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Abstract

In this paper, we have introduced the notions of strong and weak convergences in 2-probabilistic normed
spaces (2-PN spaces) and established some of its properties. Later, we have de�ned the strong and weak
boundedness of a linear map between two 2-PN spaces and proved a necessary and su�cient condition for
the linear map between two 2-PN spaces to be strongly and weakly bounded.
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1. Introduction and Preliminaries

Probabilistic normed spaces (PN-spaces) are vector spaces V over a real �eld in which the norm of any
vector in V is a distribution function instead of a real number. The theory of PN spaces was initiated by
Serstnev in 1963. Karl Menger considered the distribution function instead of nonnegative real numbers
as values of the metric. This lead to the situation, when we do not know exactly the distance between
two points, but we are aware about only the probabilities of available values of this distance. The theory
of PN spaces is s a generalization of deterministic results of normed linear spaces and also the study of
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random operator theory. Recently many authors had studied the I-convergence in probabilistic n-normed
space [18], statistically convergent multiple sequences [19], best approximation [17] and statistically lacunary
convergence of generalized di�erence sequences [6]. Alizera et. al. [15] established the probabilistic norms
on the homeomorphisms of a group. The concept of 2-Probabilistic normed spaces has been introduced
by Fatemeh Lael and Kourosh Nourouzi ([4]). In 2005, Ioan Golet [5] had generalized the notion of 2-
Probabilistic normed spaces from Random 2-normed spaces, which was established in 1988 by him. Recently,
P.K. Harikrishnan at.el. [7][9] had studied about accretive operators, D− compactness, convex sets and
convex series properties in 2- probabilistic normed spaces. N. Eghbali had discussed the Frechet di�erentiation
between Menger probabilistic normed spaces in [3] and this idea motivated us to study the similar notions
in 2-probabilistic normed spaces. In this paper, we have proved some new examples for 2-PN spaces and
discussed about various properties of strong and weak convergences; and strong , weak boundedness of linear
mappings in 2-PN spaces.

Let X be a real linear space of dimension greater than 1. We recall the de�nition of a 2-norm on X×X :

De�nition 1.1. ([16][10]) Let X be a real linear space of dimension greater than 1 and ‖·, ·‖ be a real valued
function on X ×X satisfying the following properties, for all x, y, z ∈ X and α ∈ R

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent;

2. ‖x, y‖ = ‖y, x‖;

3. ‖αx, y‖ = |α|‖y, x‖;

4. ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖;

then the function ‖·, ·‖ is called a 2-norm on X. The pair (X,‖·, ·‖) is called a linear 2- normed space.

Remark 1.2. One can �nd from the de�nition that 2-norm is non-negative. That is, For every x, y ∈ X, ,
0 = ‖x+ y, x+ y‖ ≤ 2‖x, y‖ implies ‖x, y‖ ≥ 0.

Remark 1.3. In any real linear 2-normed spaces (X,‖·, ·‖), it is true that ‖x, y + αx‖ = ‖x, y‖ for every
x, y ∈ X and α ∈ R. That is, ‖x, y + αx‖ = ‖y + αx, x‖ implies ‖x, y + αx‖ ≤ ‖y, x‖ + |α|‖x, x‖ = ‖x, y‖.
And, ‖x, y‖ = ‖x, y + αx − αx‖ = ‖y + αx − αx, x‖ implies ‖x, y‖ ≤ ‖y + αx, x‖ + |α|‖x, x‖ implies
‖x, y‖ ≤ ‖y + αx, x‖.

Example 1.4. [16] A standard example of a 2-normed space is R2 equipped with the 2-norm ‖x, y‖ = area
of the parallelogram determined by the vector x and y as the adjacent sides.

R3 is a 2-normed space equipped with 2-norm ‖x, y‖ is the length of the cross product of the vectors
x = (x1, x2, x3) and y = (y1, y2, y3) in R3.

More examples for 2-norm and related results can be found in Freese and Cho [16].

De�nition 1.5. ([1]) A distribution function (= d.f.) is a function F : R → [0, 1] that is non decreasing
and left-continuous on R; moreover, F (−∞) = 0 and F (+∞) = 1. Here R = R ∪ {−∞,+∞}. The set of
all the d.f.'s will be denoted by ∆ and the subset of those d.f.'s called distance d.f.'s, such that F (0) = 0, by
∆+. We shall also consider D and D+, the subsets of ∆ and ∆+, respectively, formed by the proper d.f.'s,
i.e., by those d.f.'s F ∈ ∆ that satisfy the conditions

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1

respectively.



