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Abstract. In this paper, we study the geodesic, asymptotic, and slant helical

trajectories according to PAFORS in three-dimensional Euclidean space and
give some characterizations on them. Also, we explain how we determine the

helix axis for slant helical trajectories (according to PAFORS). Moreover, we

develop a method that enables us to find the slant helical trajectory (if exists)
lying on a given implicit surface which accepts a given fixed unit direction

as an axis and a given angle as the constant angle. This method also gives

information when the desired slant helical trajectory does not exist. The re-
sults obtained here involve some differential and partial differential equations

or they are based on these equations. The aforementioned results are new

contributions to the field and they may be useful in some specific applications
of particle kinematics and differential geometry.

1. Introduction and Preliminaries

Despite its long history, the theory of surfaces is still an issue of interest in 3-
dimensional Euclidean space. Darboux frame, which is constructed on a surface, is
an important part of this theory. It exists at all the points of a curve on a regular
surface [1]. The success of developing this frame belongs to French mathemati-
cian J. G. Darboux. From the discovery of this frame until now, many researchers
have presented lots of interesting studies on the theory of surfaces by using this
frame. Some of these studies can be found in [2–7]. One of the newest of them

is the study [8] presented by Özen and Tosun. They introduced PAFORS (posi-
tional adapted frame on the regular surface) for the trajectories with non-vanishing
angular momentum in this study.

Let the Euclidean 3-space E3 be taken into account with the standard scalar
product 〈N,P〉 = n1p1 +n2p2 +n3p3 where N = (n1, n2, n3), P = (p1, p2, p3) are

any vectors in E3. The norm of N is given as ‖N‖ =
√
〈N, N〉. If a differentiable
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curve α = α (s) : I ⊂ R → E3 satisfies
∥∥dα
ds

∥∥ = 1 for all s ∈ I, it is called a unit
speed curve. In that case, s is said to be arc-length parameter of α. A differentiable
curve is called a regular curve if its derivative does not equal zero along the curve.
An arbitrary regular curve can be reparameterized by the arc-length of itself [9].
Throughout the paper, the differentiation with respect to the arc-length parameter
s will be shown with a dash.

Assume that a point particle moves along the trajectory α : I ⊂ R→ M ⊂ E3

which is a unit speed curve and lies on a regular surface M . In this case, there
exists Darboux frame denoted by {T,Y,U} along the trajectory α = α (s). Here,
T is the unit tangent vector of α, U is the unit normal vector of M restricted to α
and Y is the unit vector given by Y = U×T. The derivative formulas of Darboux
frame are given by:

T′

Y′

U′

 =

 0 kg kn
−kg 0 τg
−kn −τg 0

 T
Y
U

 .

The functions τg, kg and kn are called geodesic torsion, geodesic curvature and
normal curvature of the curve α, respectively [1, 2]. The following relationships
based on these functions are well known [1]:

(1) α = α (s) is an asymptotic curve if and only if kn = 0,
(2) α = α (s) is a geodesic curve if and only if kg = 0.

Another thing that can be of importance is the angular momentum vector of the
aforementioned particle about the origin. This vector has an important place in
particle kinematics. It is calculated as the vector product of the position vector
and linear momentum vector of the particle. It always lies on the instantaneous
plane Sp {Y(s),U(s)}. Let us assume that this vector never equals zero during the
motion of the aforementioned particle. This assumption ensures that the functions
〈α(s),Y(s)〉 and 〈α(s),U(s)〉 are not zero at the same time along the trajectory
α = α (s). That is, we can say that the tangent line of α = α(s) at any point
does not pass through the origin. In this case, there exists PAFORS denoted by
{T(s),G(s),H(s)} along the trajectory α = α(s). As mentioned earlier, this frame
has been recently introduced in the study [8]. PAFORS contains a lot of information
about the position vector of the moving particle. Also, it enables us to study
together the kinematics of the moving particle on surface, the differential geometry
of the trajectory and the differential geometry of the surface. So, it is expected that
PAFORS will enable more convenient observation environment for the researchers
studying on modern robotics in the future. In the system {T(s),G(s),H(s)}, T(s)
is the unit tangent vector of the trajectory and it is the common base vector of
this frame with the Darboux frame. Consider the vector whose starting point
is the foot of the perpendicular (from O to instantaneous plane Sp {T(s),U(s)})
and the endpoint is the foot of the perpendicular (from O to instantaneous plane
Sp {T(s),Y(s)}). The equivalent of this vector at the point α (s) determines the
third base vector H(s) of PAFORS. Therefore, H(s) is calculated as follows (see [8]
for more details):

H(s) =
〈−α(s),Y(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),U(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s).
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On the other hand, the second base vector G(s) is obtained by vector product
H(s) ∧T (s) as in the following:

G(s) =
〈α(s),U(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
Y(s) +

〈α(s),Y(s)〉√
〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2

U(s).

