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ÖZ

Çekirdek-Kabuk tipi parçacıklar kromatografide sıklıkla kullanılan malzemelerdir. Bu çalışmada, Çekirdek-
Kabuk parçacıklarının etrafında gerçekleşen difüzyonu taklit etmeye yönelik bir matematik modeli 

geliştirilmiştir. Difüzyonun simulasyonu için rastgele-yürüyüş temelli bir algoritma oluşturulmuş ve basit 
geometrik yapılar ve bağıntılardan oluşan bir Çekirdek-Kabuk geometrisi hesaplanmıştır. Bu parçacıklardan 
oluşan rastgele-istiflenmiş bir yapı üzerinde difüzyon simülasyonları gerçekleştirilmiştir. Model sonuçlarından 
elde edilen zamana bağlı difüzyon katsayısının davranışı, nükleer manyetik rezonans deneyleri vasıtasıyla 
gözenekli ortamlarda bir maddenin zamana bağlı öz-difüzyon katsayısının ölçüldüğü daha önceki bir çalışmanın 
sonuçlarıyla uyumludur.  
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A B S T R AC T

Core-Shell particles are commonly used materials in chromatography. In this study, a mathematical model 
that mimics diffusion around Core-Shell particles was developed. A random-walk based algorithm was 

implemented to simulate diffusion and a Core-Shell particle geometry was computationally formed, based on 
simple geometric constructs and relations. Diffusion simulations were carried out on a randomly packed ge-
ometry formed from these particles. The behavior of time-dependent diffusivity data obtained from the model 
was found to be consistent with prior literature data from nuclear magnetic resonance experiments where 
transient diffusivity of a self-diffusing substance was measured in porous media.
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INTRODUCTION

Mass transfer in porous environments strongly 
affects the performances of systems widely 

utilized in fields such as catalysis and separation 
processes. The mass transfer performance 
of porous materials in chromatography is 
mostly governed by dispersion, which for larger 
molecules is dominated by intra-particle diffusion. 
To address limitations imposed by intra-particle 
diffusion, several solutions have been proposed 
and introduced. The class of materials known as 
Core-Shell particles (also known as pellicular or 
superficially-porous particles) is one of them.

Core-Shell particles were introduced by 
Horvath et al. [1] in their work related to fast liquid 
chromatography. Unlike fully-porous particles, the 
solid core of core-shell particles allow limited intra-
particle diffusion which reduces band-broadening 
[2]. On the other hand, compared to non-porous 
particles, they provide a larger surface area for 
separation which eliminates the need for using 
smaller particles for better separation at the cost 
of increased back-pressure [3]. The popularity 
of core-shell particles increased especially after 
Halo particles were introduced by Advanced 
Material Technologies in 2006 [4]. Core-Shell 
particles are typically produced by coating solid 
silica spheres layer after layer (hence referred 
to as the layer-by-layer approach) to create the 
porous shell around them. This method affords a 
highly homogeneous pore size distribution and a 
smooth geometry [4].

The present study aims to create a 
mathematical model that explains mass diffusion 
around core-shell particles. Diffusion is often 
modelled by using Fick’s Second Law of Diffusion 
because continuum solutions of Fick’s Second 
Law are good approximations of the physical 
phenomena. However these solutions are hard to 
obtain and might even be inaccurate in complex 
geometries [5] such as packings of core-shell 
particles. 

Considering problems with the continuum 
form of the Fick’s Law applied to irregular 
geometries such as core-shell particles, a 
mathematical emulation of Brownian Motion is 
an alternative approach for modelling diffusion. 

