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Forecasting Inflation Using Summary Statistics of 8rvey
Expectations: A Machine-Learning Approach
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Abstract

This paper aims to produce more accurate short-tefiation forecasts
based on surveys of expectations by employing maeleiarning algorithms.
By treating inflation forecasting as an estimafmwablem consisting of a label
(inflation) and features (summary statistics ofveys of expectations data),
we train a suite of machine-learning models, namelynear Regression,
Bayesian Ridge Regression, Kernel Ridge Regres$R@amdom Forests
Regression, and Support Vector Machines, to fotebasconsumer-price infla-
tion (CPI) in Turkey. We employ the Time Series €& ®alidation Procedure
to ensure that the training data exclude forecastdn data. Our results indi-
cate that these machine-learning algorithms outpartthe official forecasts
of the Central Bank of Turkey (CBT) and a univaiatodel.
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1. Introduction

Applications of machine-learning algorithms in mdisids have gained
momentum in recent years. In this study, we exptbee use of machine-
learning methods to improve the accuracy of suredysflation expectations
as a viable alternative to existing inflation-foaisting models.

Univariate models, expectation surveys, and Pkiltprve models have
been widely used to forecast future inflation. Cangon across different
forecasting models is difficult due to differendesdata, sample periods, and
country-specific conditions. Debate over model perfances, however, has
attracted many researchers over the years. A cdrepséve study by gling
et al. (2013) used a collection of econometric nwdteat include univariate
models, decomposition-based approaches, a Phdlipge motivated time-
varying parameter model, a suite of VAR and Baye3f&AR models, and
dynamic-factor models to forecast short-term idlatin Turkey. Their result
revealed that a combination of these models leads reduction in forecast
error.

In a similar approach, Kapetanios et al. (2008padgthat a single model
is outperformed by combinations of various modélsmilestone work by
Atkeson and Ohanian (2001) compared the performaheenaive moving-
average model with a series of Phillips curve fastiog models and argued
that the former performed better than the lattesweler, a later work by
Stock and Watson (2007) found that Phillips cunathods performed better
for the period 1970-83, and the results of Atkeand Ohanian were specific
to the period 1984-99.

Surveys of inflation expectations offer an alteiweatpproach to inflation
forecasting. The superior forecasting performarfceuoveys has been high-
lighted by several researchers. In particular, k&@nd Meyler (2015) argued
that short-term inflation expectations derived freanvey and market data for
the euro area and the United States were informatigdictors of future infla-
tion developments. Similarly, Ang et al. (2007pwshthat inflation expecta-
tions from survey data beat a wide variety of fastmg models that include
time-series ARIMA models; regressions using redivitg data motivated
from the Phillips curve, and term structure modékst include linear, non-
linear, and arbitrage-free specifications.

A similar study by Gil-Alana et al. (2012) revealdtht survey-based ex-
pectations outperform standard time-series modeldS quarterly inflation
out-of-sample predictions. Furthermore, Altand Cakmakh (2016) formu-
lated a statistical model of inflation that comlsrdgata from survey expecta-
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tions of inflation and argued that the model withivey expectations yields
superior predictive performance to the model lagkirem, as well as popular
benchmarks, such as the backward-looking Phillipges and the naive fore-
casting rule.

The appeal of machine learning stems from its tgltiti uncover complex
structures hidden in large datasets without expimgramming. Classifica-
tion and regression are two central applications‘safpervised” machine
learning. Both involve making estimations of an niolkn target from a set of
known features by applying various algorithms, sush support-vector
machines, random forests, and deep neural networks.

We employ “supervised” machine-learning modelsstoort-term inflation
forecasting by using the Central Bank of Turkey OB survey of inflation
expectations. We treat summary statistics of sudeta as features without
time stamp for a supervised machine-learning proldter which the label to
estimate is the future inflation. From the viewpadf machine learning, this
is a standard regression problem. We implementedntachine- learning
models in Python software by using the Scikit-le@®adregosa et al., 2012)
library, which is opensource software. The codesaanilable from the author
upon request.