Since tangent vector T(s) is mutual in both PAFORS and Darboux frame, the
vectors Y(s), U(s), G(s) and H(s) lie on the same plane. Thus, there is a relation
between PAFORS and Darboux frame as follows:T (s)

G(s)
H(s)

 =

1 0 0
0 cos Ω(s) − sin Ω(s)
0 sin Ω(s) cos Ω(s)

T(s)
Y(s)
U(s)


where Ω(s) is the angle between the vectors U(s) and H(s) (or likewise Y(s) and
G(s)) which is positively oriented from U(s) to H(s) (or likewise from Y(s) to
G(s))(see Figure 1). Additionally, the derivative formulas of PAFORS are given byT′(s)

G′(s)
H′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
G(s)
H(s)


where

k1(s) = kg(s) cos Ω(s)− kn(s) sin Ω(s)

k2(s) = kg(s) sin Ω(s) + kn(s) cos Ω(s) (1.1)

k3(s) = τg(s)− Ω′(s).

 

O 

α(s) 
α 

T(s) 

U(s) 

Y(s) 

Ω(s) 

Sp{T(s),Y(s)} 

M 

H(s) 

(a)

 U(s) 

Y(s) 

H(s) 

‒Y(s) 

‒U(s) 

Ω(s) 

H(s)ʌT(s)=G(s) 

χ(s) 

Sp{Y(s),U(s)} 

(b)

Figure 1. An illustration for PAFORS
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Since

sin Ω(s) =
−〈α(s), Y(s)〉√

〈α(s), Y(s)〉2 + 〈α(s), U(s)〉2

cos Ω(s) =
〈α(s), U(s)〉√

〈α(s), Y(s)〉2 + 〈α(s), U(s)〉2
(1.2)

tan Ω(s) = −〈α(s), Y(s)〉
〈α(s), U(s)〉

,

the rotation angle Ω(s) is determined as follows:

Ω(s) =



arctan
(
− 〈α(s),Y(s)〉
〈α(s),U(s)〉

)
if 〈α(s),U(s)〉 > 0

arctan
(
− 〈α(s),Y(s)〉
〈α(s),U(s)〉

)
+ π if 〈α(s),U(s)〉 < 0

−π2 if 〈α(s),U(s)〉 = 0 , 〈α(s),Y(s)〉 > 0

π
2 if 〈α(s),U(s)〉 = 0 , 〈α(s),Y(s)〉 < 0.

Any element of the set {T(s),G(s),H(s), k1(s), k2(s), k3(s)} is called as PAFORS
apparatus of the curve α = α (s) [8].

This paper is organized as follows. In Section 2, we consider the geodesic and
asymptotic trajectories according to PAFORS in three-dimensional Euclidean space
and give some corollaries for the special cases of these trajectories. In Section 3,
we study the slant helical trajectories according to PAFORS and give a method to
investigate the existing or not existing of the desired slant helical trajectory on a
given implicit surface.

2. Some Characterizations on Geodesic and Asymptotic Trajectories

In the remaining sections, we continue to consider any moving point particle on a
regular surface M satisfying the aforesaid assumption and to denote the unit speed
parameterization of the trajectory by α = α(s). Also, we will show the parameter
interval of the trajectory α = α(s) with I.

Lemma 2.1. α = α (s) is an asymptotic curve if and only if k1
2 + k2

2 = kg
2.

Proof. From the first and second equations in (1.1),

k1
2 + k2

2 = kg
2 + kn

2

can be easily written. Due to the this equality, the remaining part of the proof is
obvious. �

Considering above, we give the following lemma without proof.

Lemma 2.2. α = α (s) is a geodesic curve if and only if k1
2 + k2

2 = kn
2.

In the light of the equations (1.1) and (1.2), the following two remarks can be
easily given.
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Remark 1. Let α = α(s) be an asymptotic curve on M with kg 6= 0 (The reason
why we take kg as nonzero is to avoid k1 = k2 = 0). In that case

k1(s) = kg(s)
〈α(s),U(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
(2.1)

k2(s) = −kg(s)
〈α(s),Y(s)〉√

〈α(s),Y(s)〉2 + 〈α(s),U(s)〉2
(2.2)

can be immediately written. By keeping kg 6= 0 and the assumption concerned with
the angular momentum in mind, it is very easy to say that k1(s) and k2(s) do not
equal to zero simultaneously and they verify the followings

k1(s) = 0 ⇔ 〈α(s),U(s)〉 = 0

k2(s) = 0 ⇔ 〈α(s),Y(s)〉 = 0.

As a result of the proposition k1(s) = 0 ⇔ 〈α(s),U(s)〉 = 0, we can write the
equality k1(s) 〈α(s),Y(s)〉 + k2(s) 〈α(s),U(s)〉 = 0 when k1(s) = 0. Considering
above and using the equations (2.1), (2.2) we have

k2(s)

k1(s)
= −〈α(s), Y(s)〉
〈α(s), U(s)〉

where k1(s) 6= 0. So, we can conclude that

k1(s) 〈α(s), Y(s)〉+ k2(s) 〈α(s), U(s)〉 = 0 (2.3)

is satisfied along the trajectory α = α(s).

