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Abstract 

This paper aims to produce more accurate short-term inflation forecasts 
based on surveys of expectations by employing machine-learning algorithms. 
By treating inflation forecasting as an estimation problem consisting of a label 
(inflation) and features (summary statistics of surveys of expectations data), 
we train a suite of machine-learning models, namely,  Linear Regression, 
Bayesian Ridge Regression, Kernel Ridge Regression, Random Forests 
Regression, and Support Vector Machines, to forecast the consumer-price infla-
tion (CPI) in Turkey. We employ the Time Series Cross Validation Procedure 
to ensure that the training data exclude forecast horizon data. Our results indi-
cate that these machine-learning algorithms outperform the official forecasts 
of the Central Bank of Turkey (CBT) and a univariate model. 
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1. Introduction 

Applications of machine-learning algorithms in many fields have gained 
momentum in recent years. In this study, we explore the use of machine-
learning methods to improve the accuracy of surveys of inflation expectations 
as a viable alternative to existing inflation-forecasting models. 

Univariate models, expectation surveys, and Phillips curve models have 
been widely used to forecast future inflation. Comparison across different 
forecasting models is difficult due to differences in data, sample periods, and 
country-specific conditions. Debate over model performances, however, has 
attracted many researchers over the years. A comprehensive study by Öğünç 
et al. (2013) used a collection of econometric models that include univariate 
models, decomposition-based approaches, a Phillips curve motivated time-
varying parameter model, a suite of VAR and Bayesian VAR models, and 
dynamic-factor models to forecast short-term inflation in Turkey. Their result 
revealed that a combination of these models leads to a reduction in forecast 
error.  

In a similar approach, Kapetanios et al. (2008) argued that a single model 
is outperformed by combinations of various models. A milestone work by 
Atkeson and Ohanian (2001) compared the performance of a naïve moving-
average model with a series of Phillips curve forecasting models and argued 
that the former performed better than the latter. However, a later work by 
Stock and Watson (2007) found that Phillips curve methods performed better 
for the period 1970-83, and the results of Atkeson and Ohanian were specific 
to the period 1984-99. 

Surveys of inflation expectations offer an alternative approach to inflation 
forecasting. The superior forecasting performance of surveys has been high-
lighted by several researchers. In particular, Grothe and Meyler (2015) argued 
that short-term inflation expectations derived from survey and market data for 
the euro area and the United States were informative predictors of future infla-
tion developments.  Similarly, Ang et al. (2007) show that inflation expecta-
tions from survey data beat a wide variety of forecasting models that include 
time-series ARIMA models; regressions using real activity data motivated 
from the Phillips curve, and term structure models that include linear, non-
linear, and arbitrage-free specifications.  

A similar study by Gil-Alana et al. (2012) revealed that survey-based ex-
pectations outperform standard time-series models in US quarterly inflation 
out-of-sample predictions.  Furthermore, Altuğ and Çakmaklı (2016) formu-
lated a statistical model of inflation that combines data from survey expecta-
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tions of inflation and argued that the model with survey expectations yields 
superior predictive performance to the model lacking them, as well as popular 
benchmarks, such as the backward-looking Phillips curves and the naive fore-
casting rule. 

The appeal of machine learning stems from its ability to uncover complex 
structures hidden in large datasets without explicit programming. Classifica-
tion and regression are two central applications of “supervised” machine 
learning. Both involve making estimations of an unknown target from a set of 
known features by applying various algorithms, such as support-vector 
machines, random forests, and deep neural networks. 

We employ “supervised” machine-learning models for short-term inflation 
forecasting by using the Central Bank of Turkey (CBT)’s survey of inflation 
expectations. We treat summary statistics of survey data as features without 
time stamp for a supervised machine-learning problem for which the label to 
estimate is the future inflation.  From the viewpoint of machine learning, this 
is a standard regression problem. We implemented the machine- learning 
models in Python software by using the Scikit-learn (Pedregosa et al., 2012) 
library, which is opensource software. The codes are available from the author 
upon request. 