The remainder of this paper is organized as follo8esction 2 briefly
explains the machine- learning methods we employéchprove the forecast-
ing accuracy of inflation-expectation surveys. ##c8 presents the data and
methodology by which we compared the forecaststi@ed discusses the
forecast performance of the machine-learning algms and compares their
accuracy with the survey data, the CBT officiakfmasts, a naive MA method,
and a univariate model, and Section 5 containsahelusion.

2. Machine-Learning Models

The success of machine learning primarily liestinaibility to discover
unknown complex structures hidden in datasets. cdmemon principle that
underlies a supervised machine-learning model isam a target functiorf)(
that maps input variableX) to an output variableY]. Without defining an
explicit solution methodology that may not evensexsupervised machine-
learning models “learn” from sample data and mastmations for out-of-
sample data primarily for the purpose of binanssifcation, multiclass clas-
sification, and regression, among many other agiins.

Dealing with under-fitting and over-fitting problems important when
selecting and tuning supervised machine models. uruer-fitting problem
occurs if the model doesn’t represent the sampbejaately. The over-fitting,
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on the other hand, occurs if a model fits bestampe data and fails on out-
of-sample data.

Therefore, bias-variance trade-off in machine Ile@yms closely related to
model complexity. As the model complexity increades variance tends to
go up, and the bias tends to decrease—and vice \|Btsllainathan and
Spiess, 2017]. Fig.1 depicts the prediction err@raafunction of model
complexity with bias-variance combinations for acimae-learning model
[Hastie et al., 2017, p. 38)].

Figure 1. Test and Training Error as a Function ofModel
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The performance evaluation of a supervised macldasiing model
involves dividing a dataset into test and traingegs. The training set is used
to train the model, which is being evaluated agddins test dataset. In our
study, the summary statistics of inflation-expeaotatsurveys (the features)
and the actual inflation (label), without time infmation, are divided into two
groups: the training and forecast sets.

We use five types of machine-learning algorithmsehr Regression,
Random Forests, Support-Vector Machines, BayesidgeRRegression, and
Kernel Ridge Regression. Before introducing eacthetse models, we first
present some fundamental aspects of supervisedmadelrning. See Hastie
et al. (2009) and James et al. (2013) for detaisiathe models.
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2.1. Linear Regression

The underlying assumption of linear regressionhit there is approxi-
mately a linear relation between response (Y) aariblles (X) in a dataset
with only quantitative values. We can write thifat®nship as

Y=ﬁ0+ﬁ1X1+ﬂ2X2+"'+ﬂpo+E (1)

Wherep,, B4, ..., Bp are the regression coefficients anid the error term.
For p = 1, (1) transforms into a simple linear esgion. The regression coef-
ficients in (1) are estimated by using the leasasegiapproach in the formula:

§=Po+Brxs + Bxz + -+ Py + € 2
such that the sum of squared residuals (RSS) ismam. RSS is defined as

N N N N 2
RSS = ¥y (i — (Bo + Puxia + Boxiz + -+ fyxip) ) (3)
2.2. Random Forests Regression

Random Forests (Breiman(2001)) are a collectiorimiple decision-tree
predictors. Each decision tree in a Random Fomstpcoduce a response for
a set of input values. An algorithm determinessipig points, splitting variables,
and topology of a decision tree. The tree growsradblving for each split
until a tuning parameter (tree size), which comstitble model’'s complexity, is
reached. Random Forests aim to improve the preeiperformance of decision
trees by aggregating many of them. FurthermoredBanForests overcome
the problem of the strong predictor estimatiorhie bagged-trees approach by
allowing for a smaller number of randomly selecgpeddictors for each split.
The average of the predictions from all the treethe ensemble estimation of
the Random Forest model. Growing a regression riggaires an algorithm
that automatically decides on the splitting vagatdnd split points. The response
of a model consisting of M regioiig, R, ..., Ry, is determined by

fx) = Zimcil (x € Rin) 4

for each region. Starting with all data, the altfon first considers the pair
of half planes in terms of the splitting varialp#ad the split point as