Remark 2. Let α = α(s) be a geodesic curve on M with kn 6= 0 (The reason why
we take kn as nonzero is to avoid k1 = k2 = 0). In that case

k1(s) = kn(s)
〈α(s), Y(s)〉√

〈α(s), Y(s)〉2 + 〈α(s), U(s)〉2
(2.4)

k2(s) = kn(s)
〈α(s), U(s)〉√

〈α(s), Y(s)〉2 + 〈α(s), U(s)〉2
(2.5)

can be easily written. Similarly, we can easily say that k1(s) and k2(s) do not equal
to zero simultaneously and they verify the followings

k1(s) = 0 ⇔ 〈α(s),Y(s)〉 = 0

k2(s) = 0 ⇔ 〈α(s),U(s)〉 = 0

by keeping the assumption concerned with the angular momentum and kn 6= 0 in
mind. As a result of the proposition k2(s) = 0 ⇔ 〈α(s),U(s)〉 = 0, we can write
k2(s) 〈α(s),Y(s)〉 − k1(s) 〈α(s),U(s)〉 = 0 when k2(s) = 0. Taking into considera-
tion above and using the equations (2.4), (2.5) we have

k1(s)

k2(s)
=
〈α(s), Y(s)〉
〈α(s), U(s)〉

where k2(s) 6= 0. Therefore, we can conclude that

k2(s) 〈α(s), Y(s)〉 − k1(s) 〈α(s), U(s)〉 = 0 (2.6)

is satisfied along the trajectory α = α(s).
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Theorem 2.3. Let α = α(s) be an asymptotic curve on M with kg 6= 0. In that
case, α = α(s) is a curve whose position vector always lies on the instantaneous
plane Sp {T(s),U(s)} iff k2 = 0.

Proof. Assume that the asymptotic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),U(s)}. Then, 〈α(s),Y(s)〉 = 0 for all the
values s of parameter. Considering the equation (2.3), we obtain

k2(s) 〈α(s),U(s)〉 = 0 (2.7)

for all s. Because of the non-vanishing angular momentum, 〈α(s),U(s)〉 never
vanishes along α. The first part of the proof is completed by using this information
in (2.7).

Conversely, suppose that k2 = 0. From the equation (2.3), we have

∀s ∈ I, k1(s) 〈α(s), Y(s)〉 = 0.

Due to Remark 1, we know that k1(s) and k2(s) can not equal to zero simultaneously
along α. Thus, we can conclude that k1(s) never vanishes. This gives us the
following

∀s ∈ I, 〈α(s),Y(s)〉 = 0

which means that the asymptotic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),U(s)}. �

Theorem 2.4. Let α = α(s) be an asymptotic curve on M with kg 6= 0. In that
case, α = α(s) is a curve whose position vector always lies on the instantaneous
plane Sp {T(s),Y(s)} iff k1 = 0.

Proof. Assume that the asymptotic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),Y(s)}. In this case, 〈α(s),U(s)〉 = 0 for
all the values s of the arc-length parameter. Taking into account of the equation
(2.3), we have

k1(s) 〈α(s), Y(s)〉 = 0

for all s. Similarly above, 〈α(s),Y(s)〉 never vanishes along α thanks to the non-
vanishing angular momentum. Then

∀s ∈ I, k1(s) = 0

can be concluded and this finishes the first part of the proof.
Conversely, assume that k1 = 0. In that case, from the equation (2.3)

∀s ∈ I, k2(s) 〈α(s), U(s)〉 = 0

can be written. Because k1(s) and k2(s) do not equal to zero simultaneously along
α = α(s), we can say

∀s ∈ I, k2(s) 6= 0.

This yields the following

∀s ∈ I, 〈α(s),U(s)〉 = 0

which means that the asymptotic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),Y(s)}. �

Theorem 2.5. Let α = α(s) be an asymptotic curve on M with kg 6= 0. Then the
following properties hold:
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(1) If the position vector of α = α(s) always lies on the instantaneous plane
Sp {Y(s),U(s)}, differential equation k1k2

′−k2k1′+(Ω′+k3)(k1
2+k2

2) = 0
is satisfied along α.

(2) If the differential equation k1k2
′−k2k1′+(Ω′+k3)(k1

2+k2
2) = 0 is satisfied

along α with k1, k2 6= 0, then the position vector of α = α(s) always lies on
the instantaneous plane Sp {Y(s),U(s)}.

Proof. One can easily find the equation

0 = −
(
k1

2(s) + k2
2(s)

)
cos Ω(s) 〈α(s), T(s)〉

+
(
−k2(s)(k3(s) + Ω′(s)) + k1

′(s)
)
〈α(s), Y(s)〉 (2.8)

+
(
k1(s)(k3(s) + Ω′(s)) + k2

′(s)
)
〈α(s), U(s)〉

by differentiating (2.3) and considering the relations between the PAFORS appara-
tus and Darboux apparatus. If the necessary operations are applied to the equations
(2.3) and (2.8) side by side,

0 = k2(s)
(
k1

2(s) + k2
2(s)

)
cos Ω(s) 〈α(s),T(s)〉 (2.9)

+
(
k1(s)k2

′(s)− k2(s)k1
′(s) + (Ω′(s) + k3(s))(k1

2(s) + k2
2(s))

)
〈α(s),Y(s)〉

can be obtained. Now we can investigate the items:

(1) Assume that the position vector of α = α(s) always lies on the instantaneous
plane Sp {Y(s),U(s)}. Then,

〈α(s), T(s)〉 = 0 (2.10)

for all the values s. Taking into consideration (2.9), we get(
k1(s)k2

′(s)− k2(s)k1
′(s) + (Ω′(s) + k3(s))(k1

2(s) + k2
2(s))

)
〈α(s),Y(s)〉 = 0 (2.11)

for all s. Also, differentiating the equation (2.10) gives us the following:

kg(s) 〈α(s), Y(s)〉+ kn(s) 〈α(s), U(s)〉 = −1.