The remainder of this paper is organized as follows: Section 2 briefly 
explains the machine- learning methods we employed to improve the forecast-
ing accuracy of inflation-expectation surveys. Section 3 presents the data and 
methodology by which we compared the forecasts. Section 4 discusses the 
forecast performance of the machine-learning algorithms and compares their 
accuracy with the survey data, the CBT official forecasts, a naive MA method, 
and a univariate model, and Section 5 contains the conclusion. 

2. Machine-Learning Models 

The success of machine learning primarily lies in its ability to discover 
unknown complex structures hidden in datasets. The common principle that 
underlies a supervised machine-learning model is to learn a target function (f) 
that maps input variables (X) to an output variable (Y). Without defining an 
explicit solution methodology that may not even exist, supervised machine-
learning models “learn” from sample data and make estimations for out-of-
sample data primarily for the purpose of binary classification, multiclass clas-
sification, and regression, among many other applications. 

Dealing with under-fitting and over-fitting problems is important when 
selecting and tuning supervised machine models. The under-fitting problem 
occurs if the model doesn’t represent the sample adequately. The over-fitting, 
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on the other hand, occurs if a model fits best on sample data and fails on out-
of-sample data.  

Therefore, bias-variance trade-off in machine learning is closely related to 
model complexity. As the model complexity increases, the variance tends to 
go up, and the bias tends to decrease—and vice versa [Mullainathan and 
Spiess, 2017]. Fig.1 depicts the prediction error as a function of model 
complexity with bias-variance combinations for a machine-learning model 
[Hastie et al., 2017, p. 38)]. 

Figure 1. Test and Training Error as a Function of Model  

                 Complexity 

 

The performance evaluation of a supervised machine-learning model 
involves dividing a dataset into test and training sets. The training set is used 
to train the model, which is being evaluated against the test dataset. In our 
study, the summary statistics of inflation-expectation surveys (the features) 
and the actual inflation (label), without time information, are divided into two 
groups: the training and forecast sets.  

We use five types of machine-learning algorithms: Linear Regression, 
Random Forests, Support-Vector Machines, Bayesian Ridge Regression, and 
Kernel Ridge Regression. Before introducing each of these models, we first 
present some fundamental aspects of supervised machine learning.  See Hastie 
et al. (2009) and James et al. (2013) for details about the models. 
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2.1. Linear Regression 

The underlying assumption of linear regression is that there is approxi-
mately a linear relation between response (Y) and variables (X) in a dataset 
with only quantitative values. We can write this relationship as 

� � �� � ���� � ���� � ⋯� �
�
 � � (1)  

Where ��, ��, … , �
 are the regression coefficients and � is the error term. 
For p = 1, (1) transforms into a simple linear regression. The regression coef-
ficients in (1) are estimated by using the least-squares approach in the formula: 

у� � ��� � ����� � ���� � ⋯� ��
�
 � � (2)  

such that the sum of squared residuals (RSS) is minimum. RSS is defined as 

��� � ∑ ��� � ���� � ������ � ������ � ⋯� ��
��
�������  (3)  

2.2. Random Forests Regression 

Random Forests (Breiman(2001)) are a collection of simple decision-tree 
predictors. Each decision tree in a Random Forest can produce a response for 
a set of input values. An algorithm determines the split points, splitting variables, 
and topology of a decision tree. The tree grows after solving for each split 
until a tuning parameter (tree size), which controls the model’s complexity, is 
reached. Random Forests aim to improve the predictive performance of decision 
trees by aggregating many of them. Furthermore, Random Forests overcome 
the problem of the strong predictor estimation in the bagged-trees approach by 
allowing for a smaller number of randomly selected predictors for each split. 
The average of the predictions from all the trees is the ensemble estimation of 
the Random Forest model. Growing a regression tree requires an algorithm 
that automatically decides on the splitting variables and split points. The response 
of a model consisting of M regions ��, ��, … , �� is determined by 