Ry (j,s) = {X|X; < s}andR,(j,s) = {X|X; > s} (5)

and seeks the splitting variabland split poink that minimize

minc1 inERl(j,s)(yi - Cl)z + mincz ineRl(j,s) (yi - CZ)Z (6)
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For any value of ands, the inner minimization is solved by
G = average(yi|xi € R,(j, s)),

¢ = average(yi|xi € R,(j, s)), (7
By scanning through all the inputs, we determire libst pair ofj, s) is
determined. Then the same process is repeatedsatiimg regions of data
until the tree grows an optimal size according toirdng parameter that de-

termines the model's complexity.

One common strategy is to grow a large tree witmesaninimum node
size, such as 5. Then this large tree is prunatyusiost-complexity pruning
procedure. First, define a sub-tfée T, of any tree obtained by pruniry,
that is, collapsing any number from its non-terrhimades. Letting

NmZ#{xi € RM},

~ 1

Cm = mineRm Vi, (8)
1 )2

on( =7 > =&
m Xi€Rm

where m is the index of terminal nodes in regian we define the cost-
complexity criterion

Ca(T) = Zmiy NnQu(T) + alT| 9)

where|T| denotes the number of terminal node§,imnda is the tuning
parameter ¢ > 0), which governs the bias-variance tradeoff in thedel.
The idea is to find the sub-tré&g < T, to minimizeC,(T) in (9) for eachu.
Small values ofy yield larger trees d and vice versa. The full treg is re-
turned witho = O.

For eacha there is a unique smallest sub-figehat minimizes (9). To
find T, the algorithm collapses the internal mode thadpces the smallest
per-node increase W, N,,Q.,,(T) until it produces the single-node (root)
tree. This method is calledeakest link pruningnd gives a finite sequence of
sub-trees that contalff),. The tuning parameters estimated by choosing the
value@ to minimize the cross-validated sum of squaresnfwhichTy is the
final tree.

Decision trees yield high-variance, low-bias outpDhe way to reduce
high variance is to use the bagging technique, lisimply fits the same
regression tree many times to bootstrap-samplesiover of the training dataset
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and compute the average. Since each tree genandtesl bagging oB trees
is identically distributed, the variance of the i@ge is given by

po? + 1_?’)02 (10)

The second term disappears in (10paacreases (more trees), and, hence,
the benefits of averaging get weaker due to thedilee correlation of pairs
in the bagged trees. The Random Forests aim t@ gblg problem by ran-
domly selecting the input variables in the treewgng process. Before each
split, m variables are selected randomly from the inpuialédes(p) as candi-
dates for splitting. After growing trees with this procedure, the Random
Forest regression predictor is defined as

fEG) =228, T(x 6y) (11)

where®, characterizes the bth Random Forest tree in tefigglit variables,
cutpoints at each node, and terminal-node values.

2.3. Support-Vector Regression

The idea behind Support-Vector Machines (SVM) (MRpi995)) is to
find hyperplanes that separate different classes iraining dataset. SVM
Regression (SVR) is a form of SVM with a numeridapendent variable
instead of a categorical one. SVR relies on ketnedtions (linear, polynomial,
radial basis, etc.) to construct optimal hyperptane

Kernel function transforms the training data froomlinear space to linear
space. This transformation allows SVR to find aimnapin hyper plane. Mapping
back to the original space completes the algoritRor. a linear-regression
model,f(x) = xTB + B,, and estimation of andp, are possible through
minimization of

A
H(B,Bo) =XV (yi — f(x) +§||ﬂ||2 (12)
where
Vo= { 0, if|r| <e,
7 r| = otherwise

The solution functions fgf andf, that minimize H have the form
B=3(8" —@)x (13)
fO) =TE (@ — @) (xx;)+ Bo (14)
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Where @; and@;" are called the support vectors, which solve thedcatic
optimization problem