Since kn = 0 for the asymptotic curve α = α(s),

∀s ∈ I, 〈α(s), Y(s)〉 = − 1

kg(s)
6= 0 (2.12)

can be written. Therefore,

k1k2
′ − k2k1′ + (Ω′ + k3)(k1

2 + k2
2) = 0

is obtained from (2.11) and (2.12).

(2) Let the differential equation k1k2
′ − k2k1

′ + (Ω′ + k3)(k1
2 + k2

2) = 0 be
satisfied along α with k1, k2 6= 0. In the light of (2.9), we can write

∀s ∈ I, k2(s)
(
k1

2(s) + k2
2(s)

)
cos Ω(s) 〈α(s), T(s)〉 = 0.

Because k1, k2 6= 0, we get

∀s ∈ I, 〈α(s), T(s)〉 = 0

which means that the position vector of the asymptotic curve α always lies on

the instantaneous plane Sp {Y(s),U(s)} (Notice that cos Ω(s) = k1(s)
kg(s)

under these

conditions). �
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Theorem 2.6. Let α = α(s) be a geodesic curve on M with kn 6= 0. In that case,
α = α(s) is a curve whose position vector always lies on the instantaneous plane
Sp {T(s),U(s)} iff k1 = 0.

Proof. Assume that the geodesic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),U(s)}. Then, 〈α(s), Y(s)〉 = 0 for all the
values s. Taking into account of (2.6), we get

−k1(s) 〈α(s), U(s)〉 = 0 (2.13)

for all s. Because of the non-vanishing angular momentum, 〈α(s),U(s)〉 never
vanishes along α. Substituting this into (2.13) completes the first part of the proof.

Conversely, assume that k1 = 0. From (2.6), we obtain

∀s ∈ I, k2(s) 〈α(s), Y(s)〉 = 0.

Due to Remark 2, we know that k1(s) and k2(s) can not equal to zero simultaneously
along α. Thus, we can conclude that k2(s) never vanishes. This yields

∀s ∈ I, 〈α(s), Y(s)〉 = 0

which means that the geodesic curve α is a curve whose position vector always lies
on the instantaneous plane Sp {T(s),U(s)}. �

Theorem 2.7. Let α = α(s) be a geodesic curve on M with kn 6= 0. In that case,
α = α(s) is a curve whose position vector always lies on the instantaneous plane
Sp {T(s),Y(s)} iff k2 = 0.

Proof. Suppose that the geodesic curve α is a curve whose position vector always
lies on the instantaneous plane Sp {T(s),Y(s)}. Then, 〈α(s),U(s)〉 = 0 for all the
values s. Considering (2.6), we find

k2(s) 〈α(s),Y(s)〉 = 0

for all s. Similarly previous proof, we can say that 〈α(s),Y(s)〉 never vanishes along
α in the light of non-vanishing angular momentum. Then

∀s ∈ I, k2(s) = 0

can be concluded.
Conversely, assume that k2 = 0. In that case, from (2.6)

∀s ∈ I, −k1(s) 〈α(s),U(s)〉 = 0

can be written. Because k1(s) and k2(s) do not equal to zero simultaneously along
α, we find

∀s ∈ I, k1(s) 6= 0.

This yields the following

∀s ∈ I, 〈α(s),U(s)〉 = 0

which means that the geodesic curve α is a curve whose position vector always lies
on the instantaneous plane Sp {T(s),Y(s)}. �

Theorem 2.8. Let α = α(s) be a geodesic curve on M with kn 6= 0. Then the
following properties hold:

(1) If the position vector of α = α(s) always lies on the instantaneous plane
Sp {Y(s),U(s)}, differential equation k2k1

′−k1k2′−(k3+Ω′)(k1
2+k2

2) = 0
is satisfied along α.
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(2) If the differential equation k2k1
′−k1k2′−(k3+Ω′)(k1

2+k2
2) = 0 is satisfied

along α with k1, k2 6= 0, then the position vector of α = α(s) always lies on
the instantaneous plane Sp {Y(s),U(s)}.

