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Abstract

We study a system of rational difference equations in this article. For equilibrium points, we present the
stability conditions. In addition, we show that the system encounters period-doubling bifurcation at the
trivial equilibrium point O and Neimark-Sacker bifurcation at the non-trivial equilibrium point E. To
control the chaotic behavior of the system, we use the hybrid control approach. We also verify our theoretical
outcomes at the end with some numerical applications.
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1. Introduction

Owing to their uses in various directions, nonlinear differential equations have considerable significance.
It is of great interest to study the existence and qualitative characteristics of the solutions to equilibrium
points for nonlinear discrete systems. The nonlinear difference equations system, such as [I], 2], has been
extensively studied by several researchers.

In [3], the author studied the following system

b1yn—1
Yn+1 = boznyn—1+b3"’

x — _ 0Tn-1
1l = agynz,_1+a3’
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where a1, as, as, b1, ba, b3 and starting values xq, yg, x—1,y—1 are all real parameters.
The author researched the following 3" order system in [4]

A1Xpn—
xn+1: 1Tn—2

a2Yyn2Zn—1Tn—2+az’
_ _ biynn
yn+1 - b2zn1n71yn72+b3’
2 — Cl1Zn—2
L T T yn 120 _atCs”

where a;, b;, ¢;( 1 € {1,2,3}), and initial conditions z_;,y_;,z_;(j € {0,1,2}) are all real parameters.
Q. Din (2014) researched the following system of difference equations in [5],

_ a1Yn

Tntl = G tazyn (1)
_ blyn

Ynt1 = Botbsan -

In [5], the author studied local and global stability of equilibrium points of the system when initial
conditions and all parameters are positive. It will be interesting to discuss the model when initial
conditions and all parameters are real numbers. In this paper we extended the work of [5] by considering
initial conditions and all parameters real numbers. Moreover, we discussed Neimark-Sacker bifurcation,
period-doubling bifurcation and hybrid control strategy to control bifurcation in the system . In [5], the
author did not discuss bifurcation and chaos control. For detailed stability analysis and bifurcation theory
we refer the readers to [0 [7, [8], ©].

In the first part of the paper, we discuss the stability of equilibrium points of the system for wider
domain of parameters and initial values by taking them as all real numbers. In the second part of the paper,
we study the period-doubling bifurcation and the Neimark-Sacker bifurcation of the system at those
equilibrium points, which were not discussed in [5]. At the end, we utilize the hybrid control technique to
control bifurcation and chaotic behavior of the system (1.

2. Topological Classification of Equilibrium Points

Two equilibrium points of the system are

Eo (O, O) and E1 (bl _ b2 a2(b1 _ b2> ) .

by " aibs + agby — aszb;

The jacobian matrix of (1) calculated at point (z,y) is

O al _ ajaszy .
_ aztazy  (a2+asy)
J(CL’, y) - | _ b1b3y [ ‘
(b2+b3m)2 bo+bzx

Proposition 2.1. The equilibrium point Ey(0,0) of 18
(i) locally asymptotically stable if |l%| <1, bs #£0,

(i1) wunstable if |l%| > 1, by #0,

(iii) mnon-hyperbolic point if either by = ba # 0 or by = —be # 0.
Proof. The Jacobian matrix of evaluated at Ep(0,0) is

0 %5

J(Eo) =

The matrix J(Ep) have eigenvalues A\ = 0 and A\g = 2—2.
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Proposition 2.2. The point Eq of 18 locally stable if and only if one of the following holds:
(i) 0254+ K >0 and /0.25+ K < 0.5,

(i) 0.25+ K <0 and |0.5+ 025+ K| < 1.