P. Harikrishnan et.al , Adv. Theory Nonlinear Anal. Appl. 5 (2021), 454�466. 456

For every a ∈ R, εa is the d.f. de�ned by

εa(t) :=

{
0, t ≤ a,
1, t > a.

The set ∆, as well as its subsets, are POSET with respect to the usual pointwise partial order . ε0 is the
maximal element in ∆+ with respect to this partial order.

A triangle function is a binary operation on ∆+, namely a function τ : ∆+ × ∆+ −→ ∆+ that is
associative, commutative, non-decreasing in each place and has ε0 as identity, this is, for all F,G and H in
∆+:

(TF1) τ(τ(F,G), H) = τ(F, τ(G,H)),

(TF2) τ(F,G) = τ(G,F ),

(TF3) F ≤ G =⇒ τ(F,H) ≤ τ(G,H),

(TF4) τ(F, ε0) = τ(ε0, F ) = F .

Typical continuous triangle functions [14] are

τT (F,G)(x) = sup
s+t=x

{T (F (s), G(t))}

and
τT ∗(F,G) = inf

s+t=x
{T ∗(F (s), G(t)}.

Here T is a continuous t-norm, i.e. a continuous binary operation on [0, 1] that is commutative, associative,
non-decreasing in each variable and has 1 as identity; T ∗ is a continuous t-conorm, namely a continuous
binary operation on [0, 1] which is related to the continuous t-norm T through T ∗(x, y) = 1−T (1−x, 1−y).
Let us recall among the triangular function one has the function de�ned via T (x, y) = min(x, y) = M(x, y)
and T ∗(x, y) = max(x, y) or T (x, y) = Π(x, y) = xy and T ∗(x, y) = Π∗(x, y) = x+ y − xy.

De�nition 1.6. ([2], [14]) A probabilistic normed space is a quadruple (V,N, τ, τ∗), where V is a real linear
space, τ and τ∗ are continuous triangle functions and the mapping N : V → ∆+ satis�es, for all p and q in
V , the conditions

1. Np = ε0 if, and only if, p = θ (θ is the null vector in V );

2. ∀p ∈ V N−p = Np;

3. Np+q ≥ τ (Np, Nq);

4. ∀α ∈ [0, 1] Np ≤ τ∗
(
Nαp, N(1−α) p

)
.

If τ = τT and τ∗ = τT ∗ for some continuous t�norm T and its t�conorm T ∗ then (V,N, τT , τT ∗) is denoted
by (V,N, T ) and is said to be a Menger PN space.

De�nition 1.7. [7][8] A Menger's 2- Probabilistic Normed Space (brie�y a Menger's 2- PN space), is a
triplet (X,N, ∗), where X is a real vector space of dim(X) > 1, ∗ is a binary operation, a t-norm, and the
mapping N : X × X → 4+ (for each (x, y) ∈ X × X the distribution function N(x, y) is denoted by Nx,y

and Nx,y(n) is the value of Nx,y at n ∈ R) satisfying the axioms:

1. Nx,y(0) = 0 for all x, y ∈ X;

2. Nx,y(n) = 1 for all n > 0 if and only if x, y are linearly dependent;
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3. Nx,y(n) = Ny,x(t) for all x, y ∈ X;

4. Nαx,y(n) = Nx,y

(
n

|α|

)
for all α ∈ R{0} and for all x, y ∈ X;

5. Nx+y,z(m+ n) ≥ Nx,z(m) ∗Ny,z(n) for all x, y, z ∈ X and m,n ∈ R.

Example 1.8. [7] Let (X, ‖., .‖) be a 2-normed space with t-norm x ∗ y = min(x, y). Every 2-norm induces
a 2-PN norm on X as follows:

Nx,y(n)) =

{ 1
‖x,y‖ , if n > 0

0, if n ≤ 0.

This 2-probabilistic norm is called the standard 2-PN norm.

More examples on 2-probabilistic norm and the related results can be found in Harikrishnan et. al.[7].

