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Abstract. In this study, firstly, Hermite-Hadamard type inequalities are examined for functions whose first
derivative is s-convex functions in the fourth sense. In addition, Hermite-Hadamard type inequalities are examined
for functions whose second derivative is s-convex functions in the fourth sense. Finally, some application examples
including special tools and digamma functions are presented.
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1. Introduction

The definition of new function classes expands the fields of mathematics and creates new fields of study for re-
searchers. Sometimes this can be achieved by introducing a definition that does not exist in the literature or by gener-
alizing existing functions. One of the most generalized function classes in the literature is convex functions. B- convex
functions, B−1-convex functions, s- convex functions etc. can be given as examples [2, 3, 5, 9, 11, 15, 21, 23]. Convex
functions as per the definition, are associated with inequalities, and so one of their main characteristics is the satisfac-
tion of some inequalities such as Hermite-Hadamard, Jensen, Ostrowski, Fejer. The expression of these inequalities for
generalized classes of convex functions also takes place in the literature [4, 6, 9, 12, 13, 17, 18, 22]. In this study, upper
bounds for Hermite-Hadamard inequalities are obtained for s-convex functions in the fourth sense.

Let us recall some basic information we will need in this paper.
Let U be a convex set on vector space X and ψ : U → R be a function. ψ is called a convex function on U, if the

inequality

ψ(αx + βy) ≤ αψ(x) + βψ(y). (1.1)
holds for all x, y ∈ Rn and all α, β ≥ 0 with α + β = 1.

The convexity concept has been generalized various ways. One of them is achieved by changing the powers of α
and β into a positive number less than 1, namely s, in left or right or both side of (1.1) or by replacing the theroem
condition α + β = 1 with αs + βs = 1. In this way, s-convex functions are introduced. The s-convex function in the
first sense was defined by Orlicz in 1961 [16], then the idea of s-convex in the second sense was introduced by Hudzik
in 1994 [11]. Recently, in the same manner, p-convex functions, s-convex functions in the third and fourth sense have
been defined [10, 14, 19, 20].

Email address: skemali@akdeniz.edu.tr (S. Kemali)

https://orcid.org/0000-0001-5804-4127


Hermite-Hadamard Type Ineq. for s-Convex Func. in the Fourth Sense 288

Let s ∈ (0, 1] be a fixed number. A function ψ : Rn → R is said to be s-convex function in the fourth sense if

ψ(αx + (1 − α)y) ≤ α
1
s ψ(x) + (1 − α)

1
s ψ(y)

where α ∈ [0, 1].
The classes of s-convex functions in the fourth sense are denoted by K

4

s .
If ψ : R+ → R is s-convex function in the fourth sense, then ψ(x) ≤ 0 for all x ∈ I. For more information on this

class, see [10].
It can be easily seen that for s = 1, s-convexity is reduced to the ordinary convexity of functions defined on Rn.
If ψ : I → R is a convex function, then the following inequality holds,

ψ

(
a + b

2

)
≤

1
b − a

b∫
a

ψ(x)dx ≤
ψ(a) + ψ(b)

2
,

where a, b ∈ I with a < b. This inequality is known as Hermite-Hadamard inequality.
In this paper, some bounds for each side of Hermite-Hadamard inequality are obtained. Some application examples

involving special means and digamma functions are presented.
Throughout the paper it will be considered as R = (−∞,∞) , R+ = [0,∞) , I ⊂ R and Io interior of I.

2. Main Results

In this section, for s-convex functions in the fourth sense some inequalities associated with the right side and the
left side of the Hermite-Hadamard inequality are derived using certain integral identities equations.

Lemma 2.1. Let ψ : I→ R be a s-convex function in the fourth sense, then the inequality

ψ

(
a + b

2

)
≤

s
1 + s

ψ(a) + ψ(b)

2
1
s −1

is valid for 0 < s ≤ 1.

Proof. Since ψ is s-convex function in the fourth sense on I, then we get

ψ

(
a + b

2

)
= ψ

(
αa + (1 − α)b

2
+

(1 − α)a + αb
2

)
≤

(
1
2

) 1
s [
ψ(αa + (1 − α)b) + ψ((1 − α)a + αb)

]
≤

(
1
2

) 1
s [
α

1
s ψ(a) + (1 − α)

1
s ψ(b) + (1 − α)

1
s ψ(a) + α

1
s ψ(b)

]
=

(
1
2

) 1
s

(ψ(a) + ψ(b))
(
α

1
s + (1 − α)

1
s

)
. (2.1)

Integrating (2.1) with respect to α on [0, 1] , we get
1∫

0

ψ

(
a + b

2

)
dα ≤

1∫
0

(
1
2

) 1
s

(ψ(a) + ψ(b))
(
α

1
s + (1 − α)

1
s

)
dα

=
ψ(a) + ψ(b)

2
1
s

1∫
0

(
α

1
s + (1 − α)

1
s

)
dα

=
2s

1 + s
ψ(a) + ψ(b)

2
1
s

.