N N L
Imin EZ(OH* +a;) - Z)’i(“i* —a)+ > Z (" — ;)
= i=1

Li'=1
(ajr = ap){x, x;') (15)
subject to

0<0,0<0q <1/4,
N

Z(“i* —a;) =0,

i=1

aioci* =0

2.4. Kernel Ridge Regression

Kernel Ridge Regression (KRR) (Hsiang (1975) isranfof linear regres-
sion. KRR imposes a penalty on the size of theassgjon coefficients, which

are estimated by obtainifgJi?9¢ values that minimize

?:1()’1‘ —Bo—2j ,Bjxij)z + %%, B> = RSS + ¥F_, B;° (16)

wherel > 0 is a tuning parameter to be calculated separdtehiting the
size of the regression coefficients alleviates igh kariance problem caused
by the large coefficients of the correlated varigbte a model. Writing the
criterion (16) in matrix form,

RSS(D) = (y = XB)"(y —XB) + A" 17)
we estimate the regression parameters as
B = (XTX + AD)71XTy (18)

wherel is the identity matrix with size x p. The choice of quadratic
penalty in (17) makes the KRR solution a linearction of y. If the inputs
are orthonormal, the KRR estimates are a scalesloreof the least-squares

estimategf™49¢ = /(1 + 1)).
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2.5. Bayesian Ridge Regression

Bayesian regression introduces uninformative priorer the hyper pa-
rameters of the model. The output y is assumedet@aussian distributed
aroundX, w such that:

pr(YIX,w,a) = N(w|X,w, a) (19)

Wherea is treated as a random variable and estimated ftata. In a
probabilistic model estimated by Bayesian RidgerBggjon, the prior for the
parameter w is given by a spherical Gaussian:

pwld) = N (w|0,27'L,) (20)

The priors over and\ are gamma distributions (the conjugate prior for
the precision of the Gaussian normal distributidie parameters va, andi
are estimated jointly in the model.

3. Data and Methodology

The Central Bank of Turkey (CBT) conducts a sureach month to
monitor the expectations of experts from the finanand real sectors. The
guestionnaire includes short-term inflation foresagurrent month, next
month, and two months ahead) in addition to mahgroéxpectations of eco-
nomic variables, such as exchange and interes. rake survey reports also
contain summary statistics that consist of modedjiame minimum, arithmetic
mean, and maximum and minimum values. We obtainedtrvey of expec-
tations data from the CBT and the Consumer-Pri@iation (CPI) data from
TURKSTAT. The data cover the period from August 26® December 2017,
for which we produced monthly inflation forecasts three horizons: current
month (h=1), next month (h=2), and two months al{ea8).

The Time-Series Cross-validation (TSCV) procedwesuhe past data only
for the training of the machine-learning modelshaiit any information about
the forecast horizon or beyond, thereby producingof-sample forecasts.
We used an expanding-window rather than the rolmgdow estimation
procedure to permit the use of more data for thenlag process. Expanding
the window-procedure estimates model on a sampieimg from1,2,...,t
and we produced forecasts of variables at dat¢ h: h > 0.

The performance metric we employed to evaluateftinecasts by the
machine-learning models is the Relative Root Meamage Error (R-RMSE),
which is calculated by dividing the model forecRMSE by the survey fore-
cast RMSE:
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N (- ’
R — RMSE = 2 1)
\12?1:1("1'_125)2

wherer is the actual inflationf™ is the model forecast, argis the arith-
metic mean of survey expectations. A relative RM&liie less than unity
indicates that the model improved on the surveydasts and vice versa.

Furthermore, we computed the Empirical Cumulativstribution Func-
tion (ECDF) for Bootstrap RMSEs of the forecastSDIF is defined as:

number of elements in the sample <SRMSE (22)
N

ECDF (RMSE) =

where N is the total number of elements in the sanffICDF used the data
from the Bootstrap replicates of the forecaststard RMSESs to draw statis-
tical inferences. We used 10,000 bootstrap reggatith replacements.

