2b3(b1−b2)
b1(a3(b1−b2)−a1b3)

1

]
.

The characteristic polynomial of J(E1) is

F (λ) = λ2 − λ+
−a3b1

2 + 2a3b1b2 − a3b2
2 + a1b1b3 − a1b2b3

a1b1b3
. (2)

The eigenvalues of J(E1) are

λ1,2 =
1±

√
1− 4(−a3b1

2+2a3b1b2−a3b2
2+a1b1b3−a1b2b3

a1b1b3
)

2

= 0.5±

√
0.25 +

a3b1
2 − 2a3b1b2 + a3b2

2 − a1b1b3 − a1b2b3
a1b1b3

.

We can describe the eigenvalues of J(E1) as

λ1 = 0.5−

√
0.25 +

a3b1
2 − 2a3b1b2 + a3b2

2 − a1b1b3 − a1b2b3
a1b1b3

= 0.5−
√
0.25 +K

and

λ2 = 0.5 +

√
0.25 +

a3b1
2 − 2a3b1b2 + a3b2

2 − a1b1b3 − a1b2b3
a1b1b3

= 0.5 +
√
0.25 +K

where K = a3b1
2−2a3b1b2+a3b2

2−a1b1b3−a1b2b3
a1b1b3

.
We know that the point E is locally stable if and only if |λ1,2| < 1. In our case |λ1| < |λ2|, so it is

su�cient to show that |λ2| < 1.
For 0.25 +K > 0, we have

|λ2| < 1 ⇔
√
0.25 +K < 0.5,

and, for 0.25 +K < 0, we have
|λ2| < 1 ⇔ |0.5 +

√
0.25 +K| < 1.
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3. Bifurcation and Chaos Control

The chaotic behavior and the bifurcation are unpredictable situations which may risk densities to extinc-
tion. The period doubling bifurcation at O and the Neimark-Sacker bifurcation at E in the (1) method are
discussed in this section. The bifurcation theory can be studied from [10, 11, 12].

If we allow xn, yn and all parameters to run through the set of all real numbers, then the system (1)
experiences the period doubling bifurcation at point E0(0, 0) for b1 = −b2. We de�ne the set

Γ =

{
(a1, a2, a3, b1, b2, b3) ∈ R6 | b1 = −b3

}
.

The system (1) experiences the period doubling bifurcation at point E0(0, 0) when b1 varies in a small
neighbourhood of d1 = −b2.

If we consider the following set

Ω =

{
(a1, a2, a3, b1, b2, b3) ∈ R6 | a1 = −a3(b1 − b2)

2

b2b3
, b2b3 ̸= 0, a3b1

2 − a3b1b2 ̸= 0

}
,

then the system (1) experiences the Neimark-Sacker bifurcation at the point E1

(
b1−b2
b3

, a2(b1−b2)
a1b3+a3b2−a3b1

)
when a1 varies in a small neighbourhood of d2 = −a3(b1−b2)2

b2b3
.

There are di�erent control techniques to eliminate or delay the bifurcation. We use the hybrid control
strategy.
Consider the following controlled system associated with system (1){

xn+1 =
βa1yn

a2+a3yn
+ (1− β)xn,

yn+1 =
βb1yn

b2+b3xn
+ (1− β)yn,

(3)

where 0 < β ≤ 1.
Notice that the equilibrium points of the original system (1) and the controlled system (3) are exactly

the same.
The controlled system (3) have Jacobian matrix at (x, y)

J(x, y) =

[
1− β a1β

a2+a3y
− a1βa3y

(a2+a3y)2

− βb1b3y
(b2+b3x)2

1− β + βb1
b2+b3x

]
.

Proposition 3.1. The equilibrium point O(0, 0) of the controlled system (3) is locally stable if and only if∣∣∣∣∣βb1 + b3 − βb2
b2

∣∣∣∣∣ < 1.

Proof. The controlled system (3) have Jacobian matrix at O(0, 0)

J(O) =

[
1− β a1β

a2

0 1 + β( b1b2 − 1)

]
.

Eigenvalues of the matrix J(O) are λ1 = 1− β and λ2 =
βd+e−βe

e .