� �! � ∑ "�# � ∈ �%���% ! (4)  

for each region. Starting with all data, the algorithm first considers the pair 
of half planes in terms of the splitting variable &and the split point ' as 

�� &, '! � (�)�* + ', and �� &, '! � (�)�* - ', (5)  

and seeks the splitting variable & and split point ' that minimize 

min12 ∑  �� � "�!� � min13 ∑  �� � "�!�45∈62 *,7!45∈62 *,7!  (6)  
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For any value of & and ', the inner minimization is solved by 

"�8 � 9:;<9=;���)�� ∈ �� &, '!�, 
"�8 � 9:;<9=;���)�� ∈ �� &, '!�, (7)  

By scanning through all the inputs, we determine the best pair of  &, '!	is 
determined. Then the same process is repeated on resulting regions of data 
until the tree grows an optimal size according to a tuning parameter that de-
termines the model’s complexity. 

One common strategy is to grow a large tree with some minimum node 
size, such as 5. Then this large tree is pruned using a cost-complexity pruning 
procedure.  First, define a sub-tree ? ⊂ ?� of any tree obtained by pruning ?�, 
that is, collapsing any number from its non-terminal nodes. Letting 

A%=#B�� ∈ ��C, 
"%D � �

EF
∑ ��45∈6F , (8) 

G% ?! � 1
A%

I  �� � "%D!�
45∈6F

  

where m is the index of terminal nodes in region ��, we define the cost-
complexity criterion 

JK ?! � ∑ A%G% ?! � L|?||N|%��  (9)  

where	|?|	denotes the number of terminal nodes in	?, and α is the tuning 
parameter (L O 0), which governs the bias-variance tradeoff in the model. 
The idea is to find the sub-tree ?K ⊆ ?�	to minimize JK ?! in (9) for each α.  
Small values of α yield larger trees Tα and vice versa. The full tree ?� is re-
turned with α = 0. 

For each α there is a unique smallest sub-tree?K that minimizes (9). To 
find	?K, the algorithm collapses the internal mode that produces the smallest 
per-node increase in	∑ A%G% ?!	% until it produces the single-node (root) 
tree. This method is called weakest link pruning and gives a finite sequence of 
sub-trees that contain ?K. The tuning parameter α s estimated by choosing the 
value α8 to minimize the cross-validated sum of squares, from which ?S8 is the 
final tree. 

Decision trees yield high-variance, low-bias output. One way to reduce 
high variance is to use the bagging technique, which simply fits the same 
regression tree many times to bootstrap-sampled versions of the training dataset 
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and compute the average. Since each tree generated in the bagging of T trees 
is identically distributed, the variance of the average is given by 

UV� � �WX
Y V� (10)  

The second term disappears in (10) as T increases (more trees), and, hence, 
the benefits of averaging get weaker due to the size of the correlation of pairs 
in the bagged trees. The Random Forests aim to solve this problem by ran-
domly selecting the input variables in the tree-growing process. Before each 
split, Z variables are selected randomly from the input variables  [! as candi-
dates for splitting. After growing T	trees with this procedure, the Random 
Forest regression predictor is defined as 

��\]Y  �! � �
Y ∑ ? �;Θ_!Y_��  (11)  

where Θ_ characterizes the bth Random Forest tree in terms of split variables, 
cutpoints at each node, and terminal-node values. 

2.3. Support-Vector Regression 

The idea behind Support-Vector Machines (SVM) (Vapnik (1995)) is to 
find hyperplanes that separate different classes in a training dataset. SVM 
Regression (SVR) is a form of SVM with a numerical dependent variable 
instead of a categorical one. SVR relies on kernel functions (linear, polynomial, 
radial basis, etc.) to construct optimal hyperplanes.  