�

Next two theorems give new upper bound of the left hand Hermite-Hadamard inequality for s-convex functions in
the fourth sense.
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Theorem 2.2. Let ψ : I→ R be a differentiable function on I, a, b ∈ Io with a < b. If ψ′ is s-convex function in the
fourth sense on I and ψ′ ∈ L [a, b] , then the following inequality holds,

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx ≤
(b − a)2

4
s

(s + 1)(2s + 1)

(
s
(
ψ′(a) + ψ′(b)

)
+ 2(s + 1)ψ′(

a + b
2

)
)

for s ∈ (0, 1] .

Proof. According to [8], if ψ is differentiable function on I, and ψ′ ∈ L [a, b] , then the following equality holds,

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx =
(b − a)2

4

1∫
0

(1 − α)
(
ψ′(αa + (1 − α)

a + b
2

) + ψ′(αb + (1 − α)
a + b

2
)
)

dα

and s-convexity in the fourth sense of ψ′, we can write the following inequality,

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx ≤
(b − a)2

4


1∫

0

(1 − α)
[
α

1
s ψ′(a) + (1 − α)

1
s ψ′(

a + b
2

)

+α
1
s ψ′(b) + (1 − α)

1
s ψ′(

a + b
2

)
]

dα
}

=
(b − a)2

4

1∫
0

(1 − α)(α
1
s
(
ψ′(a) + ψ′(b)

)
+ 2(1 − α)

1
s ψ′(

a + b
2

))dα

=
(b − a)2

4
s

(s + 1)(2s + 1)

(
s
(
ψ′(a) + ψ′(b)

)
+ 2(s + 1)ψ′(

a + b
2

)
)
.

�

Corollary 2.3. In Theorem 2.2, if we choose s = 1, the following inequality is obtained,

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx ≤
(b − a)2

24

(
ψ′(a) + 4ψ′(

a + b
2

) + ψ′(b)
)
.

The right hand side of the inequality in Theorem 2.2 is stated in terms of boundary points a, b and midpoint a+b
2 . By

using Lemma 2.1, we can have similar result stated in terms of only boundary points a and b.

Corollary 2.4. In Theorem 2.2, if we consider Lemma 2.1, then we have the following inequality,

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx ≤
(b − a)2

4

s2
(
2

1
s + 4

)
(s + 1)(2s + 1)2

1
s

(
ψ′(a) + ψ′(b)

)
.

In this inequality, if we take s = 1, we get

ψ

(
a + b

2

)
−

1
b − a

b∫
a

ψ(x)dx ≤
(b − a)2 (ψ′(a) + ψ′(b))

8
. (2.2)

Theorem 2.5. Let ψ : I→ R be a twice differentiable function on I, a, b ∈ Io with a < b. If ψ′′ ∈ L [a, b] and s-convex
function in the fourth sense on I, then the following inequality holds,

1
b − a

b∫
a

ψ(x)dx − ψ
(

a + b
2

)
≤

(b − a)2

16
s(1 + s)(1 + 2s) + s(2

1
s +4 − 14s2 − 7s − 1)

(1 + s)(1 + 2s)(1 + 3s)2
1
s

[
ψ′′(a) + ψ′′(b)

]
.
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Proof. According to [5], if ψ is a twice differentiable function on I, and ψ′′ ∈ L [a, b] , then the following equality
holds,

1
b − a

b∫
a

ψ(x)dx − ψ
(

a + b
2

)
=

(b − a)2

16


1∫

0

α2ψ′′(
α

2
a +

2 − α
2

b)dα +

1∫
0

α2ψ′′(
2 − α

2
a +

α

2
b)dα


and s-convexity in the fourth sense of ψ′′, we can write the following inequality,

1
b − a

b∫
a

ψ(x)dx − ψ
(

a + b
2

)
≤

(b − a)2

16


1∫

0

α2

(α2
) 1

s
ψ′′(a) +

(
2 − α

2

) 1
s

ψ′′(b)

 dα

+

1∫
0

α2

(2 − α
2

) 1
s

ψ′′(a) +

(
α

2

) 1
s
ψ′′(b)

 dα


=

(b − a)2

16

 s

2
1
s (1 + 3s)

ψ′′(a) +
s(2

1
s +4s2 − 14s2 − 7s − 1)

(1 + s)(1 + 2s)(1 + 3s)2
1
s

ψ′′(b)

+
s(2

1
s +4 − 14s2 − 7s − 1)

(1 + s)(1 + 2s)(1 + 3s)2
1
s

ψ′′(a) +
s

2
1
s (1 + 3s)

ψ′′(b)


=

(b − a)2

16
s(1 + s)(1 + 2s) + s(2

1
s +4 − 14s2 − 7s − 1)

(1 + s)(1 + 2s)(1 + 3s)2
1
s

[
ψ′′(a) + ψ′′(b)

]
.