De�nition 1.9. [7] Let (X,N, ∗) be a 2-PN space, and {xn} be a sequence of X. Then the sequence {xn} is
said to be convergent to x, if lim

n→∞
Nxn−x,z(t) = 1 for all z ∈ X and t > 0.

De�nition 1.10. [7] Let ((X,N, ∗) be a 2-PN space then a sequence {xn} ∈ X is said to be a Cauchy
sequence, if lim

n,m→∞
Nxm−xn,z(t) = 1 for all z ∈ X, t > 0 and m > n.

De�nition 1.11. [7] A 2-PN space ((X,N, ∗) is said to be complete if every Cauchy sequence in X is
convergent to a point of X. A complete 2-PN space is called 2-Probabilistic Banach space.

De�nition 1.12. [7] Let (X,N, ∗) be a 2-PN space, E be a subset of X then the closure of E is E = {x ∈ X;
there is a sequence {xn} of E such that xn → x}. We say, E is sequentially closed if E = E.

2. Strong and weak convergence in 2-PN spaces

In this section, we begin with two theorems which gives a new example for 2-PN space, induced from a
2-normed space.

Theorem 2.1. Let (X, ‖., .‖) be a 2-normed space with t-norm x ∗ y = min(x, y). De�ne

Nx,y(n) =


n− ‖x, y‖
n+ ‖x, y‖

, if n > ‖x, y‖

0, if n ≤ ‖x, y‖

where x, y ∈ X and n ∈ R then (X,N, ∗) is a 2-PN space.

Proof. (i) Since ‖x, y‖ ≥ 0, we have Nx,y(0) = 0 for every x, y ∈ X.
(ii) Nx,y(1) = 1 ⇐⇒ 1− ‖x, y‖ = 1 + ‖x, y‖ ⇐⇒ ‖x, y‖ = 0
⇐⇒ x, y are linearly dependent.
(iii) Since ‖x, y‖ = ‖y, x‖ we have Nx,y(n) = Ny,x(n) for all x, y ∈ X and n ∈ R.
(iv)

Nαx,y(n) =
n− ‖αx, y‖
n+ ‖αx, y‖

=
n− |α|‖x, y‖
n+ |α|‖x, y‖

=

n

|α|
− ‖x, y‖

n

|α|
+ ‖x, y‖

= Nx,y

(
n

|α|

)
.

(v) We have,
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Nx+y,z(m+ n) =


(m+ n)− ‖x+ y, z‖
(s+ t) + ‖x+ y, z‖

, if m+ n > ‖x+ y, z‖

0, if m+ n ≤ ‖x+ y, z‖

Nx,z(m) =


m− ‖x, z‖
m+ ‖x, z‖

, if m > ‖x, z‖

0, if m ≤ ‖x, z‖
and

Ny,z(n) =


n− ‖y, z‖
t+ ‖y, z‖

, if n > ‖y, z‖

0, if n ≤ ‖y, z‖

Let M = max{‖x, z‖, ‖y, z‖} then min{Nx,z(m), Ny,z(n)} =
m−M
n+M

, and

Nx+y,z(m+ n) ≥ m− ‖x+ y, z‖
n+ ‖x+ y, z‖

≥ Nx+y,z(m)

=
m− ‖x+ y, z‖
m+ ‖x+ y, z‖

≥ m− ‖x, z‖ − ‖y, z‖
m+ ‖x, z‖+ ‖y, z‖

≥ m− ‖x, z‖ − ‖y, z‖
n+ ‖x, z‖+ ‖y, z‖

≥ m−M
n+M

= min{Nx,z(m), Ny,z(n)}
= Nx,z(m) ∗Ny,z(n).

Hence, (X,N, ∗) is a 2-PN space.

Theorem 2.2. Let (X, ‖., .‖) be a 2-normed space with t-norm x ∗ y = Π(x, y) = xy. De�ne

Nx,y(n) =

{ n

n+ ‖x, y‖
, if n > 0

0, if n ≤ 0

where x, y ∈ X and t ∈ R then (X,N,Π) is a 2-PN space.