When a large amount of randomly moving 
particles are present in the system, the collective 
motion and final distribution of these particles 
are analogous to the continuum solution of Fick’s 
Second Law of Diffusion in an empty media. This 
analogy can be extended to obstructed diffusion in 
porous environments by constructing an idealized 
geometry of the environment and checking for 
collisions between the random-walkers and the 
impermeable boundaries of their environment. 
There are studies that use such an approach to 
investigate dispersion in porous environments such 
as chromatographic monoliths [6] and packings of 
core-shell particles [7]. There are also numerous 
studies related to reconstruction and structural 
investigation of monolithic media [8,9] and core-
shell packings [10]. However, image-based, direct 
physical reconstructions of these geometries in a 
random-walk model have very high memory and 
computing power requirements. As an alternative, 
principles of analytical geometry can be used to 
formulate a typical core-shell particle geometry. 
This geometry can be expressed as a collection 
of tangent spheres, an idealized but easily 
obtainable approximation of the real structure, 
while still preserving important features of the 
real geometry (Solid core and porous shell). The 
resulting reconstruction of the geometry can be 
stored and used simply as a collection of center 
coordinates and radii of spheres. The significance 
of this approach is the simple representation of 
the core-shell particles, which circumvents huge 
memory and computational requirements for 
direct image-based methods.

MATERIALS and METHODS

Random Walk
As explained above, particle simulations based on 
random-walking tracers can be a good alternative 
to the continuum solutions of microscopic mass 
balances on systems with complex geometries. In 
Random-Walk models, the mass of the diffusing 
substance is represented by a statistically 
significant amount of tracer particles. The 
positions of these particles are tracked during 
the simulation of the diffusion event. Therefore, 
it is helpful to assemble them into an array P

ij
, 

that holds particle tags and their coordinates. 
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Here, index ‘i’ represents the ith particle and has 
the same number of elements as the amount 
of particles used, while index ‘j’ is used to store 
the coordinates of the particles and has the 
same number elements as the number of spatial 
dimensions in the system. For instance, P

25,2  holds 
the y-coordinate of the 25th particle, which diffuses 
in a system with two or more spatial dimensions.

The model is based on the following 
assumptions.

1. No adsorption of tracer particles.
2. The tracer particles do not interact with 

each other.
3. Free-solution diffusivity is isotropic and 

constant throughout the system.
4. Diffusing particles are point particles
5. Diffusion occurs in stagnant media.
6. No chemical reaction occurs, that can alter 

the material balance of the diffusing particles.

The relation between the time elapsed and the 
random-step length of these particles in a single 
dimension, is described by the following equation.

Δx=√(2 DAB  Δt)       			   (1)

The equation implies that once a time step (Δt) 
is chosen, the total number of random-steps 
that needs to be taken by the particles can be 
calculated simply by dividing the desired diffusion 
event duration by Δt.

Back-calculation of diffusivity at any instant 
of the simulation is done by replacing  by the 
Δx mean displacement of all random-walking 
particles, and  Δt by the total time elapsed until 
that instant, and solving the equation for D

AB
.

DAB=(∆x2)/2∆t    			           (2)

In three dimensions, every particle must move in 
an either positive or negative direction along each 
axis, with the sign of the displacement decided 
randomly at every step during the simulation. 
Accordingly, the step length of the particles,, will 
be equal to the diagonal length of the cube with 
side lengths equal to ∆x. The selection of the 
random direction can be made by generating a 
random number between 0 and 1. For example, 

the equation below will assign either +1 or -1 to the 
RD variable. 

RD= cos[ floor(2*RN)*π ] 		           (3)

In Equation 3, RD is a random real number 
between 0 and 1, and the  function floor (based 
on the Fortran definition) returns the greatest 
integer less than or equal to its argument.
Once the step-size is calculated and random 
numbers are generated for selection of random 
directions, the following equation is used to 
calculate coordinates of random-walking particles 
after each step.

〖Pij
(t+1)=〖Pij

t+(RD*Δx)			           (4)

Impermeable Boundaries
As has been explained previously, impermeability 
can be simulated by a collision-control mechanism 
between random-walking particles and 
impermeable boundaries. In a chromatography 
system involving core-shell particles in a 
random jammed packing, the creation of these 
impermeable boundaries involves three steps:
1. Creation of an idealized core-shell particle 
geometry
2. Creation of a random-jammed packing of 
identical spheres
3. Placement of core-shell geometries inside the 

Figure 1. The core particle and two tangent shell-side par-
ticles that illustrate the first step in the generation of the 
geometry. The dotted guide-circle connects the centers of 
the shell-side spheres lined up in this manner.
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packing of identical spheres

In order to create the core-shell particle 
geometry, manufacturing techniques can be 
emulated to calculate spheres in the shell side of 
the particles one by one and layer by layer. 