Proof. The Jacobian matrix evaluated at the equilibrium point Fj is

0 (a3(7b1+b2)¥a153)2
J(Er) = a2b3(b1—b2) ‘““ibi‘

b1(a3(b1—b2)—a1b3)

The characteristic polynomial of J(FE7) is

—CL3()12 + 2(13()1()2 — a3b22 + alblbg, — a1b2b3
a1b1b3 '

FA\) =X - )+

The eigenvalues of J(E;) are

14+ \/1 _ 4(—a3b12+2a3b1b2—a3bz2+a1b1b3—a1b2b3)
Ao = a1b1b3
’ 2

b1 — 2asbib bo? — a1bybs — ajbob
0.5+ 1025 4 @017 = 2a3bibs 4 asby” — arbibs — a1babs
Cblblbg

We can describe the eigenvalues of J(E7) as

2 _ o 2 B
A =05 \/0‘25 n asby azb1by + agbo® — a1b1b3 — a1babs

a1b1b3
=0.5—-vV025+ K
and
b2 — 2a3bib by? — a1bibg — aibob:
Ay = 0.5+ 0.25 4 2301 a3b1b2 + agba” — a10103 — a10203
alblbg
=05+v025+ K
where K = azb12—2agbibatagba?—aibib3—aibabs
a1b1b3 °

We know that the point E is locally stable if and only if |\ 2] < 1. In our case |[A| < [A2|, so it is
sufficient to show that |Ag| < 1.
For 0.25 + K > 0, we have
|A2| <1< v0.25+ K <0.5,

and, for 0.25 + K < 0, we have
A2 <1< |0.5+V0.25+ K| <1
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3. Bifurcation and Chaos Control

The chaotic behavior and the bifurcation are unpredictable situations which may risk densities to extinc-
tion. The period doubling bifurcation at O and the Neimark-Sacker bifurcation at E in the method are
discussed in this section. The bifurcation theory can be studied from [I0] 11, [12].

If we allow z,,¥y, and all parameters to run through the set of all real numbers, then the system
experiences the period doubling bifurcation at point Ey(0,0) for by = —be. We define the set

I'= {(a17a27a37bl7b27b3> ERO b = —b3}~

The system experiences the period doubling bifurcation at point Ey(0,0) when b; varies in a small
neighbourhood of di = —bs.
If we consider the following set

az(by — ba)?

Q= {(al,ag,ag,bl,bz,bg) S Rﬁ | a] = — bgbg

, babs # 0, azbr? — azbiby # 0},

then the system experiences the Neimark-Sacker bifurcation at the point (bl,);bza albgi(fib;bigm)

when ay varies in a small neighbourhood of do = as%ibbﬂ

3
There are different control techniques to eliminate or delay the bifurcation. We use the hybrid control
strategy.
Consider the following controlled system associated with system

Tnp1 = 2B 4 (1 — By, 3
b1n
Yn+1 = bf_y_},gxn + (1 - B)yﬂw

where 0 < 5 < 1.

Notice that the equilibrium points of the original system and the controlled system are exactly
the same.
The controlled system have Jacobian matrix at (z,y)

1-8 aif a1ﬁa3y2
J(x,y) = __Bbibsy a2;‘?yﬂ +(a2+?3y)
(b2+b3x)? ba+bsw

Proposition 3.1. The equilibrium point O(0,0) of the controlled system 18 locally stable if and only if

< 1.

Bb1 + b3 — by
by

Proof. The controlled system have Jacobian matrix at O(0,0)

1-5 a8
J(0) =
O=1"0 148k )]
Eigenvalues of the matrix J(O) are Ay =1 — f and \y = M. O

Proposition 3.2. The point E of 1s locally stable if and only if

0 < (b1 — b2)(b3(—b1 + b3) + aibs) < l
a1bibs

=
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Proof. The controlled system have Jacobian matrix at E

1-3 ﬁ(aa(—b1+b2);—a153)2
J(E) = b3 f (br—bo) alaibg

b1(az(b1—b2)—a1bs)
The characteristic polynomial of J(E) is

F(A) =X —pA+q, (4)

where

p:2_ﬁa

/82(51 — bg)(ag(—bl + bg) + albg)
= 1 — .
q 6 + alblbg

The roots of F(\) = 0 satisfy the following
N<lepl<lt+g<2

This gives our desired result
(bl — bg)(ag(—bl + bg) + albg)

0
< al b1 b3

<1
5

4. NUMERICAL EXAMPLES

We provide some interesting numerical examples in this section to validate our theoretical discussions
about different qualitative and chaotic aspects of the model.