Proof. (i) Nx,y(0) = 0 for every x, y ∈ X.
(ii) Nx,y(1) = 1 ⇐⇒ n

n+ ‖x, y‖
= 1 ⇐⇒ ‖x, y‖ = 0

⇐⇒ x, y are linearly dependent.
(iii) Nx,y(n) = Ny,x(n) for all x, y ∈ X and n ∈ R.
(iv) We have

Nαx,y(n) =
n

n+ ‖αx, y‖
=

n

n+ |α|‖x, y‖
=

n

|α|
n

|α|
+ ‖x, y‖

= Nx,y

(
n

|α|

)
.
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(v) We have,

Nx+y,z(m+ n) =
(m+ n)

(m+ n) + ‖x+ y, z‖
≥ m

m+ ‖x, z‖
.

n

n+ ‖y, z‖

=
mn

mn+m‖y, z‖+ n‖x, z‖+ ‖x, z‖‖y, z‖
.

Now it is su�cient to check,

(m+ n)(mn+m‖y, z‖+ n‖x, z‖+ ‖x, z‖‖y, z‖) ≥ mn(m+ n+ ‖x, z‖+ ‖y, z‖)

equivalent to m2‖y, z‖+ n2‖x, z‖+ (m+ n)‖x, z‖‖‖y, z‖ ≥ 0

implies
m2

‖x, z‖
+m+

n2

‖y, z‖
+ n ≥ 0

and u2 +
√
‖x, z‖ with m√

‖x, z‖
= u; v2 +

√
‖y, z‖ with n√

‖y, z‖
= v.

Finally, (X,N,Π) is a 2-PN space.

Theorem 2.3. Let (X, ‖., .‖) be a 2-normed space with t-norm x ∗ y = min(x, y). De�ne

Nx,y(n) =

{ n

n+ ‖x, y‖
, if n > 0

0, if n ≤ 0

where x, y ∈ X and n ∈ R then (X,N, ∗) is a 2-PN space.

Proof. It is su�cient to verify that Nx+y,z(m+ n) ≥ min{Nx,z(m), Ny,z(n)}.
We have,

Nx+y,z(m+ n) =


(m+ n)

(m+ n) + ‖x+ y, z‖
, if m+ n > 0

0, if m+ n ≤ 0

≥ m

m+ ‖x+ y, z‖
or

n

n+ ‖x+ y, z‖

Therefore, Nx+y,z(m+ n) ≥ min{Nx,z(m), Ny,z(n)}.

Now, choose f(x) =
x

x+ k
then f(x) =

k

(x+ k)2
implies f is increasing.

Nx,z(m) =

{ m

m+ ‖x, z‖
, if m > 0

0, if m ≤ 0

and

Ny,z(n) =

{ n

n+ ‖y, z‖
, if n > 0

0, if n ≤ 0

We can assume that min{ m

m+ ‖x+ y, z‖
,

n

n+ ‖x+ y, z‖
} =

m

m+ ‖x+ y, z‖
when m ≤ n.

Then we need,
m

m+ ‖x+ y, z‖
≥ m

m+ ‖x, z‖
⇐⇒ ‖x+ y, z‖ ≤ ‖x, z‖.

Thus,
m

m+ ‖x+ y, z‖
≥ n

n+ ‖y, z‖
⇐⇒ 1 ≤ t

m
<

‖y, z‖
‖x+ y, z‖

equivalent to ‖x+ y, z‖ ≤ ‖y, z‖.

Finally, Nx+y,z(m+ n) ≥ min{Nx,z(m), Ny,z(n)}. Hence, (X,N, ∗) is a 2-PN space.
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De�nition 2.4. Let (X,N, ∗) be a 2-PN space and U ⊂ X, U is said to be open if for each x ∈ U there exists
some n > 0 and some α ∈ (0, 1) such that B (x, α, n) ⊆ U where B (x, α, n) = {y;Nx−y,z(n) > 1−α ∀z ∈ X}.

Theorem 2.5. Let (X,N, ∗) be a 2-PN space with the condition

Nx,y(n) > 0 for all n > 0 implies x and y are dependent. (1)

Let ‖x, y‖α = inf{n > 0 : Nx,y(n) ≥ α}, for all α ∈ (0, 1) . Then {‖·, ·‖α : α ∈ (0, 1)} is an ascending
family of 2-norms on X. These 2-norms are called α − 2−norms on X corresponding to a 2-probabilistic
norm.