�

Next theorem gives new upper bound of the right hand Hermite-Hadamard inequality for functions whose second
derivative is s-convex functions in the fourth sense.

Theorem 2.6. Let ψ : I→ R be twice differentiable function on I, a, b ∈ Io with a < b. If ψ′′ ∈ L [a, b] and s-convex
function in the fourth sense on I, then the following inequality holds,

ψ(a) + ψ(b)
2

−
1

b − a

b∫
a

ψ(x)dx ≤
(b − a)2

2
s2

(2s + 1)(3s + 1)
(
ψ′′(b) + ψ′′(a)

)
for s ∈ (0, 1] .

Proof. According to [7] , if ψ is a twice differentiable function on I, and ψ′′ ∈ L [a, b] , then the following equality
holds,

ψ(a) + ψ(b)
2

−
1

b − a

b∫
a

ψ(x)dx =
(b − a)2

2

1∫
0

α(1 − α)ψ′′(αa + (1 − α)b)dα

and s-convexity in the fourth sense of ψ′′, we get,

ψ(a) + ψ(b)
2

−
1

b − a

b∫
a

ψ(x)dx ≤
(b − a)2

2

1∫
0

α(1 − α)(α
1
s ψ′′(a) + (1 − α)

1
s ψ′′(b))dα

=
(b − a)2

2
s2

(2s + 1)(3s + 1)
(
ψ′′(b) + ψ′′(a)

)
.

�

Corollary 2.7. In Theorem 2.6, if we choose s = 1, the following inequality is obtained;

ψ(a) + ψ(b)
2

−
1

b − a

b∫
a

ψ(x)dx ≤
(b − a)2 (ψ′′(b) + ψ′′(a))

24
.
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3. Applications

We consider the applications of our Theorems to the special means. Let us recall the following means for positive
real numbers a, b.

Let a, b, p be positive number with a , b and p , 1,

A(a, b) =
a + b

2
,

Mp(a, b) =

(
ap + bp

2

) 1
p

,

Lp(a, b) =

 a , if a = b(
ap−bp

p(a−b)

)1/(p−1)
, else

are called Arithmetic mean, Power mean and Stolarsky mean (Generalized logarithmic mean) respectively.

Proposition 3.1. Let a, b ∈ R+ with a < b and s be fixed number in (0, 1]. The following inequality holds,[
L s

1+3s
(a, b)

] 1
s +2

+
[
M 1+2s

s
(a, b)

] 1
s +2
≥

(1 + s) (b − a)2

(3s + 1)

[
M 1

s
(a, b)

] 1
s .

Proof. The assertion follows from Theorem 2.6 applied to the s-convex function in the fourth sense ψ′′(x) = −x
1
s ,

x ∈ [a, b]

−
s2

(
a

1
s +2 + b

1
s +2

)
2 (1 + s) (1 + 2s)

−
1

b − a

b∫
a

s2x
1
s +2

(1 + s) (1 + 2s)
dx ≤ −

(b − a)2

2
s2

(1 + 2s)(1 + 3s)

(
b

1
s + a

1
s

)
.

After some simple calculations, we get

b
1
s +3 − a

1
s +3

(b − a) ( 1
s + 3)

+
a

1
s +2 + b

1
s +2

2
≥

(1 + s) (b − a)2

(1 + 3s)
b

1
s + a

1
s

2
.

�

Proposition 3.2. Let a, b ∈ R+ with a < b and s be fixed number in (0, 1]. The following inequality holds,

[A (a, b)]
1
s +1 −

[
L s

1+2s
(a, b)

] 1
s +1
≥

(b − a)2

2(2s + 1)

[
2(s + 1) [A (a, b)]

1
s + s

[
M 1

s
(a, b)

] 1
s
]
.

Proof. The assertion follows from Theorem 2.2 applied to the function ψ′(x) = −x
1
s , x ∈ [a, b] , the following inequality

is valid,

−
(

a+b
2

) 1
s +1

1
s + 1

−
1

b − a

b∫
a

−x
1
s +1

1
s + 1

dx ≤
(b − a)2

4
s

(s + 1)(2s + 1)

s(−a
1
s − b

1
s ) − 2(s + 1)

(
a + b

2

) 1
s
 .

