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ÖZ E T

Ksantin oksidaz (KO), pürin katabolizmasının en son enzimidir. KO, amonyum sülfat çöktürmesi ve afinite 
kromatografisi ile saflaştırıldıktan sonra tıpta yaygın olarak kullanılan antibiyotiklerin etkileri incelendi. 

Etkisi araştırılan antibiyotikler; klaritromisin, gentamisin sülfat, sodyum ampisilin, sodyum sefazolin, klindamisin 
fosfat, rifamisin SV, kanamisin sülfattır. Antibiyotiklerin inhibisyon etkileri IC

50
 değerleri ile verilirken, ksantin 

oksidazın enzim aktivitesi, substrat olarak ksantin bileşiğini kullanılarak ölçüldü. İnhibisyon konsantrasyonuna 
karşı   % enzim aktivitesi grafiği çizildi ve grafikten yararlanılarak IC

50
 değerleri hesaplandı. Ksantin oksidaz 

enzimi üzerine makrolid grubu antibiyotiklerinden gentamisin sülfat ve kanamisin sülfatın etkisi incelendi,  
gentamisin sülfat ksantin oksidazın enzim aktivitesini artırırken kanamisin sülfat enzim aktivitesini azaltmıştır. 
Ayrıca sodyum ampisilin ve rifamisin SV de enzim aktivitesini artırmıştır. Sefazolin sodyum, klaritromisin ve 
klindamisin fosfat enzim aktivitesini inhibe etmişlerdir. Özellikle, sefazolin sodyum,  5.4 x 10–4 mg/mL IC

50
 

değeri ile çalışılan antibiyotikler arasında en etkili inhibitördür. Sefazolin sodyum için bulunan IC
50

 değeri, 
ksantin oksidazın bilinen diğer inhibitörleri ile kıyaslandığında oldukça yakın bir değer olduğu görülmektedir.
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A B S T R AC T

Xanthine oxidase (XO) is the last enzyme of purine catabolism. XO was separately purified by ammonium 
sulphate precipitation and affinity chromatography. The effect of some antibiotics which is commonly used 

in clinical on purified xanthine oxidase was determined in vitro. The name of antibiotics was gentamycin sulfate, 
sodium ampicillin, cefazolin sodium, chlarithromycin, rifamycin SV, clindamycin phosphate and kanamycin 
sulfate. XO was determined using xanthine as a substrate and IC

50
 values of these antibiotics exhibiting inhibition 

effects were found from graphs of activity (%) by plotting concentration of the antibiotics. Macrolid group of 
antibiotics, the effects of gentamycin sulfate and kanamycin sulfate were determinated on xanthine oxidase. 
Gentamycin sulfate increased xanthine oxidase enzyme activity but kanamycin sulfate caused an inhibitory 
effect on xanthine oxidase enzyme activity. In addition, sodium ampicillin and rifamycin SV caused activation 
on enzyme activity. Cefazolin sodium, chlarithromycin and clindamicin phosphate indicated inhibitory effect 
on xanthine oxidase enzyme activity. Especially, cefazolin sodium is the most effective inhibitor in studied 
antibiotics with the value of 5.4 x 10–4 mg/mL. This value is close to the other values found for XO’s classical 
inhibitors.
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INTRODUCTION

Xanthine oxidoreductase (XOR) is a member 
of the molybdenum hydroxylase family of 

proteins [1]. The enzyme is a 300 KDa dimer 
composed of identical subunit consists of 1333-
1358 amino acids, depending on the species, and 
contains binding sites for molybdopterin, iron 
and flavin cofactors [1,2]. In mammals, XOR can 
exist in two intraconvertible enzymatic forms: a 
dehydrogenase (XD; EC 1.1.3.204) which utilizes 
NAD+ as an electron acceptor and an oxidase 
(XO; EC 1.2.3.22) which utilizes O

2
 as an electron 

acceptor [2]. Both enzymatic forms are identical 
in size, subunit composition, and cofactor 
requirements and are capable of oxidizing a wide 
range of substrates [1]. In the organisms studied 
to date XD appears to be the primary gene 
product and the predominant form of the enzyme 
in mammalian tissues [3,4]. 