Proof. (i) Let x, y ∈ X and α ∈ (0, 1) then

‖x, y‖α = 0 implies inf{n > 0 : Nx,y(n) ≥ α} = 0 for each α ∈ (0, 1)

implies Nx,y(n) > 0 ∀ n > 0

implies x,y are dependent.

(ii) For each α ∈ (0, 1) and x, y, z ∈ X,

‖x, y‖α = inf{n > 0 : Nx,y(n) ≥ α}
= inf{n > 0 : Ny,x(n) ≥ α}
= ‖y, x‖α.

(iii) For each α ∈ (0, 1) and x, y, z ∈ X, k ∈ R,

‖kx, y‖α = inf{n > 0 : Nkx,y(n) ≥ α}

= inf
{
n > 0 : Nx,y

(n
k

)
≥ α

}
= k‖x, y‖α.

(iv) For each α ∈ (0, 1) and x, y, z ∈ X,

‖x, y‖α + ‖y, z‖α = inf{m > 0 : Nx,y(m) ≥ α}+ inf{n > 0 : Nx,y(n) ≥ α}
= inf{m+ n : Nx,y(m) ≥ α,Nx,y(n) ≥ α}
= inf{m+ n : Nx,y(m) ∗Nx,y(n) ≥ α}
≥ inf{m+ n : Nx+y,z(m+ n) ≥ α}
= ‖x+ y, z‖α.

Now, let 0 < α1 < α2 < 1 then ‖x, y‖α1 = inf{m > 0 : Nx,y(m) ≥ α1} and ‖x, y‖α2 = inf{m >
0 : Nx,y(m) ≥ α2}. Since α1 < α2, {m > 0 : Nx,y(m) ≥ α2} ⊆ {m > 0 : Nx,y(m) ≥ α1} then
‖x, y‖α2 ≥ ‖x, y‖α1 .

Hence {‖·, ·‖α : α ∈ (0, 1)} is an ascending family of 2-norms on X.

De�nition 2.6. Let {xn} be a sequence in a Menger 2-PN space (X,N, ∗) . Then

1. {xn} is said to be weakly convergent to x ∈ X, denoted by xn
w−→ x i�, for every α ∈ (0, 1) and ε > 0

there exists some k = k(α, ε) such that n ≥ k implies Nxn−x,z(ε) ≥ 1− α for every z ∈ X.

2. {xn} is said to be strongly convergent to x ∈ X, denoted by xn
s−→ x i�, for every α ∈ (0, 1) there exists

some k = k(α) such that n ≥ k implies Nxn−x,z(t) ≥ 1− α for every t > 0 and z ∈ X.

Theorem 2.7. Let {xn} be a sequence in a Menger 2-PN space (X,N, ∗) satisfying the condition (2.1).
Then
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1. xn
w−→ x if and only if, for each α ∈ (0, 1) , lim

n→∞
‖xn − x, z‖α = 0 for every z ∈ X.

2. xn
s−→ x if and only if, for each α ∈ (0, 1) , and for every z ∈ X, lim

n→∞
‖xn − x, z‖α = 0 uniformly in

α ∈ (0, 1) .

Proof. (1) Suppose xn
w−→ x. Choose α ∈ (0, 1) and t > 0, then there exists k ∈ N such thatNxn−x,z(ε) ≥ 1−α

for all n ≥ k =⇒ ‖xn − x, z‖1−α → 0 for every z ∈ X.
Conversely, Let ‖xn − x, z‖α → 0, for every α ∈ (0, 1) and t > 0. There exists k ∈ N such that

inf{r > 0 : Nxn−x,z(r) ≥ 1 − α} < t, for all n ≥ k and z ∈ X. It implies that Nxn−x,z(t) ≥ 1 − α, for all
n ≥ k =⇒ xn

w−→ x.
(2) We can prove (2) using the similar assertions applied in (1),

Theorem 2.8. Let {xn} be a sequence in a Menger 2-PN space (X,N, ∗) . If {xn} is strongly convergent,
then it is weakly convergent to the same limit. But the converse need not be true.

Proof. This is immediate from the de�nition (2.3). But the next example shows that the converse of this
result need not be true.