Proposition 3.2. The point E of (3) is locally stable if and only if

0 <
(b1 − b2)(b3(−b1 + b3) + a1b3)

a1b1b3
<

1

β
.
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Proof. The controlled system (3) have Jacobian matrix at E

J(E) =

[
1− β β(a3(−b1+b2)+a1b3)2

a1a2b3
2

bβf(b1−b2)
b1(a3(b1−b2)−a1b3)

1

]
.

The characteristic polynomial of J(E) is

F (λ) = λ2 − pλ+ q, (4)

where

p = 2− β,

q = 1− β +
β2(b1 − b2)(a3(−b1 + b2) + a1b3)

a1b1b3
.

The roots of F (λ) = 0 satisfy the following

|λ| < 1 ⇔ |p| < 1 + q < 2.

This gives our desired result

0 <
(b1 − b2)(a3(−b1 + b2) + a1b3)

a1b1b3
<

1

β
.

4. NUMERICAL EXAMPLES

We provide some interesting numerical examples in this section to validate our theoretical discussions
about di�erent qualitative and chaotic aspects of the model.

Example 4.1. Consider the following values of the parameters

a1 = 55, a2 = 70, a3 = 80, b2 = −50, b3 = 35

and the initial conditions

x(0) = 0.1, y(0) = 0.1.

We take b1 as bifurcation parameter. For above set of values,
♦ The system undergoes the period doubling bifurcation at the equilibrium point O as it passes through b1 = 50.
♦ The eigenvalues of J(O) are λ1 = −1, λ2 = 0 which con�rm that the system undergoes the period doubling
bifurcation at the point O.

We plot the bifurcation graphs of xn and yn against b1 which show that both xn and yn undergoes the period
doubling bifurcation. The bifurcation diagrams tell us that the point O is stable for b1 < 50 and loses its
stability at b1 = 50. This happens due to the occurrence of the period doubling bifurcation which leads to chaos
for large values of b1. It can easily be observed that the periodic prbits 2, 4, 8 and 16 occur for b1 ∈ [50, 68]
and chaotic set occurs for b1 > 68. In the window of the chaotic region, there exist some more periodic orbits.
(See �gure (1))
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Figure 1: Plot of bifurcation diagrams for xn and yn for a1 = 55, a2 = 70, a3 = 80, b2 = −50, b3 = 35 and initial conditions
x(0) = 0.1, y(0) = 0.1 for b1 ∈ [45, 70], local amli�cation of bifurcation diagram for yn in subintervals [60, 69] and [68, 68.35].

Example 4.2. Consider the parameters with following values

a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12

and initial conditions
x(0) = 0.15, y(0) = −0.05.

We take a1 as bifurcation parameter. For above set of values,
♦ The system undergoes the Neimark-Sacker bifurcation at point E as it passes through a1 = −1.54113.
♦ The eigenvalues of J(E) are λ1 = 0.5 + 0.866025i and λ2 = 0.5 − 0.866025i with the property |λ1,2| = 1
which con�rms that the system undergoes the Neimark-Sacker bifurcation at the equilibrium point E.

We plot the bifurcation graphs and their ampli�cation of xn and yn against parameter a1 which show that
both xn and yn undergoes the Neimark-Sacker bifurcation (see �gure 2).

The bifurcation diagrams tell us that the equilibrium point E is stable for a1 < −1.54113 and loses its
stability at a1 = −1.54113. In Chaotic set a1 ∈ [−1.54113,−1.162] an attracting invariant curve appears.
The invariant curve suddenly disappears for a1 = −1.162 and a period 7 orbit occurs in the window a1 ∈
[−1.162,−1.136] which disappears at a1 = −1.135 where again invariant curve appears. (see �gure 3)

Example 4.3. Consider the parameters with the following values

a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12

and initial conditions
x(0) = 0.15, y(0) = −0.05.

We take a as arbitrary real number. For above set of values,
♦ The equilibrium point of (1) is E(0.175, 10.5

40a1−91).
♦ The Jacobian matrix of (1) at the point E is
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Figure 2: Plot of bifurcation diagrams for xn and yn for a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12 and initial conditions
x(0) = 0.15, y(0) = −0.05 for a1 ∈ [−2,−1].

Figure 3: Plot of phase portrait for xn and yn for a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12 and initial conditions
x(0) = 0.15, y(0) = −0.05 for di�erent values of a1.