After some simple calculations, we get(
a + b

2

) 1
s +1

−
a

1
s +2 − b

1
s +2

(b − a)
(

1
s + 2

) ≥ (b − a)2

2(2s + 1)

2(s + 1)
(

a + b
2

) 1
s

+
s(a

1
s + b

1
s )

2

 .
�

Proposition 3.3. Let a, b ∈ R+ with a < b and s be fixed number in (0, 1]. The following inequality holds,

[A(a, b)]
1
s +1 −

[
L s

1+2s
(a, b)

] 1
s +1
≤

(b − a)2 (1 + s)
4s

[
M 1

s
(a, b)

] 1
s .

Proof. Applying inequality (2.2) for convex function ψ′(x) = x
1
s , x ∈ [a, b], the following inequality is obtained,

s
1 + s

(
a + b

2

) 1
s +1

−
1

b − a

b∫
a

x
1
s +1

1
s + 1

dx ≤
(b − a)2

8

(
b

1
s + a

1
s

)
.
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If we do the necessary calculations, we get the following inequality,(
a + b

2

) 1
s +1

−
b

1
s +2 − a

1
s +2

(b − a)( 1
s + 2)

≤
(1 + s) (b − a)2

4s
b

1
s + a

1
s

2
.

�

Proposition 3.4. Let a, b ∈ R+ with a < b. The inequality holds,[
M 1

s +2 (a, b)
] 1

s +2
−

[
L s

3s+1
(a, b)

] 1
s +2
≥

(s + 1) (b − a)2

s2 (3s + 1)

[
M 1

s
(a, b)

] 1
s

for all s ∈ (0, 1] .

Proof. The assertion follows from Theorem 2.6 applied to the function ψ′′(x) = −x
1
s , x ∈ [a, b] ,

−
s2

(s + 1)(2s + 1)
a

1
s +2 + b

1
s +2

2
+

s
(s + 1)

1
(b − a)

1∫
0

x
1
s +2

1
s + 2

dx ≤ −
(b − a)2

(2s + 1) (3s + 1)
a

1
s + b

1
s

2
.

After some simple calculations, we get

a
1
s +2 + b

1
s +2

2
−

b
1
s +3 − a

1
s +3(

1
s + 3

)
(b − a)

≥
(s + 1) (b − a)2

s2 (3s + 1)
a

1
s + b

1
s

2
. (3.1)

�

Using the theorems given in main results, we can obtain some inequalities involving digamma function. We present
only one of them as an example in the following proposition.

Proposition 3.5. Let x > 5. Then,

Ψ(x) ≤
x(2x − 5)(1 + x)

6(x − 4)(x − 2)(x − 1)
− γ,

where Ψ(x) is digamma function, i.e.

Ψ(x) =
Γ′(x)
Γ(x)

for x > 0

and γ is Euler-Mascheroni constant i.e. γ ≈ 0.5772156649....

Proof. Let us write t = a
b and simplify the expression in (3.1). Then we have

1 + t
1
s +2

2
−

s
(1 + 3s)

1 − t
1
s +3

(1 − t)
≥

(s + 1) (1 − t)2

s2 (3s + 1)
1 + t

1
s

2
.

Let us integrate the expression with respect to t on [0, 1],
1∫

0

1 + t
1
s +2

2
dt −

s
3s + 1

1∫
0

1 − t
1
s +3

1 − t
dt ≥

s + 1
2s2 (3s + 1)

1∫
0

(1 − t)2
(
1 + t

1
s

)
dt,

hence, the following inequality is obtained
1∫

0

1 − t
1
s +3

1 − t
dt ≤

(3s + 2)(4s + 1)(5s + 1)
6(2s + 1)(3s + 1)

.

Using the integral representation of digamma function

Ψ(r) =

1∫
0

1 − tr−1

1 − t
dt − γ,

where r > 0. We have

Ψ(4 +
1
s

) + γ ≤
(3s + 2)(4s + 1)(5s + 1)

6(2s + 1)(3s + 1)
.
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The substitution x = 4 + 1
s above yields to

Ψ(x) + γ ≤
( 3

x−4 + 2)( 4
x−4 + 1)( 5

x−4 + 1)

6( 2
x−4 + 1)( 3

x−4 + 1)

Ψ(x) ≤
x(2x − 5)(1 + x)

6(x − 4)(x − 2)(x − 1)
− γ

for x > 5. For more information about the Digamma function, see [1]. �
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