Example 2.9. Let (X, ‖., ‖) be a linear 2-normed space and de�ne N on X by

Nx,y(t) =


t− ‖x, y‖
t+ ‖x, y‖

, if t > ‖x, y‖

0, if t ≤ ‖x, y‖

De�ne x ∗ y = Π(x, y). Then (X,N,Π) is a Menger 2-PN space. Since N satis�es the condition (2.1), we

can �nd the α−2 norm of N. Thus, Nx,y(t) ≥ α ⇐⇒
t− ‖x, y‖
t+ ‖x, y‖

≥ α ⇐⇒
(

1 + α

1− α

)
‖x, y‖ ≤ t.

This shows that ‖x, y‖α = inf{t > 0;Nx,y(t) ≥ α} ≤
(

1 + α

1− α

)
‖x, y‖. Furthermore, Nx,y

((
1 + α

1− α

)
‖x, y‖

)
=(

1 + α

1− α

)
‖x, y‖+ ‖x, y‖(

1 + α

1− α

)
‖x, y‖ − ‖x, y‖

= α

implies

(
1 + α

1− α

)
‖x, y‖ ∈ {t > 0;Nx,y(t) ≥ α}.

This means, ‖x, y‖α =

(
1 + α

1− α

)
‖x, y‖.

For z ∈ X, let y ∈ SX = {x ∈ X; ‖x, z‖ = 1} be �xed. De�ne a sequence {xn} = { yn}. For each α ∈ (0, 1)
and z ∈ X,

‖xn − 0, z‖α =

(
1 + α

1− α

)
‖y, z‖
n
→ 0, as n→∞,

this convergence is uniform in α.
We have, for given

ε > 0, ‖x, z‖α =

(
1 + α

1− α

)
‖y, z‖
n

< ε ⇐⇒ 1− α
(1− α)ε

< n,

it is clear that we cannot �nd such n as
1− α

(1− α)ε
→∞ as α→∞.

De�nition 2.10. Let (X,N, ∗) and
(
Y,N

′
, ∗
)
be two Menger 2-PN spaces and f : X → Y be a mapping

then



P. Harikrishnan et.al , Adv. Theory Nonlinear Anal. Appl. 5 (2021), 454�466. 462

1. f is said to be weakly continuous at x0 ∈ X if for given ε > 0 and α ∈ (0, 1), there exists δ = δ (ε, α) > 0
such that for all x, z ∈ X

Nx−x0,z(δ) ≥ α implies N
′

f(x)−f(x0),f(z)(ε) ≥ α.

2. f is said to be strongly continuous at x0 ∈ X if for given ε > 0 there exists δ = δ (ε) > 0 such that for
all x, z ∈ X

N
′

f(x)−f(x0),f(z)(ε) ≥ Nx−x0,z (δ) .

De�nition 2.11. Let (X,N, ∗) and
(
Y,N

′
, ∗
)

be two Menger 2-PN spaces and f : X → Y be a linear

mapping then

1. f is said to be weakly bounded on X if for every α ∈ (0, 1), there exists some mα > 0 such that, for all
x, y ∈ X

Nx,y

(
t

mα

)
≥ α =⇒ N

′

f(x),f(y)(t) ≥ α for every t > 0.

2. f is said to be strongly bounded on X if for every α ∈ (0, 1), there exists some M > 0 such that, for
all x, y ∈ X

N
′

f(x),f(y)(t) ≥ Nx,y

(
t

M

)
for every t > 0.

Theorem 2.12. Let (X,N, ∗) and
(
Y,N

′
, ∗
)

be two Menger 2-PN spaces and f : X → Y be a linear

mapping. Then, f is strongly (weakly) continuous if and only if it is strongly (weakly) bounded.

Proof. Suppose that f is strongly bounded. Then there exists M > 0 such that, for all x, y ∈ X

N
′

f(x),f(y)(t) ≥ Nx,y

(
t

M

)
for every t > 0

=⇒ N
′

f(x)−f(0),f(y)(t) ≥ Nx−0,y

(
t

M

)
for every t > 0.

Let ε > 0 be given. Choose δ =
ε

M
then,

=⇒ N
′

f(x)−f(0),f(y)(ε) ≥ Nx−0,y (δ) for every t > 0

implies f is strongly continuous at 0, hence f is continuous on X.
Conversly, assume that f is strongly continuous on X. Then f is strongly continuous at x = 0.
For ε = 1, there exists δ > 0 such that

N
′

f(x)−f(0),f(y)(1) ≥ Nx−0,y (δ) for every x ∈ X.