J(E) =

[
0 a1

1.5+13y − 13a1y
(1.5+13y)2

− 62.4y
(3.1+12x)2

5.2
3.1+12x

]
.

♦ The characteristic polynomial of J(E) is

F (λ) = λ2 − λ+
2.09016− 1.8375a1 + 0.403846a1

2

a1(a1 − 2.275)
.

By simple computations, we get
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F (0) = F (1) =
2.09016− 1.8375a1 + 0.403846a1

2

a1(a1 − 2.275)
,

F (−1) =
2.09016− 6.3875a1 + 2.40385a1

2

a1(a1 − 2.275)
.

By using lemma 2.2 of [13], the point E is locally asymptotically stable i� either a1 < −1.54113 or
a1 > 2.275.
We plot phase portraits for a1 = −3,−1.55,−1.54,−1.52,−1.4, 2.5 and observe the following:
♦ For a1 = −3 and a1 = −1.55, the equilibrium point E(0.175, 10.5

40a1−91) is locally asymptotically stable.

♦ For a1 = −1.54, a1 = −1.52 and a1 = −1.4, the equilibrium point E(0.175, 10.5
40a1−91) is unstable.

♦ For a1 = 2.5, the point E(0.175, 10.5
40a1−91) is locally asymptotically stable.

Figure 4: Plot of phase portraits of system (1) for a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12 and initial conditions
x(0) = 0.15, y(0) = −0.05 for di�erent values of a1.

Example 4.4. Consider the parameters with following values

a1 = 55, a2 = 70, a3 = 80, b2 = −50, b3 = 35

and initial conditions
x(0) = 0.1, y(0) = 0.1.

We present the bifurcation diagrams of xn and yn of the controlled system (3) for di�erent values of b1 by
taking β as bifurcation parameter.
♦ In �gure 5(a,b), we take b1 = 50.
♦ In �gure 5(c,d), we take b1 = 55.
♦ In �gure 5(e,f), we take b1 = 65.
♦ In �gure 5(g,h), we take b1 = 68.5.
From bifurcation diagrams, �gure (5), we observe that the period doubling bifurcation at equilibrium point O
is delayed. The point O of (3) shows the stability for wide domain of control parameter β.
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Figure 5: Plots of bifurcation diagrams for xn and yn of the controlled system (3) for a1 = 55, a2 = 70, a3 = 80, b2 = −50, b3 = 35
and initial conditions x(0) = 0.1, y(0) = 0.1 for b1 = 50, 55, 65 and b1 = 68.5 with 0 < β ≤ 1.

Example 4.5. Consider the following values of the parameters

a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12

and initial conditions
x(0) = 0.15, y(0) = −0.05.

We present the bifurcation diagrams of xn and yn of the controlled system (3) for di�erent values of a1 by
taking β as bifurcation parameter. ♦ In �gure 6(a,b), we take a1 = −1.54113.
♦ In �gure 6(c,d), we take a1 = −1.18.
♦ In �gure 6(e,f), we take a1 = −1.162.
♦ In �gure 6(g,h), we take a1 = −1.135.
From bifurcation diagrams, �gure (6), we observe that the Neimark-Sacker bifurcation at equilibrium point
E is delayed. The point E of (3) shows the stability for wide domain of control parameter β.

Figure 6: Plots of bifurcation diagrams for xn and yn of the controlled system (3) for a2 = 1.5, a3 = 13, b1 = 5.2, b2 = 3.1, b3 = 12
and initial conditions x(0) = 0.15, y(0) = −0.05 for a1 = −1.54113,−1.18,−1.162 and a1 = −1.132 with 0 < β ≤ 1.



R. Ahmed, S. Akhtar, M. Mukhtar, F. Anwar, Results in Nonlinear Anal. 4 (2021), 169�178 178

5. CONCLUSION

We explored the model of rational di�erence equations for broader parameter domains in this paper.
By evaluating the Jacobian matrix (1) at the equilibrium points, we provided the stability conditions for
equilibrium points. Moreover we discussed the period doubling and the Neimark-Sacker bifurcation at non-
hyperbolic equilibrium points. We have shown numerically that the system undergoes the period doubling
bifurcation at point O and the Neimark-Sacker bifurcation at point E under certain conditions on parameters.
We used the technique of hybrid control to control the system's chaotic behavior. To con�rm our theoretical
results, we presented some interesting numerical examples.
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