Example 4.1. Consider the following values of the parameters

al = 55,&2 = 70,(13 = 80,b2 = —50,[)3 =35

and the initial conditions

z(0) = 0.1,y(0) = 0.1.

We take b1 as bifurcation parameter. For above set of values,

& The system undergoes the period doubling bifurcation at the equilibrium point O as it passes through by = 50.
¢ The eigenvalues of J(O) are \y = —1, Ay = 0 which confirm that the system undergoes the period doubling
bifurcation at the point O.

We plot the bifurcation graphs of x, and y, against by which show that both x, and y, undergoes the period
doubling bifurcation. The bifurcation diagrams tell us that the point O is stable for by < 50 and loses its
stability at by = 50. This happens due to the occurrence of the period doubling bifurcation which leads to chaos
for large values of by. It can easily be observed that the periodic prbits 2,4,8 and 16 occur for by € [50, 68|
and chaotic set occurs for by > 68. In the window of the chaotic region, there exist some more periodic orbits.

(See figure )
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Figure 1: Plot of bifurcation diagrams for z, and y, for ai1 = 55,a2 = 70,a3 = 80,b2 = —50,b3 = 35 and initial conditions
2(0) =0.1,y(0) = 0.1 for by € [45, 70], local amlification of bifurcation diagram for y, in subintervals [60, 69] and [68, 68.35].

Example 4.2. Consider the parameters with following values

as = 1.5,@3 == 13, b1 == 5.2,b2 == 3.1,b3 =12

and initial conditions

2(0) = 0.15,y(0) = —0.05.

We take a1 as bifurcation parameter. For above set of values,

¢ The system undergoes the Neimark-Sacker bifurcation at point E as it passes through a1 = —1.54113.

¢ The eigenvalues of J(E) are A\ = 0.5 + 0.866025: and A2 = 0.5 — 0.866025¢ with the property |Ai2| =1
which confirms that the system undergoes the Neimark-Sacker bifurcation at the equilibrium point E.

We plot the bifurcation graphs and their amplification of x,, and y, against parameter a; which show that
both x,, and y, undergoes the Neimark-Sacker bifurcation (see figure [9).

The bifurcation diagrams tell us that the equilibrium point E 1is stable for a1 < —1.54113 and loses its
stability at a; = —1.54113. In Chaotic set a1 € [—1.54113,—1.162] an attracting invariant curve appears.
The invariant curve suddenly disappears for ay = —1.162 and a period 7 orbit occurs in the window a; €
[—1.162, —1.136] which disappears at a1 = —1.135 where again invariant curve appears. (see figure @)

Example 4.3. Consider the parameters with the following values

ag = 1.5,&3 = 13, bl = 5.2,[)2 = 3.1,b3 =12

and initial conditions
x(0) = 0.15,y(0) = —0.05.

We take a as arbitrary real number. For above set of values,

& The equilibrium point of is F(0.175, %).

& The Jacobian matriz of at the point E is
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Figure 2: Plot of bifurcation diagrams for z,, and y, for ap = 1.5;a3 = 13,b1 = 5.2,bs = 3.1,b3 = 12 and initial conditions

z(0) = 0.15,y(0) = —0.05 for a; € [-2,—1].

Phase Portrait for a, =-1.5

Phase Portrait for a ,=-1.2

X
n

X X
n n

Figure 3: Plot of phase portrait for x, and y, for az = 1.5,a3 = 13,b4 = 5.2,bo = 3.1,b3 = 12 and initial conditions
z(0) = 0.15,y(0) = —0.05 for different values of a;.