For ease of visualization, the calculation is 
described in terms of two dimensional references. 
To start, the core sphere, with radius R, is placed, 
centered at the origin. The first shell-side sphere, 
with radius r, is also placed such that it lies 
tangent to the core sphere. Then, a hypothetical 
‘guide-circle’ can be imagined above the core-
sphere (dotted circle in Figure 1), such that all 
shell-side spheres centered on this circle would 
be lying tangent to the core-sphere as well as not 
overlapping with the other shell-side spheres. 

The maximum number of shell-side spheres 
(k) that can be placed around the core sphere, can 
be calculated by the following equation:

k= floor(π/a)			           (5)

Note that angle α (indicated in Figure 1) can be 
computed as the arcsine of r/[r+R].

The total number of hypothetical spheres 
that can be placed around the core sphere in 
this manner can be calculated by the following 

equation.

					              (6)

Where floor is the same function in Equation 3.
Using similar geometry considerations, this 
procedure can be extended to three dimensions. In 
brief, the guide-circle introduced in one dimension 
can be multiplied on the remaining volume of the 
core sphere, and the shell-side spheres can be 
positioned accordingly (Figure 2).

Algorithms and software to generate random-
jammed packing of identical spheres with periodic 
boundaries have been made publicly available by 
Torquato and coworkers at the Complex Materials 
Theory Group [11]. Using this algorithm, it is possible 
to obtain the radii and central coordinates of any 
number of identical spheres packed randomly and 
tightly inside a unit cube. The packing geometry 
and the core-shell geometry created by the 
method explained in this section are suitable for 
any geometrical translation or scaling. Therefore 
the packing geometry can be shrunk or inflated 
from the unit cube to the same size as the core-
shell geometry, then additional copies of the 
calculated core-shell geometry can be created 
inside identical spheres by simple translations. 

Collision Control and Periodic Boundary 
Conditions
The model uses periodic boundary conditions 
to work around the memory and computing 
power requirements of creating, storing and 
using geometrical data that represents millions 
of core-shell particles packed inside a real 
chromatography column. A periodic random-
packing of a small amount (depending on available 
computing power) of core-shell particles in a unit 
cell is created and stored. The collision control is 
done using the impermeable boundaries of the 
particles and the local coordinates of random-
walking particles inside this unit cell. This creates 
a virtually unbound packing of core-shell particles 
with the unit cell being the building block of the 
system.

Hardware and Software Implementation of the 

Figure 2. Extension of the guide-circles (dotted lines) to 
complete shell-side sphere allocation in three dimensions. The 
dashed circles illustrate the placement along one of the guide 
circles.
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Model
For model calculations, the Fortran 95 
programming language was used on a PC with 
8GB 1333MHz DDR3 memory and Intel Core 
i5 760 2.8GHz CPUs for computing the model. 
Particle-based random-walk methods require a 
high computing power and memory, even with 
the simplification of geometry by the periodic 
boundaries. The main factors that contribute 
to the CPU demand are the high resolution of 
the model, random-walking particle population 
and collision control. The wall-clock time of the 
computation can reach up to 250 minutes for 
the simulation of 60 seconds of diffusion, even 
with a low population and single layered core-
shell geometry. To speed up the simulations, 
parallelization has been implemented in the code 
by the OpenMP. Wall-Clock time as a function 
of number of CPUs used follows a similar trend 
to Amdahl’s Law due to the random number 
generation part in the code, which cannot be 
parallelized.

RESULTS and DISCUSSION

Idealized Core-Shell Particle Geometries
CAD images of idealized core-shell particle and 
packing geometries, drawn in OpenSCAD, are 
shown in the Figure 3. Visual inspection of particle 
geometry shows no defects or particle overlaps.
 

The construction method of the geometry is 
highly flexible such that packings with various 
different aspects, such as the number of shell 
layers, the ratio of core and shell-side particle 

diameters and the size of the spheres in shell 
layer/shell porosity, can potentially be created 
and used in the random-walk model to investigate 
their effects of on diffusion.