Proof. One can easily find the equation

0 = −
(
k1

2(s) + k2
2(s)

)
sin Ω(s) 〈α(s), T(s)〉

+
(
k1(s)(k3(s) + Ω′(s)) + k2

′(s)
)
〈α(s), Y(s)〉 (2.14)

+
(
k2(s)(k3(s) + Ω′(s))− k1′(s)

)
〈α(s), U(s)〉

by differentiating (2.6) and taking into consideration the relations between the
PAFORS apparatus and Darboux apparatus. If the necessary operations are ap-
plied to the equations (2.6) and (2.14) side by side, the equation

0 = k2(s)
(
k1

2(s) + k2
2(s)

)
sin Ω(s) 〈α(s),T(s)〉 (2.15)

+
(
k2(s)k1

′(s)− k1(s)k2
′(s)− (k3(s) + Ω′(s))(k1

2(s) + k2
2(s))

)
〈α(s),U(s)〉

can be obtained. Now we can investigate the items:

(1) Assume that the position vector of α = α(s) always lies on the instantaneous
plane Sp {Y(s),U(s)}. Then,

〈α(s), T(s)〉 = 0 (2.16)

for all the values s. Considering the equation (2.15), we get(
k2(s)k1

′(s)− k1(s)k2
′(s)− (k3(s) + Ω′(s))(k1

2(s) + k2
2(s))

)
〈α(s), U(s)〉 = 0 (2.17)

for all s. Also, differentiating (2.16) yields the equation

kg(s) 〈α(s), Y(s)〉+ kn(s) 〈α(s), U(s)〉 = −1.

Because kg = 0 for the geodesic curve α = α(s),

∀s ∈ I, 〈α(s), U(s)〉 = − 1

kn(s)
6= 0 (2.18)

can be written. Thus,

k2k1
′ − k1k2′ − (k3 + Ω′)(k1

2 + k2
2) = 0

is obtained from (2.17) and (2.18).

(2) Let the differential equation k2k1
′ − k1k2

′ − (k3 + Ω′)(k1
2 + k2

2) = 0 be
satisfied along α with k1, k2 6= 0. In the light of (2.15), we can write

∀s ∈ I, k2(s)
(
k1

2(s) + k2
2(s)

)
sin Ω(s) 〈α(s), T(s)〉 = 0.

Because k1, k2 6= 0, we find

∀s ∈ I, 〈α(s), T(s)〉 = 0

which means that the position vector of the geodesic curve α always lies on the

instantaneous plane Sp {Y(s),U(s)} (Notice that sin Ω(s) = − k1(s)
kn(s)

under these

conditions). �
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3. Slant Helical Trajectories According to PAFORS

Slant helix was expressed in [10] as a curve whose principal normal vector makes
a constant angle with a fixed direction in E3. Until now, several kinds of slant
helices have been defined and studied in the literature. There can be found some
of them in [11–14]. In this section, we take into consideration the slant helical
trajectories according to PAFORS and discuss some special cases of them. Also, we
give a method to investigate the existing or not existing of the desired slant helical
trajectory on a given implicit surface. Note that similar steps and approaches in [15]
and [16] will be followed in this section.

As mentioned earlier, we continue to consider any moving point particle on a
regular surface M satisfying the aforesaid assumption and to denote the unit speed
parameterization of the trajectory by α = α(s).

Firstly, we define G−PAFORS spherical image of the trajectory. We consider
this spherical image since it has an important place for the characterization of our
slant helical trajectories. The remaining PAFORS spherical images can be topic of
a different study.

Definition 3.1. If we move the vector field G of α = α (s) to the center O of
the unit sphere S2, we find a curve which G(s) draws on S2. We call this curve
G−PAFORS spherical image of α = α (s) and show it with ξG.

For G−PAFORS spherical image of α = α (s), we can write

ξG(s) = G(s).

If this equation is differentiated with respect to s, we get

ξ′G(s) = −k1(s)T(s) + k3(s)H(s)

ξ′′G(s) =
[
−k1′(s) − k2(s)k3(s)

]
T(s) −

[
k1

2(s) + k3
2(s)

]
G(s)

+
[
−k1(s)k2(s) + k3

′(s)
]
H(s)

ξ′′′G(s) =
[
−k1′′(s) − k2

′(s)k3(s) − 2k3
′(s)k2(s) + k1(s)

(
k1

2(s) + k2
2(s) + k3

2(s)
)]

T(s)

−3
[
k1(s)k1

′(s) + k3(s)k3
′(s)

]
G(s)

+
[
k3

′′(s) − k2
′(s)k1(s) − 2k1

′(s)k2(s) − k3(s)
(
k1

2(s) + k2
2(s) + k3

2(s)
)]

H(s).

These equations yield the curvature κG and the torsion τG of ξG as in the following:

κG(s) =
‖ξ′G(s) ∧ ξ′′G(s)‖
‖ξ′G(s)‖3

=

√
1 + (ζG(s))2 (3.1)

τG(s) =
〈ξ′G(s) ∧ ξ′′G(s), ξ′′′G(s)〉
‖ξ′G(s) ∧ ξ′′G(s)‖2

=
ζ′G(s)(

1 + (ζG(s))2
) (
k1

2(s) + k3
2(s)

)11/2 (3.2)

where

ζG(s) =

(
k3
′k1 − k1′k3 − k2(k1

2 + k3
2)

(k1
2 + k3

2)
3/2

)
(s). (3.3)

Definition 3.2. α = α (s) is called a slant helical trajectory (according to PAFORS)
if the vector field G of α = α (s) makes a constant angle with a fixed direction.