One of the primary biological functions of 
XOR in mammals is purine degradation where 
the enzyme catalyzes the rate-limiting step in the 
oxidation of xanthine and hypoxanthine to uric acid 
[5]. High levels of the XO form have been associated 
with tissue injury and certain diseases [6,7] and 
are believed to contribute to oxidative damage of 
cells through the generation of cytotoxic oxygen 
metabolites (H

2
O

2
; O

2
- and OH-) [6]. The XD form, on 

the other hand, may be an important component 
in the defense against oxygen radical damage 
through its role in the synthesis of uric acid, a potent 
antioxidant [8]. 

Xanthine oxidase, a cellular redox enzyme, 
is highly expressed in mammary epithelial cells. 
During lactation these cells synthesise milk-fat 
globules that are packaged in a membrane of which 
xanthine oxidase is the predominant protein, thus 
milk is a rich source of the enzyme. Xanthine oxidase 
can generate weakly microbicidal superoxide and 
hydrogen peroxide. These may give antimicrobial 
protection to the neonatal stomach [9].

Most of the drugs affect the enzyme systems as 
an activator or inhibitor [10-12]. Many drugs exhibit 
the same effects both in vivo and in vitro, but some 
of them may not show the same effects on enzymes 
[13]. Many antibiotics are being used in therapies. 

There are few reports related to changes in enzyme 
activities [12].

Gentamycin sulfate is aminoglycoside antibiotic, 
which is widely used for the treatment of bactericide 
effects of Pseudomonas aeruginosa, Klebsiella–
Enterobacter–Serratia, Citrobacter, Staphylococcus, 
Shigella and Salmonella species. Gentamycin sulfate 
is an inhibitor for NADPH oxidase and glucose 
6-phosphate dehydrogenase [14,15]. 

Cefazolin sodium is a cephalosporin antibiotic, 
which is effective on Streptococcus pneumoniae, 
Echerichia coli, Proteus mirabilis, Klebsiella 
species, Enterobacter aerogenes and Haemophilus 
influenzae. The antibiotic cefazolin sodium causes 
significant decrease in level of liver glucose 
6-phosphate dehydrogenase and human carbonic 
anhydrase I and II [15,16].

Clarithromycin is a macrolide antibiotic that 
is widely used for the treatment of a myriad of 
infections such as those caused by Hemophilus 
influenzae, Mycobacterium avium, and Helicobacter 
pylori. Clarithromycin is oxidatively metabolized to 
14-(R)-hydroxyclarithromycin or N-demethylated 
to N-desmethylclarithromycin and members of the 
CYP3A subfamily mediate these reactions [17]. Like 
erythromycin, clarithromycin is a potent mechanism 
based inhibitor of CYP3A [18]. 

Clindamycin, a semi-synthetic derivative of 
lincomycin, is an antibiotic that is highly effective 
against Gram-positive and Gram-negative anaerobic 
pathogens, as well as Gram-positive aerobes. Its 
phosphate ester, clindamycin-2-phosphate, is pro-
duced by chemical modification of clindamycin. 
Although the ester is not biologically active, it is 
rapidly hydrolyzed to the active clindamycin in vivo 
[19-21].

Rifamycin sodium is a semi-synthetic macro-
cyclic antibiotic derived from natural rifamycin B 
that is produced by Amycolatopsis rifamycinica sp. 
Because of its broad spectrum of activity against 
Gram-positive and Gram-negative bacteria it is 
used for wound cleaning before closure [22–25]. 
Rifampicin and rifamycin SV are the most important 
antibiotics of the group with excellent therapeutic 
action in the treatment of several infectious 
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diseases, such as tuberculosis. Drug-monitoring 
in patients during antituberculosis therapy is 
important, especially in AIDS patients, owing to a 
global increase in the prevalence of drug-resistant 
tuberculosis [26–32].