Suppose that x 6= 0 and t > 0. Take w =
x

t
then

N
′

f(x)−f(0),f(y)(t) = N
′

tf(w)−f(0),f(y)(t)

= N
′

f(w)−f(0),f(y)(1)

≥ Nw−0,y (δ)

= Nx−0,y (tδ)

= Nx−0,y

(
t

M

)
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where M =
1

δ
.

If x 6= 0 and t ≤ 0 then for every y ∈ X,

N
′

f(x),f(y)(t) = 0 = Nx,y

(
t

M

)
.

If x = 0 and t ∈ R then f(0) = 0 and for every y ∈ X,

N
′
0,y(t) = N0,y

(
t

M

)
=

{
1, if t > 0
0, if t ≤ 0

Hence, f is strongly bounded.

Theorem 2.13. Let (X,N, ∗) be a Menger 2-PN space, satisfying (2.1) and the condition

For x 6= 0 and y ∈ X,Nx,y(.) is continuous on R and strictly increasing on (2)

{t : 0 < Nx,y(t) < 1}.

For x 6= 0, α ∈ (0, 1), t
′
> 0and for every y ∈ X (3)

we have ‖x, y‖α = t
′ ⇐⇒ Nx,y(t

′
) = α.

Also suppose that {‖·, ·‖α : α ∈ (0, 1)} be the family of corresponding α− 2− norms of N on X de�ned
by ‖x, y‖α = inf{t > 0 : Nx,y(t) ≥ α}, for all α ∈ (0, 1) . then for any increasing (or decreasing) sequence
{αn} in (0, 1), αn → α implies ‖x, y‖αn → ‖x, y‖α for every x, y ∈ X.

Proof. For x = 0 and y ∈ X, it is obvious that ‖x, y‖αn → ‖x, y‖α.
Suppose x 6= 0. Then by equation (2.3), we have α ∈ (0, 1), t

′
> 0 and for every y ∈ X we have ‖x, y‖α = t

′

if and only if Nx,y(t
′
) = α.

Let {αn} be an increasing sequence in (0, 1) such that αn → α in (0, 1) .
Let ‖x‖‖αn = tn and ‖x‖α = t then Nx,y (tn) = αn and Nx,y(t) = α.
We know that {tn} is an increasing sequence of real numbers and bounded above by t. So, {tn} is

convergent to some t ∈ R.
Since, Nx,y(t) is sequentially continuous, one can say that {tn} → t ⇐⇒ Nx,y(tn) → Nx,y(t). Hence

lim
n→∞
‖x, y‖αn = ‖x‖α.
Similarly, if {αn} be an decreasing sequence in (0, 1) then we can prove the theorem.

Theorem 2.14. Let (X,N, ∗) and
(
Y,N

′
, ∗
)
be two Menger 2-PN spaces satisfying (2.1), (2.2) and (2.3).

Suppose that f : X → Y be a linear mapping then,

1. f is weakly bounded if and only if f is bounded with respect to the α−2− norms of N and N
′
, for each

α ∈ (0, 1).

2. f is strongly bounded if and only if f is uniformly bounded with respect to the α− 2− norms of N and
N
′
.

Proof. 1) Assume that f is weakly bounded then for every α ∈ (0, 1) there exists mα > 0 such that for all

x, y ∈ X and t ∈ R we have Nx,y

(
t

mα

)
≥ α and then N

′

f(x).f(y)(t) ≥ α.

Hence sup{β ∈ (0, 1) : ‖mβx, y‖1α ≤ t} ≥ α
=⇒ sup{β ∈ (0, 1) : ‖f(x), f(y)‖2β ≤ t} ≥ α where ‖·, ·‖1α and ‖·, ·‖2α are the α− 2 - norms of N and N

′

respectively.
Now we prove that sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α ⇐⇒ ‖mαx, y‖1α ≤ t.
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The relation is obvious when x = 0. Suppose x 6= 0.
Now, if

sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} > α then ‖mαx, y‖1α ≤ t. (4)

If sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} = α, then there exists an increasing sequence {αn} such that αn → α

and ‖mαx, y‖1αn ≤ t. Then by the above theorem, we have

‖mαx, y‖1α ≤ t. (5)

Thus from (2.4) and (2.5) we get,

sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α =⇒ ‖mαx, y‖1α ≤ t.