If α = α (s) is a slant helical trajectory according to PAFORS, then there exist
a constant angle β and a fixed unit vector g which satisfy

〈G(s),g〉 = cosβ

for all s.
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Theorem 3.1. Assume that (k1(s), k3(s)) 6= (0, 0). Then, α is a slant helical
trajectory according to PAFORS iff the function in (3.3) is a constant function.

Proof. Let α = α (s) with (k1(s), k3(s)) 6= (0, 0) be slant helical trajectory accord-
ing to PAFORS in E3. In this case, from Definition 3.2, G makes a constant angle
with a fixed direction. Therefore, G−PAFORS spherical image ξG of α = α (s)
is part of a circle. Thus, it has constant curvature and zero torsion. Using this
information in (3.1) and (3.2), we can immediately conclude ζG(s) = constant.

Conversely, suppose that ζG(s) = constant. In this case, it is not difficult to see
that κG(s) = constant and τG = 0. Therefore, G−PAFORS spherical image ξG of
α = α (s) is part of a circle. So, G makes a constant angle with a fixed direction
and we can finish the proof. �

Corollary 3.2. Let α = α(s) be an asymptotic curve on M with kg, k1 6= 0. Assume
that its position vector always lies on the instantaneous plane Sp {T(s),U(s)}.
Then, α is a slant helical trajectory according to PAFORS iff(

k1
2

(k1
2 + k3

2)
3/2

(
k3
k1

)′)
(s)

is a constant function.

Proof. Where kg, k1 6= 0, let the asymptotic curve α = α(s), whose position vector
always lies on the instantaneous plane Sp {T(s),U(s)}, be a slant helical trajectory
according to PAFORS. From Theorem 2.3, we can write k2 = 0. If we use this in
(3.3), we get

ζG(s) =

(
k1

2

(k1
2 + k3

2)
3/2

(
k3
k1

)′)
(s).

In that case, Theorem 3.1 finishes the first part of the proof. Similarly, one can
easily complete the other part of the proof. �

Corollary 3.3. Let α = α(s) be an asymptotic curve on M with non-zero kg and
non-zero k3. Assume that its position vector always lies on the instantaneous plane
Sp {T(s),Y(s)}. Then, α is a slant helical trajectory according to PAFORS iff(

k2
k3

)
(s)

is a constant function.

Proof. Where kg, k3 6= 0, let the asymptotic curve α = α(s), whose position vector
always lies on the instantaneous plane Sp {T(s),Y(s)}, be a slant helical trajectory
according to PAFORS. From Theorem 2.4, we can write k1 = 0. If we use this in
(3.3), we find

ζG(s) =

(
−k2
k3

)
(s).

In this case, Theorem 3.1 finishes the first part of the proof. Similarly, the other
part of the proof is easily completed. So, we omit it. �
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Corollary 3.4. Let α = α(s) be a geodesic curve on M with non-zero kn and
non-zero k1. Assume that its position vector always lies on the instantaneous plane
Sp {T(s),Y(s)}. Then, α is a slant helical trajectory according to PAFORS iff(

k1
2

(k1
2 + k3

2)
3/2

(
k3
k1

)′)
(s)

is a constant function.

Proof. Where kn, k1 6= 0, let the geodesic curve α = α(s), whose position vector
always lies on the instantaneous plane Sp {T(s),Y(s)}, be a slant helical trajectory
according to PAFORS. From Theorem 2.7, we can write k2 = 0. If k2 = 0 is
substituted in (3.3), we find

ζG(s) =

(
k1

2

(k1
2 + k3

2)
3/2

(
k3
k1

)′)
(s).

Then, the first part of the proof is easily finished considering Theorem 3.1. Similarly,
one can easily complete the other part of the proof. �

Corollary 3.5. Let α = α(s) be a geodesic curve on M with non-zero kn and
non-zero k3. Assume that its position vector always lies on the instantaneous plane
Sp {T(s),U(s)}. Then, α is a slant helical trajectory according to PAFORS iff(

k2
k3

)
(s)

is a constant function.

Proof. Where kn, k3 6= 0, let the geodesic curve α = α(s), whose position vector
always lies on the instantaneous plane Sp {T(s),U(s)}, be a slant helical trajectory
according to PAFORS. From Theorem 2.6, we can write k1 = 0. If k1 = 0 is
substituted in (3.3), we obtain

ζG(s) =

(
−k2
k3

)
(s).

In that case, Theorem 3.1 finishes the first part of the proof. Similarly, the other
part of the proof is immediately completed. So, we omit it. �

3.1. Determination of the helix axis for slant helical trajectories.
In this subsection, we will discuss on the determination of the helix axis for the
slant helical trajectories. Let α = α (s) be a slant helical trajectory according to
PAFORS. In that case, there exist a constant angle β and a fixed unit vector g
which satisfy 〈G,g〉 = cosβ = λ2 where g = λ1T + λ2G + λ3H. With the aid of
differentiation with respect to s, we obtain

〈−k1T + k3H, g〉 = 0. (3.4)

Now, let us differentiate the vector g. In that case,

(λ1
′ − λ2k1 − λ3k2)T + (λ1k1 − λ3k3)G + (λ3

′ + λ1k2 + λ2k3)H = 0

is found. This gives us the equation system

λ1
′ − λ2k1 − λ3k2 = 0

λ1k1 − λ3k3 = 0 (3.5)

λ3
′ + λ1k2 + λ2k3 = 0.
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Let us solve this system. Firstly, we must emphasize that we will follow similar
steps given in [15] and [16] to find the solution of this system. If the equality
λ1 = k3

k1
λ3 (k1(s) 6= 0) is written in the equations (3.5)1, (3.5)3 and some necessary

operations are applied to these two new equations, we find the differential equation(
1 +

(
k3
k1

)2
)
λ3
′ +

k3
k1

(
k3
k1

)′
λ3 = 0.