Many antibiotics are used to deal with some 
tissues disorders but there are few studies of 
their effects on enzyme activities. The effects 
of some widely used antibiotics on serum and 
liver paraoxonase have been investigated. The 
other study was investigated in vitro the effects 
of chloramphenicol and clarithromycin on serum 
hPON1 and on liver hPON1 in HepG2 cell line [33].

Some studies were to determine the effect of 
some antibiotics, sodium ampicillin, ciprofloxacin, 
rifamycin SV and clindamiycin phosphate, on 
purified human serum paraoxonase in vitro, and 
mouse serum and liver paraoxonase in vivo [34]. 
Other studies were on the effects of streptomycin 
sulphate, gentamicin sulphate, ampi cillin, netilmicin, 
cefotaxime sodium, cefodizime sodium, teicoplanine, 
and thiamphenicol on the activity of glutathione 
reductase (GR) from bovine erythrocyte [35]. 

A few reports have indicated that some increases 
and decreases were found in human liver enzyme 
activity levels such as aspartate aminotransferase, 
alanine aminotransferase, and alkaline phosphatase 
[36–39]. In addition, inhibitory effects of some 
antibiotics, such as sodium ceftizoxime, sodium 
ampicillin, sodium cefuroxime, sodium cefazolin, 
sod-ium cefoperazone, streptomycin sulfate, 
gentamicin sulfate, and netilmicin sulfate on gluc-
ose 6-phosphate dehydrogenase from human eryt-
hrocytes have been investigated [40]. 

Since the effects of many of the known 
antibiotics have not been analysed on XO enzyme 
yet.  In the present study, the in vitro effect of sodium 
ampicillin, clarithromycin, gentamycin sulphate, 
cefazolin sodium, clindamycin phosphate, rifamycin 
SV, kanamycin sulphate on XO purified from milk 
were investigated.  Using the IC

50
 values obtained 

(causing 50% inhibition of enzyme activity), some 
undesirable side-effects can be diminished on XO 
enzyme activity and body metabolism in therapy 
[41].

MATERIAL AND METHODS

Materials
Sepharose 4B, L-tyrosine, benzamidine , protein 
assay reagents and chemicals for electrophoresis 
were obtained from Sigma Chem. Co. All other 
chemicals used were of analytical grade and 
obtained from either Sigma or Merck. 

Enzyme Purification
Fresh bovine milk, without added preservative, was 
cooled down to 4ºC, overnight. EDTA and toluene 
were then added to give final concentrations of 
2 mM and 3% (v/v), respectively. The milk was 
churned with a blender at top speed for 30 min 
at room temperature. This sample was brought to 
38% saturation by addition of solid ammonium 
sulphate [42]. The suspension was centrifuged 
at 15000 rpm for 30 min and the precipitate 
formed was discarded. The supernatant was 
brought to 50% saturation with solid ammonium 
sulphate. The precipitate formed was collected 
by centrifugation at 15000 rpm for 60 min and 
dissolved 0.1 M Tris-HCl, pH= 7.6. 

The pooled precipitate obtained from bovine 
milk by using ammonium sulfate precipitation was 
subjected to affinity chromatography. The sample 
prior to that it was loaded onto the affinity column 
containing benzamidine. 

 Affinity column equilibrated in 0.1 M glycine, 0.1 
M NaCl, pH=9. The sample was applied to the affi-
nity gel was washed with 0.1 M glycine, pH=9.0. XO 
was then eluted with 25 mM benzamidine in 0.1 M 
glycine, 0.1 M NaCl, pH=9.  Fractions of 1.5 mL were 
collected and their absorbance measured at 280 
nm. 