0 ay . ( 13a1y )2
_ 1.5+13y 1.54+13y
J(E) = 624y 5.2
(3.1+122)2 3.1+12z

& The characteristic polynomial of J(E) is

2.09016 — 1.8375a1 + 0.403846a,>

F(\) =\ —
(A) A A + al(al — 2.275)

By simple computations, we get
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F(0) = F(1) = 2.09016 — 1.8375a; + 0.403846a,
a B a1 (ay — 2.275) ’

1y 2:09016 — 6.3875a; + 2.40385a,2
B ai(a; — 2.275)

By using lemma 2.2 of [13], the point E is locally asymptotically stable iff either ay < —1.54113 or
a1 > 2.275.
We plot phase portraits for a1 = —3,—1.55, —1.54, —1.52, —1.4,2.5 and observe the following:
¢ For a; = —3 and a1 = —1.55, the equilibrium point E(0.175, 40;(1)7‘5’91) 1s locally asymptotically stable.
¢ Foray = —1.54,a; = —1.52 and ay = —1.4, the equilibrium point F(0.175, 7295 is unstable.

» T0a; —91
¢ For a; = 2.5, the point E(0.175, 40611?591) is locally asymptotically stable.

Phase Portrait for ai=-3 Phase Portrait for a,=-1.55 Phase Portrait for a1=-1.54
c . c o ° 3
;( ’ : ' X ‘ - : - X
n n n

Phase Portrait for a1=-1.52 Phase Portrait for a1=-1 4 Phase Portrait for a1=2.5

|

X X X
n n n

Figure 4: Plot of phase portraits of system for az = 1.5,a3 = 13,b1 = 5.2,bo = 3.1,b5 = 12 and initial conditions
2(0) = 0.15,y(0) = —0.05 for different values of a;.

Example 4.4. Consider the parameters with following values

ay = 55,a2 = 70,a3 = 80,[)2 = —50,b3 =35

and initial conditions
z(0) = 0.1,y5(0) = 0.1.

We present the bifurcation diagrams of x,, and y, of the controlled system for different values of by by
taking B as bifurcation parameter.

¢ In figure[5(a,b), we take by = 50.

¢ In figure[5(c,d), we take by = 55.

¢ In figure[J(e.f), we take by = 65.

¢ In figure[5(g,h), we take by = 68.5.

From bifurcation diagrams, figure , we observe that the period doubling bifurcation at equilibrium point O
1s delayed. The point O of shows the stability for wide domain of control parameter (3.
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Figure 5: Plots of bifurcation diagrams for x,, and y,, of the controlled system for a; = 55,a2 = 70,a3 = 80,b2 = —50,b3 = 35
and initial conditions z(0) = 0.1,y(0) = 0.1 for b = 50, 55,65 and b = 68.5 with 0 < 8 < 1.

Example 4.5. Consider the following values of the parameters
as = 1.5,&3 = 13, b1 = 5.2,b2 = 3.1,b3 =12

and initial conditions
x(0) = 0.15,y(0) = —0.05.

We present the bifurcation diagrams of x, and y, of the controlled system for different values of a1 by
taking B3 as bifurcation parameter. 4 In figure[f(a,b), we take a1 = —1.54113.

¢ In figure[fl(c,d), we take a1 = —1.18.

¢ In figure[f(e.f), we take a1 = —1.162.

¢ In figure[0l(g,h), we take a1 = —1.135.

From bifurcation diagrams, figure @, we observe that the Neimark-Sacker bifurcation at equilibrium point
E is delayed. The point E of shows the stability for wide domain of control parameter (3.

@ ; ®)
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Figure 6: Plots of bifurcation diagrams for x, and y, of the controlled system for as = 1.5,a3 = 13,b1 =5.2,b2 = 3.1,b3 = 12
and initial conditions z(0) = 0.15,y(0) = —0.05 for a; = —1.54113,—1.18, -1.162 and a; = —1.132 with 0 < 8 < 1.
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5. CONCLUSION

We explored the model of rational difference equations for broader parameter domains in this paper.
By evaluating the Jacobian matrix at the equilibrium points, we provided the stability conditions for
equilibrium points. Moreover we discussed the period doubling and the Neimark-Sacker bifurcation at non-
hyperbolic equilibrium points. We have shown numerically that the system undergoes the period doubling
bifurcation at point O and the Neimark-Sacker bifurcation at point E under certain conditions on parameters.
We used the technique of hybrid control to control the system’s chaotic behavior. To confirm our theoretical
results, we presented some interesting numerical examples.
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