General solution of this equation can be easily obtained as λ3 = µ k1√
k12+k32

where µ

is the constant of integration. In that case, it is very easy to find λ1 = µ k3√
k12+k32

from the relation λ1 = k3
k1
λ3. Because the vector g = µ k3√

k12+k32
T + cosβG +

µ k1√
k12+k32

H is taken as a unit vector, the integration constant is derived as µ =

± sinβ. Therefore, g = ± k3√
k12+k32

sinβT+cosβG± k1√
k12+k32

sinβH can be imme-

diately written. Finally, the constant angle β must be determined. Differentiating
(3.4) with respect to s,〈

(−k1′ − k2k3)T + (−k12 − k32)G + (k3
′ − k1k2)H, g

〉
= 0

is found. Thus, we get

± sinβ

(
k1k3

′ − k3k1′ − k2k12 − k2k32√
k1

2 + k3
2

)
− cosβ

(
k1

2 + k3
2
)

= 0.

This gives us the following:

tanβ = ±
(
k1

2 + k3
2
)3/2

k1k3
′ − k3k1′ − k2k12 − k2k32

.

By means of the above information, one can easily find β and determine the fixed di-
rection generated by the constant vector g for the slant helical trajectory according
to PAFORS.

3.2. Calculating a slant helical trajectory on a given implicit surface.
In Euclidean 3-space, suppose that the regular surface M is given in implicit form
by f(x1, x2, x3) = 0. Let us try to generate a slant helical trajectory lying on M .
That is, our aim is to give a method which enables us to find the slant helical
trajectory α (s) = (x1(s), x2(s), x3(s)) according to PAFORS (if exists) lying on
M which accepts a given fixed unit direction g = (a, b, c) as an axis and a given
angle β as the constant angle (Note that s is the arc-length parameter of α). As it
is clear that the unit speed curve α (s) = (x1(s), x2(s), x3(s)) on M satisfies〈

∇f, dα
ds

〉
= fx1

dx1
ds

+ fx2

dx2
ds

+ fx3

dx3
ds

= 0 (3.6)

and ∥∥∥∥dαds
∥∥∥∥ =

(
dx1
ds

)2

+

(
dx2
ds

)2

+

(
dx3
ds

)2

= 1 (3.7)

where ∇f =
(
∂f
∂x1

, ∂f
∂x2

, ∂f
∂x3

)
= (fx1

, fx2
, fx3

) and dα
ds =

(
dx1

ds ,
dx2

ds ,
dx3

ds

)
. We

want to obtain x1(s), x2(s) and x3(s) to determine α (s).
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Let (T, G, H) and (T, Y, U) denote PAFORS and Darboux frame for the tra-
jectory α (s) = (x1(s), x2(s), x3(s)), respectively. From the theory of curves and

surfaces we know that U = ∇f
‖∇f‖ and Y = ∇f

‖∇f‖ ∧T can be written easily. In view

of the relation of PAFORS and Darboux frame, we get

G = cos ΩY − sin ΩU

= cos Ω

(
∇f
‖∇f‖

∧T

)
− sin Ω

∇f
‖∇f‖

=
1

‖∇f‖
cos Ω (∇f ∧T)− 1

‖∇f‖
sin Ω∇f

=
1

‖∇f‖
cos Ω

(
fx2

dx3
ds
− fx3

dx2
ds

, fx3

dx1
ds
− fx1

dx3
ds

, fx1

dx2
ds
− fx2

dx1
ds

)
− 1

‖∇f‖
sin Ω (fx1

, fx2
, fx3

)

=
1

‖∇f‖


fx2 cos Ω

dx3
ds
− fx3

cos Ω
dx2
ds
− fx1

sin Ω,

fx3
cos Ω

dx1
ds
− fx1

cos Ω
dx3
ds
− fx2

sin Ω,

fx1
cos Ω

dx2
ds
− fx2

cos Ω
dx1
ds
− fx3

sin Ω

 .