Activity measurements
Xanthine oxidase activity was determined at 37°C 
by the modified method of Massey et al [43]. The 
conversion of xanthine uric acid was followed by 
monitoring the change in absorbance at 295 nm, 
using CARY 1E, UV-Visible Spectrophotometer- 
VARIAN spectrometer (ε

292
=9.5 mM-1 cm-1). The 

reaction mixture contained 50 mM Tris-HCl, pH 
7.6, and 0.15 mM xanthine, at 37°C. The assay was 
initiated by the addition of the enzyme. One unit 
of enzyme activity was defined as the amount of 
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enzyme that converts one μmol of xanthine to 
uric acid per min under defined conditions [42]. 

In vitro inhibition kinetic studies 
For the inhibition studies of some antibiotics 
different concentration of medical drugs were 
added to the enzyme activity. Xanthine oxidase 
enzyme activity with medical drugs was assayed 
by following the oxidation of xanthine. Activity 
% values of xanthine oxidase for six different 
concentrations of each medical drug were 
determined by regression analysis using the 
Microsoft Office 2000 Excel. Xanthine oxidase 
activity without a medical drug was accepted 
as 100% activity. The inhibitor concentration 
causing up to 50% inhibition (IC

50
 values) on 

enzyme were determined from the graphs.

Total protein determination 
The absorbance at 280 nm was used to monitor 
the protein in the column effluents. Quantitative 
protein determination was achieved by absorban-
ce measurements at 595 nm according to 
Bradford [44] with bovine serum albumin as a 
standard.

SDS polyacrylamide gel electrophoresis
SDS polyacrylamide gel electrophoresis was 
performed after purification of the enzyme. It 
was carried out in 10% and 3% acrylamide-
bisacrylamide concentration for the running and 
stacking gel, respectively, containing 0.1% SDS 
according to Laemmli [45]. Sample was applied 
to the electrophoresis medium. Gel was stained 
overnight in 0.1% Coomassie Brilliant Blue R- 
250 in 50% methanol and 10% acetic acid, then 
destained by frequently changing the same 
solvent, without dye. The electrophoretic pattern 
was photographed with the system of produce as 
an image of the gel. 

RESULTS AND DISCUSSION

Xanthine oxidase, a cellular redox enzyme, is 
highly expressed in mammary epithelial cells 
[46] but XO was extracted from fresh bovine 
milk without added preservative using toluene 
and EDTA in this study. Toluene together with the 
gradual increase in temperature (from 4 to 45°C) 
during churning caused an efficient extraction of 

the enzyme from lipid micelles. Filtration of the 
churned milk through filtration paper could be 
fractionated directly with ammonium sulphate. 
The entire enzyme was successfully collected 
in a narrow range of ammonium sulphate 
concentration (38-50% saturation). At this step, 
a 35-fold purification was achieved [42]. The 
precipitate form was collected and dissolved 0.1 
M Tris-HCl, pH= 7.6. The dissolved sample prior to 
that it was loaded onto affinity column containing 
benzamidine. The affinity gel was equilibrated 
in 0.1  M glycine, 0.1  M NaCl, pH= 9. The sample 
was applied to the affinity gel was washed with 
0.1 M glycine, pH= 9. XO was then eluted with 25 
mM benzamidine in 0.1  M glycine, 0.1 M NaCl, pH= 
9. Fractions of 1.5 mL were collected and their 
absorbance measured at 280 nm. 

The purification of enzyme was controlled with 
SDS-polyacrylamide gel electrophoresis (Figure 
1). In Figure 1, the results of graphics were listed 
in terms of mg/mL of the test chemical causing a 
50 % reduction in enzyme activity, and the values 

Figure 1. SDS-PAGE of xanthine oxidase. The poled 
fractions from affinity chromatography was analyzed by 
SDS-PAGE (%12 and %3) and revealed by Coomassie Blue 
staining. Experimental conditions were as described in the 
method. Lane 1 contained 5 μL of various molecular mass 
standards: 3-galactosidase, (116.0), bovine serum albumin 
(66.2), ovalbumin (45.0), lactate dehydrogenase, (35.0), 
Restriction endonuclease (25.0), 3-lactoglobulin (18.4), 
lysozyme (14.4).
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of the activation increasing in stock concentration 
were established in the graphics.