Next we suppose that
‖mαx, y‖1α ≤ t (6)

If ‖mαx, y‖1α < t then Nmαx,y(t) ≥ α. So

sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α (7)

If ‖mαx, y‖1α = t, then there exists a decreasing sequence {sn} ∈ R such that sn → t and Nmαx,y(sn) ≥ α

implies Nmαx,y

(
lim
n→∞

sn

)
≥ α so we get Nmαx,y(t) ≥ α.

Hence,
sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α. (8)

It follows that,
‖mαx, y‖1α ≤ t implies sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α. (9)

Hence,
sup{β ∈ (0, 1) : ‖mαx, y‖1β ≤ t} ≥ α ⇐⇒ ‖mαx, y‖1α ≤ t. (10)

In a similar manner, we can show that,

sup{β ∈ (0, 1) : ‖f(x), f(y)‖2β ≤ t} ≥ α ⇐⇒ ‖f(x), f(y)‖2α ≤ t. (11)

Therefore, from (2.10) and (2.11) we have Nmαx,y(t) ≥ α =⇒ N
′

f(x),f(y)(t) ≥ α
then ‖mαx, y‖1α ≤ t =⇒ ‖f(x), f(y)‖2α ≤ t.
This implies ‖f(x), f(y)‖2α ≤ mα‖x, y‖1α.
Conversely suppose that for every α ∈ (0, 1), there exists mα > 0 such that ‖f(x), f(y)‖2α ≤ mα‖x, y‖1α.

Then for x 6= 0, inf{s : Nmαx,y(s) ≥ α} ≤ t implies inf{s : N
′

f(x),f(y)(s) ≥ α} ≤ t.
In a similar way as above we can prove that inf{s : Nmαx,y(s) ≥ α} ≤ t i� Nmαx,y(t) ≥ α and inf{s :

N
′

f(x),f(y)(s) ≥ α} ≤ t i� N
′

f(x),f(y)(t) ≥ α. Thus we have Nx,y

(
t

mα

)
≥ α =⇒ N

′

f(x),f(y)(t) ≥ α.

If x 6= 0, t ≤ 0 and x = 0, t > 0 then the above relation is obvious. Hence the theorem follows.
2) Let ‖·, ·‖1α and ‖·, ·‖2α be the α− 2 - norms of N and N

′
respectively.

First we suppose that f is strongly bounded. Then there exists M > 0 such that for all x ∈ X and s ∈ R
we have N

′

f(x),f(y)(s) ≥ Nx,y

( s
M

)
.

Therefore, N
′

f(x),f(y)(s) ≥ NMx,y (s) .

Now ‖Mx, y‖1α < t =⇒ inf{s : NMx,y(s) ≥ α} < t implies there exists s0 < t such that NMx,y(s0) ≥ α
implies there exists s0 < t such that N

′

f(x),f(y)(s0) ≥ α implies ‖f(x), f(y)‖2α ≤ s0 < t.

Hence ‖f(x), f(y)‖2α ≤ ‖Mx, y‖1α = M‖x, y‖1α. This implies that T is uniformly bounded with respect to
α− 2- norms.
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Conversely suppose that there exists M > 0 such that ‖f(x), f(y)‖2α ≤M‖x, y‖1α holds for all α ∈ (0, 1)
and x, y ∈ x.

Now r < NMx,y(s) implies r < sup{α ∈ (0, 1) : ‖Mx, y‖1α ≤ s}
implies there exists α0 ∈ (0, 1) such that r < α0 and ‖Mx, y‖1α0

≤ s

N
′

f(x),f(y)(s) ≥ NMx,y(s) = Nx,y

( s
M

)
.

Therefore, f is strongly bounded.

3. Conclusion

We have established new examples for 2-probabilistic normed spaces and introduced the notions of strong
and weak convergences in 2-probabilistic normed spaces with several properties. Subsequently, we have
de�ned the strong and weak boundedness of a linear map between two 2-PN spaces and established a
necessary and su�cient condition for the linear map between two 2-PN spaces to be strongly and weakly
bounded.
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