Kernel function transforms the training data from nonlinear space to linear 
space. This transformation allows SVR to find an optimum hyper plane. Mapping 
back to the original space completes the algorithm. For a linear-regression 
model, � �! 	� 	�N�	 �	��, and estimation of � and �� are possible through 
minimization of 

` �, ��! 	� ∑ a��� � � ��!� � λ

� ||β||�E���  (12)  

where  

ab � c 0, d�|<| e �,
|<| � �, fgh;<id'; 

The solution functions for	��  and ��� that minimize H have the form 

�� � ∑  	α8�∗ � α8�!E��� �� (13) 

�� �! � ∑  	L��∗ �	L��!E��� 〈�, ��〉 � �� (14)  
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Where		α8� and α8�∗ are called the support vectors, which solve the quadratic 
optimization problem	

 

minK5,K5∗
�I L�∗

E

���
� L�,! � I�� L�∗

E

���
� L�! � 1

2 I  L�∗
E

�,�n��
� L�! 

 L�n∗ � L�n!〈�, ��′〉 (15) 

 

subject to 

0 + αp, 0 + αp* + 1 λ⁄ , 

I L�∗
E

���
� L�! � 0, 

L�L�∗ � 0 

 

2.4. Kernel Ridge Regression 

Kernel Ridge Regression (KRR) (Hsiang (1975) is a form of linear regres-
sion. KRR imposes a penalty on the size of the regression coefficients, which 
are estimated by obtaining ��\�stu values that minimize 

∑ ��� � �� � ∑ �*��*

*�� �� ����� λ∑ ��


*�� � ��� � ∑ �*�

*��  (16)  

where λ ≥ 0 is a tuning parameter to be calculated separately. Limiting the 
size of the regression coefficients alleviates the high variance problem caused 
by the large coefficients of the correlated variables in a model. Writing the 
criterion (16) in matrix form, 

��� λ! �  � � v�!N � � w�! � λ�N� (17)  

we estimate the regression parameters as 

�x<dy=; �  v?v � λz!�1v{� (18)  

where # is the identity matrix with size [ | [. The choice of quadratic 
penalty in (17) makes the KRR solution a linear function of y.  If the inputs 
are orthonormal, the KRR estimates are a scaled version of the least-squares 
estimates	 ��\�stu � ��/ 1	 � 	λ!!. 
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2.5. Bayesian Ridge Regression 

Bayesian regression introduces uninformative priors over the hyper pa-
rameters of the model. The output y is assumed to be Gaussian distributed 
around �,i such that: 

[ �|�,i, L! � � i|�,i, L! (19)  

Where α is treated as a random variable and estimated from data. In a 
probabilistic model estimated by Bayesian Ridge Regression, the prior for the 
parameter w is given by a spherical Gaussian: 

[ i|λ! � � i|0, ��1z�! (20)  

The priors over α and λ are gamma distributions (the conjugate prior for 
the precision of the Gaussian normal distribution). The parameters w, α, and λ 
are estimated jointly in the model. 

3. Data and Methodology 

The Central Bank of Turkey (CBT) conducts a survey each month to 
monitor the expectations of experts from the financial and real sectors. The 
questionnaire includes short-term inflation forecasts (current month, next 
month, and two months ahead) in addition to many other expectations of eco-
nomic variables, such as exchange and interest rates. The survey reports also 
contain summary statistics that consist of mode, median, minimum, arithmetic 
mean, and maximum and minimum values. We obtained the survey of expec-
tations data from the CBT and the Consumer-Price Inflation (CPI) data from 
TURKSTAT. The data cover the period from August 2001 to December 2017, 
for which we produced monthly inflation forecasts for three horizons: current 
month (h=1), next month (h=2), and two months ahead (h=3). 

The Time-Series Cross-validation (TSCV) procedure uses the past data only 
for the training of the machine-learning models without any information about 
the forecast horizon or beyond, thereby producing out-of-sample forecasts. 
We used an expanding-window rather than the rolling-window estimation 
procedure to permit the use of more data for the learning process. Expanding 
the window-procedure estimates model on a sample running from 1, 2, . . . , g 
and we produced forecasts of variables at date   g	 � 	h ∶ 	h	 - 0. 