Many chemicals at relatively low doses affect 
metabolism by altering normal enzyme activity, 
particularly through inhibition of a specific enzyme 
[47]. Therefore, we investigated the effect of widely 
used antibiotics, namely clarithromycin, gentamycin 
sulphate, sodium ampicillin, cefazolin sodium, 
clindamycin phosphate, rifamycin SV, kanamycin 
sulphate on the xanthine oxidase enzyme activity in 
vitro inhibition studies.

Gentamycin belongs to aminoglycoside class 
of antibiotics while cefazolin sodium is a class of 
Cephalosporin antibiotics. These antibiotics appear 
to prevent bacteria from making their cell walls, 
causing the cells die. These drugs are used to treat 
many sensitive Gram-negative and some Gram-
positive bacteria.

Gentamicin, an aminoglycoside antibiotic, 
has been used effectively against Gram-negative 
infections since it was introduced in the 1970s 
[48,49]. Its chemical stability and rapid bactericidal 
action have made it a first-line drug in a variety of 
clinical situations [48,50]. However, clinical studies 
[51–53] report that gentamicin causes a dose-
limiting nephrotoxicity that accounts for 20% of all 
cases of acute renal failure. Although a change from 
multiple daily doses to a single daily dose reduces the 
risk of nephrotoxicity, the incidence of gentamicin 
induced acute renal failure remains high [54–56]. 
Oxidative stress, caused by the overproduction 
of reactive oxygen species (ROS), is a central 
pathway responsible for gentamicin-associated 
nephrotoxicity [49,50,57,58]. Accumulated amino-
glycosides in proximal tubular epithelial cells lead 
to the structural disturbance of cell membranes 
and to cell death because of ROS involvement [59]. 
Reactive oxygen species cause cellular injury and 
necrosis via several mechanisms: peroxidation of 
membrane lipids, protein denaturation, and DNA 
damage [60]. Hydroxyl radical, one of the most 
toxic ROS, is generated primarily from NO that 
interacts with superoxide anion [61]. In addition, the 
activation of renal iNOS and of xanthine oxidase are 
important for producing NO and superoxide anion, 
respectively [62,63].

Clarithromycin is a macrolide antibiotic used to 
treat pharyngitis, tonsillitis, acute maxillary sinusitis,  
acute bacterial exacerbation of chronic bronchitis, 
pneumonia (especially atypical pneumonias asso-
ciated with Chlemydia pneumoniae or TWAR), 
skin and skin structure infections. In addition, it is 
sometimes used to treat LEgionellosis and lyme 
disease [33]. Ampicillin is used to treat a wide 
variety of bacterial infections. It is a penicillin-
type antibiotic. It works by stopping the growth of 
bacteria [34].Clindamycin (CLDM) is a semisynthetic 
derivative of lincomycin, and was introduced in the 
1960s as an antibiotic. Its antibacterial mechanism 
involves the inhibition of cell growth by blocking 
peptide bond formation via direct binding to 
functionally important sites on ribosomes [64,65]. 
Clindamycin is a lincosamide antibiotic. It is usually 
used to treat infections with anaerobic bacteria but 
can also be used to treat some protozoal diseases, 
such as malaria. It is a common topical treatment 
for acne  and can be useful against some methicillin-
resistant Staphylococcus aureus (MRSA) infections 
[33]. Rifamycin SV is the most important antibiotics 
of the group with excellent therapeutic action in the 
treatment of several infectious diseases, such as 
tuberculosis.