If this last equation is considered in 〈G, g〉 = cosβ,

‖∇f‖ cosβ =

(
afx2 cos Ω

dx3
ds
− afx3 cos Ω

dx2
ds
− afx1 sin Ω

)
+

(
bfx3

cos Ω
dx1
ds
− bfx1

cos Ω
dx3
ds
− bfx2

sin Ω

)
+

(
cfx1

cos Ω
dx2
ds
− cfx2

cos Ω
dx1
ds
− cfx3

sin Ω

)
and

‖∇f‖ cosβ + (afx1 + bfx2 + cfx3) sin Ω = (bfx3 cos Ω− cfx2 cos Ω)
dx1
ds

+ (cfx1 cos Ω− afx3 cos Ω)
dx2
ds

+ (afx2
cos Ω− bfx1

cos Ω)
dx3
ds

can be written. By applying necessary operations to this last equation and (3.6)
side by side, we obtain

dx1
ds

=
1

λ

[
fx2 (‖∇f‖ cosβ + (afx1 + bfx2 + cfx3) sin Ω)

+
(
b cos Ωfx1fx2 − a cos Ωfx2

2 + c cos Ωfx1fx3 − a cos Ωfx3
2
)

dx3
ds

]
(3.8)

and

dx2
ds

=
1

λ

[
−fx1 (‖∇f‖ cosβ + (afx1 + bfx2 + cfx3) sin Ω)

+
(
a cos Ωfx1fx2 − b cos Ωfx1

2 + c cos Ωfx2fx3 − b cos Ωfx3
2
)

dx3
ds

]
(3.9)

where λ = fx2 (b cos Ωfx3 − c cos Ωfx2) + fx1 (a cos Ωfx3 − c cos Ωfx1) 6= 0. Substi-
tuting the equations (3.8) and (3.9) into the equation (3.7) yields the quadratic
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equation with respect to dx3

ds as(
B2 +D2 + 1

)(dx3
ds

)2

+ (2AB + 2CD)
dx3
ds

+
(
A2 + C2 − 1

)
= 0 (3.10)

where

A =
fx2

(‖∇f‖ cosβ + (afx1
+ bfx2

+ cfx3
) sin Ω)

λ

B =
b cos Ωfx1fx2 − a cos Ωfx2

2 + c cos Ωfx1fx3 − a cos Ωfx3

2

λ

C =
−fx1

(‖∇f‖ cosβ + (afx1
+ bfx2

+ cfx3
) sin Ω)

λ

D =
a cos Ωfx1fx2 − b cos Ωfx1

2 + c cos Ωfx2fx3 − b cos Ωfx3

2

λ
.

From the equation (3.10), we get

dx3
ds

=
(−2AB − 2CD)±

√
(2AB + 2CD)2 − 4 (B2 +D2 + 1) (A2 + C2 − 1)

2 (B2 +D2 + 1)
. (3.11)

If the equation (3.11) is substituted into the equations (3.8) and (3.9), an explicit
1st order ordinary differential equation system is found. Consequently, together
with the initial point 

x1(0) = x∗1

x2(0) = x∗2

x3(0) = x∗3

we get an initial value problem. The solution of this problem yields the desired
slant helical trajectory (according to PAFORS) on M .

Remark 3. Considering the obtained results, we can say followings:

(1) If (2AB + 2CD)
2 − 4

(
B2 +D2 + 1

) (
A2 + C2 − 1

)
< 0 at (x∗1, x

∗
2, x

∗
3), in

that case any slant helical trajectory (according to PAFORS) on M with
the given fixed direction g and angle β does not exist.

(2) If (2AB + 2CD)
2 − 4

(
B2 +D2 + 1

) (
A2 + C2 − 1

)
= 0 at (x∗1, x

∗
2, x

∗
3), in

that case we have only one slant helical trajectory (according to PAFORS)
on M which passes through the initial point and accepts the given fixed unit
direction g = (a, b, c) as an axis and the given angle β as the constant angle.

(3) If (2AB + 2CD)
2 − 4

(
B2 +D2 + 1

) (
A2 + C2 − 1

)
> 0 at (x∗1, x

∗
2, x

∗
3), in

that case we have two slant helical trajectories (according to PAFORS) on
M which pass through the initial point and accept the given fixed unit di-
rection g = (a, b, c) as an axis and the given angle β as the constant angle.

4. Conclusion

For a particle moving on a regular surface of E3, there is a very close relationship
between the kinematics of the particle, the differential geometry of the surface, and
the differential geometry of the trajectory. As a result of this relationship, moving
frames have been used as very useful tools to investigate the concepts of vari-
ous studies in differential geometry and particle kinematics. PAFORS (Positional
Adapted Frame on Regular Surface) has been recently developed for the trajecto-
ries having non-vanishing angular momentum by using the own position vector of
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the moving particle in [8]. It is expected that PAFORS will be widely preferred to
discuss many special topics in particle kinematics and differential geometry. The
present paper can be seen as the first step of these future studies.

In this paper, the geodesic, asymptotic, and slant helical trajectories are studied
according to PAFORS in three-dimensional Euclidean space and some characteri-
zations are given for them. Furthermore, we explain how we determine the helix
axis for slant helical trajectories (according to PAFORS). Finally, we give a method
to find the slant helical trajectory (if exists) lying on a given implicit surface which
accepts a given fixed unit direction as an axis and a given angle as the constant
angle.

In the future study, we plan to give MATLAB examples on the use of MATLAB
command ODE45 to investigate the specific applications of the aforementioned
method related to slant helical trajectories.

References

[1] B. O’Neil, Elemantary differential geometry, Academic Press, Newyork, 1966.

[2] F. Dog̃an and Y. Yaylı, Tubes with Darboux frame, Int. J. Contemp. Math. Sci., 7(16)
(2012), 751-758.
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