We compare the forecast performance of the macleiaming models
with a suite of forecasts that consist of survetadidne CBT forecasts, a time-
series forecasting model (TBATS), and a naive ngrémerage model.
TBATS is a state space-modeling framework (de lavet al. (2011)) for
univariate time series forecasting with complexsseal patterns. This trigo-
nometric framework has both linear and nonlinearetseries modeling ca-
pacity with single seasonality, multiple seasogalligh period, and non-
integer seasonality. TBATS incorporates Box-Coxngfarmations, Fourier
representations with time-varying coefficients, axldMA error correction.
We used the R implementation of the TBATS modetampute the point
forecasts for the next three months, starting ftieenfirst month of the respec-
tive quarter, from 2016-Q4 to 2017-Q4.

The CBT doesn’t publish its monthly inflation foests. Hence, we use the
guarterly inflation forecasts for comparison. Aldgh quarterly inflation
forecasts are not provided separately in the CEiflation reports, one can
calculate them by solving the following equatiomlgtically for f;,.

a+ 7T9m)(1 + fQ) =1+ fizm (23)

wherernq,, is the actual past nine months’ inflation gfgl,, is the CBT's
yearly inflation forecast at the end of the quattat is available in the CBT's
inflation report.

Calculating the quarterly inflation forecasts makise of the next month
and two months ahead forecasts from the model$, that the next quarter
inflation forecast#,,,), starting with the current month, is given by
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figm = (1+ ) (1+£22) (14 fm®) -1 (24)

wherefn'i(”) is the model forecast in monti for horizonn.

As a benchmark, we employ a naive Moving AverageAlNhodel, in
which the next quarter’s inflation is equal to #mhmetic mean of the past
four quarters’ inflation rates (Atkeson and Ohano01).

A~ 1
firrg = 3 (Mg, + g, + Mg, +Tig,) (25)

Even though it is well established that a naive Médel does not perform
well for short time horizons for economies lackistgble inflation dynamics,
the model nonetheless serves as a benchmark.

The results we obtained with the default parametdrdhe machine-
learning models in the Scikit-learn library areisfactory to the extent that
they demonstrate the effectiveness of the propapptbach.

4. Forecasting Performance Evaluation

The forecast period covers five quarters, from 2Q46to 2017-Q4. We
evaluate the forecast performance of the machimetieg models, the sur-
veys, the CBT, the TBATS model, and a naive MA nlcskerving as a
benchmark. The ECDF of Bootstrap mean of RMSEsr®fteseful infor-
mation for comparing forecasting performances.

Table 1 shows the probability of fractional improwent by the machine-
learning models at each time horizon, based oBdwtstrap mean of fractional
improvements. At horizon 1, only the LR provideBactional improvement,
with a 68% probability, whereas the other modelmaim below the 50%
critical level, which indicates no improvement.

On the other hand, RFR performs better than theegumwith an 87%
probability at horizon 2, followed by the KRR an®RR, with 74% and 60%.
Both the LR and SVR remain below 50% at horizom&aning that they fail to
improve the accuracy of survey forecasts.

Significant fractional improvement is achieved hg models at horizon 3,
with 99% probability by RFR and 98% by KRR, BRRd&@WVR. The accuracy
gain by LR occurs with lower probability than thther models, but with
68%, it can still improve the survey forecast atizmn 3.
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Table 1. Probability of Fractional Improvement by
Machine-Learning Models

Forecast horizon RFR KRR | LR BRR SVR
h=1 0.33 0.36| 0.68 | 0.32 0.39
h=2 0.87 0.74 0.49 0.60 0.30
h=3 0.99 0.98 0.68 0.98 0.98

Note: Forecast horizons are in months. Bold text indisdhe most accurate model
for the forecast horizon.