Macrolides are a long-used class of antibiotics 
which still play an important role in the chemotherapy 
of infectious diseases. They have been shown 
to affect several pathways of the inflammatory 
process, such as the migration of neutrophils, the 
oxidative burst in phagocytes, and the production 
of proinflammatory cytokines. Although the precise 
mechanisms of these effects are not clear, it has 
been suggested that the interaction between 
macrolides and leukocytes may be important [66]. 
Some studies have suggested that the antioxidant 
properties, shared by several macrolides, may play 
a role in the anti-inflammatory activity of these 
agents [66,67].

Xanthine oxidase (XO) is the last enzyme of pu-
rine catabolism. It catalyzes conversion of xanthine 
and hypoxanthine to uric acid and the production 
of superoxide radical anion, which is potentially to-
xic to cellular structures [68]. Free radicals (FR) and 
lipid peroxides have been implicated in the patho-
genesis of a wide variety of diseases ranging from 
infectious, inflammatory and autoimmune disea-
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ses to atherosclerosis and cancer [69-75]. FRs are 
known to play an important role in the intracellular 
killing of microorganisms by leukocytes. The chal-
lenge of polymorphnuclear cells with many activa-
ting agents, including immune complement, evokes 
a potent response that produces toxic oxygen spe-
cies, such as O–2, and hydrogen peroxide [69]. Incre-
ased FRs may cause cell and tissue damage [76-78]. 
A major source of radicals in biological systems is 
molecular oxygen (O2). XO is an important source of 
O–2 in cells and tissues. This enzyme catalyses the 
conversion of hypoxanthine and xanthine to uric 
acid and the rate-limiting step in purine nucleotide 
catabolism [79]. 

They was found that XO activities were 
significantly lower in erythromycin, azithromycin, 
roxithromycin, and clarithromycin- treated groups, 
while XO activities in experimental group were 
significantly higher than in the studied control group 
[69]In other study, treatment of cultured renal 
epithelial cells (LLC-PK

1
) cells with cephaloridine 

(CLD) induced time- and concentration-dependent 
inhibition of Cytochrome c oxidase activity in the 
mitochondria [79]. Another study, in rats, a daily 
supplement of sesame oil significantly protected 
against renal injury induced by a single daily dose of 
gentamicin. Sesame oil partially blocked gentamicin-
induced renal oxidative stress and oxygen free 
radicals and NO generation, and partially inhibited 
renal xanthine oxidase activity and iNOS expression 
[80].

ROS have potential deleterious effects on the 
biological system, as they can damage proteins, 
lipids, and nucleic acids [81–83]. The other study 
showed that the macrolide antibiotics (erythromycin, 
azithromycin, roxithromycin, and clarithromycin) 

increase NOS activity, decrease XO activity and MDA 
level, which is an important indicator of oxidative 
stress [84].

Therefore, the effects of these widely used 
antibiotics (Figure 2) have initially been studied on 
the purified xanthine oxidase enzyme activity in vitro.
Some antibiotics which we investigated their effects 
in our studies different levels effected the xanthine 
oxidase. For the antibiotics shown inhibition effect, 
the IC

50
 values of the chemicals caused inhibition 

were determined by means of activity percentage-
[I] diagrams (Figure 3). Some antibiotics indicated 
activatory effect on the enzyme activity. The results 
showed that cefazolin sodium, clarithromycin, 
clindamycin phosphate and kanamycin sulphate 
inhibited the xanthine oxidase. The values of IC

50
 

were 5.40 x 10-4 mg/mL, 1.68 mg/mL, 1.39 mg/mL 
and 1.49 mg/mL, respectively. The most effective 
antibiotic for XO was sefazolin sodium. On the other 
hand, the antibiotics showed activation increasing 
on XO were gentamycin sulphate, sodium ampicillin, 
rifamycin SV.  

Antibiotics showing inhibitory effects on XO 
give rise their effect by bound to active center of 
enzymes or bound to the other part of enzymes. On 
the other hand, it can be said that the reason of IC

50
 

values changing in respect to enzyme depend to the 
range, number and kind of enzyme amino acids.
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