Verification of the Random-Walk Algorithm
Figure 4 shows changes in diffusivity of random-
walkers during the simulation in a free and 
stagnant environment, obtained in 3 identical 
runs. The probabilistic nature of the model is 
apparent, with the diffusivity starting with a slight 
fluctuation and eventually stabilizing around 110, 
which is the input value of diffusivity. 

Figure 3. Three-dimensional plots of a Single Core-Shell 
Particle (left) and a Random-Jammed Packing of 50 
Identical Core-Shell Particles inside a Unit Cell (right).

Figure 4. Time-dependent diffusivity data for 3 independent 
runs, normalized with respect to free-solution diffusivity D0 

in unobstructed, stagnant media. (Obtained using  and).

Figure 5. Final positions of the Random-Walking 
Particles (blue) after diffusing in an ordered packing of 
identical hard spheres and collision sites (orange) around 
impermeable hard spheres.
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Verification of Collision Control & Periodic 
Boundary Conditions
The collision-control algorithm and periodic 
boundary conditions were tested by simulating 
60 seconds of diffusion in an ordered packing of 
identical spheres. Simulation results were visually 
inspected for the verification of collision control 
algorithm. The scatter graph in Figure 5 shows 
random-walkers (tracers) in blue and collision 
sites between the impermeable boundaries and 
random-walkers in orange. Spherical patterns 
due to collections of collision sites confirm the 
validity of the collision control algorithm and 
the fact that there are many of these patterns 
shows periodic boundary condition properly 
creates multiplications of the unit cell used in 
the simulation. The collision sites seen at the 
outer edges of scatter graph did not experience 
a sufficient number of collisions to create a 
spherical pattern.

Diffusion in Random Jammed Packing of Core-
Shell Particles
The change in the diffusivity of random-walkers 
over time during the simulation is shown in Figure 
6. The input free-diffusivity value of 110 μm2/s  
rapidly drops and gradually stabilizes around 88 
μm2/s . The features of the initial region of decline 
from 110  to 88 μm2/s  are dictated by the initial 
conditions of the simulation. All random-walkers 
start diffusing by point injection and they move 
randomly few milliseconds before starting to 
bump into impermeable boundaries. Therefore, 
their diffusivity in this time interval is close to their 
diffusivity in a free environment. Once random-
walkers contact core-shell particles, however, the 
volume available for diffusion is diminished by 
the presence of the solid core-shell particles in 
the system, resulting in a decrease in diffusivity 
of random-walkers compared to their diffusivity 
in free environment. This result is consistent with 
the well-known effective diffusivity definition 
of real substances in porous environments. 
Accordingly, the value 88 μm2/s can be interpreted 
as the effective diffusivity of these random-
walkers in this specific geometry. This behavior 
is also observed in studies of nuclear magnetic 
resonance where time-dependent diffusion 
coefficients of self-diffusing substances in open 

porous environments are measured. Latour et al. 
[12] and Sen [13], have studied the time dependent 
diffusivity data obtained from NMR experiments 
to investigate the diffusion behavior in relation to 
porous media parameters such as tortuosity and 
surface-to volume ratio. Their data, obtained using 
tracer particles, show that normalized diffusivity 
starts at unity and declines to an asymptotic value 
essentially related to the tortuosity of the porous 
media [12,13], very much like the results of this 
model shown in Figure 6. 

The current model was created as the initial 
step of a wider research that ultimately aims 
to investigate dispersion in a chromatographic 
system involving core-shell particles. The 
dimensions and properties of the theoretical 
core-shell particles, such as the number of layers 
in the shell side or the diameters of shell/core 
spheres, should certainly have an effect on the 
tortuosity of the packing geometry and are worth 
further investigation. Additionally, it is possible 
to integrate fluid flow around random packings 
of core-shell particles, thereby coupling the flow 
model with the diffusion model, to investigate the 
behavior of more common and realistic cases in 
liquid chromatography. 
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Figure 6. Time-dependent diffusivity data (normalized with 
respect to free-solution diffusivity, D0) in a random jammed 
packing of idealized single layered core-shell particles for 3 
independent runs (and). 
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