Abbreviations: RFR: Random Forests Regression,
KRR: Kernel Ridge Regression, LR: Linear Regression
BRR: Bayesian Ridge Regression, SVR: Support VeRegression

Table 2 gives RMSEs and relative RMSEs for thedases. Although the
survey forecasts performed worse than the CBT &@WTB, all the models
scored smaller RMSEs, in the range of 0.76 to Ov8Bh 0.76 RMSE, LR
outperformed the other machine-learning models theitdifference is negli-

gible, except for KRR, which has an RMSE of 0.8BATS produced better
forecasts than the CBT.

MA vyielded the worst forecast performance due @ thpidly changing
inflation dynamics during the forecast period. T®BT scored only 7% less
than the RMSE. By comparison, the TBATS scored 1fdter than the sur-

vey forecasts. The machine-learning models imprarethe survey forecasts
by up to 38%.

Table 2. Quarterly CPI Forecast Performances

Forecast RMS Relative RMSE Relative RMSE
by E (MA) (Survey)
MA 1.70 1.00 1.39
CBT 1.14 0.67 0.93

TBATS 1.01 0.59 0.82
Survey 1.23 0.72 1.00
LR 0.76 0.45 0.62
BRR 0.78 0.46 0.64
RFR 0.77 0.45 0.63
KRR 0.83 0.49 0.68
SVR 0.77 0.45 0.63

Note: Forecast period from 2016-Q4 to 2017-Q5.

Abbreviations: CPI: Consumer-Price Inflation, MA: Naive Moving énage forecast,
CBT: Central Bank of Turkey forecasts, TBATS: A waniate model by de Livera et
al. (2011). See note to Table 1 for other abbr@niat
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The quarterly inflation forecasts of the machinadténg models, surveys,
CBT and TBATS are shown in Figure 2. Due to thdtikch number of fore-
casting points and changing performances of theetsddr different periods,
it is difficult to judge the forecast accuraciesnr the figure. On the other
hand, Figure 3 shows the ECDF of the Bootstrap smedriorecast absolute
errors, which reveals the forecasting performances.

It is apparent from the figure that the machinere® models outperform
the CBT forecasts, which are slightly more accuthtn the surveys. Even
though the TBATS produced the best forecasts,dtfopnance was not con-
sistent, and large forecasting errors moved the T840 a ranking between
the CBT and the machine-learning models.

Figure 2. Quarterly CPI Forecasts
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Note: See the note to Table 2 for abbreviations.

To summarize, even though the surveys performedevtran the CBT
and the TBATS forecasts, the machine-learning nsodaling only on the
summary statistics of the survey data producedfgignt levels of accuracy,
which led to better forecasts than those of the @Bd the TBATS, as measured
by the RMSE. In particular, the RFR yielded thetlpesformance among the
selected machine-learning models.
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Further accuracy improvement of the models is ptsshrough parameter
optimization and an increase in the size of thinitng data. In addition,
extending the forecast period with new data as thegome available will
contribute to better evaluation of the machinedesy models and improve
the forecasting capability of inflation-expectatisurveys.

Figure 3. Bootstrap Means of Forecast Errors.
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Note: See the note to Table 2 for abbreviations.

5. Conclusion

We have employed a suite of machine-learning maodeisiprove the ac-
curacy of surveys of inflation expectations, contdddy the Central Bank of
Turkey (CBT). A training set consisting of only tls&mmary statistics of
survey data and actual inflation in Turkey was ugdd comparison of fore-
cast performances vis-a-vis the forecasts by th& @il a univariate model
(TBATS) shows that the proposed method not onlyrawes the accuracy of
the surveyed forecasts but also outperforms the @BT TBATS, which are
themselves more accurate than the surveys.

We treat the inflation forecasting as an estimatiooblem in machine
learning. The summary statistics of survey datanfthie features set and the
actual inflation is used as labels. The time-seci®ss validation procedure
ensures that the forecast horizon data are natded in the training set for
the machine-learning model. Among the models,RR® yielded the best
fractional improvement.
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