The performance metric we employed to evaluate the forecasts by the 
machine-learning models is the Relative Root Mean Square Error (R-RMSE), 
which is calculated by dividing the model forecast RMSE by the survey fore-
cast RMSE: 
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� � ���� � �∑ ��5W]5F�3�5�2
�∑ ��5W]5��3�5�2

 (21)  

where � is the actual inflation,  fm is the model forecast, and fs is the arith-
metic mean of survey expectations. A relative RMSE value less than unity 
indicates that the model improved on the surveys’ forecasts and vice versa. 

Furthermore, we computed the Empirical Cumulative Distribution Func-
tion (ECDF) for Bootstrap RMSEs of the forecasts. ECDF is defined as: 

ECDF	 ����! � ������	��	��������	p�	���	������	�6�� 
E  (22)  

where N is the total number of elements in the sample. ECDF used the data 
from the Bootstrap replicates of the forecasts and their RMSEs to draw statis-
tical inferences. We used 10,000 bootstrap replicates with replacements. 

We compare the forecast performance of the machine learning models 
with a suite of forecasts that consist of survey data, the CBT forecasts, a time-
series forecasting model (TBATS), and a naive moving-average model. 
TBATS is a state space-modeling framework (de Livera et al. (2011)) for 
univariate time series forecasting with complex seasonal patterns. This trigo-
nometric framework has both linear and nonlinear time-series modeling ca-
pacity with single seasonality, multiple seasonality, high period, and non-
integer seasonality. TBATS incorporates Box-Cox transformations, Fourier 
representations with time-varying coefficients, and ARMA error correction. 
We used the R implementation of the TBATS model to compute the point 
forecasts for the next three months, starting from the first month of the respec-
tive quarter, from 2016-Q4 to 2017-Q4. 

The CBT doesn’t publish its monthly inflation forecasts. Hence, we use the 
quarterly inflation forecasts for comparison. Although quarterly inflation 
forecasts are not provided separately in the CBT’s inflation reports, one can 
calculate them by solving the following equation analytically for �¡. 

 1 � �¢%!�1 � �¡� � 1 � ���% (23)  

where �¢% is the actual past nine months’ inflation and ���% is the CBT’s 
yearly inflation forecast at the end of the quarter that is available in the CBT’s 
inflation report. 

Calculating the quarterly inflation forecasts makes use of the next month 
and two months ahead forecasts from the models, such that the next quarter 
inflation forecast (��¡%), starting with the current month m , is given by 
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��¡% � �1 � �%W�£ �!� �1 � �%£ �!� �1 � �%£ ¤!� � 1 (24)  

where �%£ �! is the model forecast in month Z for horizon ¥. 

As a benchmark, we employ a naive Moving Average (MA) model, in 
which the next quarter’s inflation is equal to the arithmetic mean of the past 
four quarters’ inflation rates (Atkeson and Ohanian, 2001). 

��b¦¡ � �
§ ��bW¡2 � �bW¡3 � �bW¡¨ � �bW¡©� (25)  

Even though it is well established that a naive MA model does not perform 
well for short time horizons for economies lacking stable inflation dynamics, 
the model nonetheless serves as a benchmark. 

The results we obtained with the default parameters of the machine-
learning models in the Scikit-learn library are satisfactory to the extent that 
they demonstrate the effectiveness of the proposed approach. 

4. Forecasting Performance Evaluation 

The forecast period covers five quarters, from 2016-Q4 to 2017-Q4. We 
evaluate the forecast performance of the machine-learning models, the sur-
veys, the CBT, the TBATS model, and a naive MA model serving as a 
benchmark. The ECDF of Bootstrap mean of RMSEs offers useful infor-
mation for comparing forecasting performances. 

Table 1 shows the probability of fractional improvement by the machine-
learning models at each time horizon, based on the Bootstrap mean of fractional 
improvements. At horizon 1, only the LR provides a fractional improvement, 
with a 68% probability, whereas the other models remain below the 50% 
critical level, which indicates no improvement.  

On the other hand, RFR performs better than the survey, with an 87% 
probability at horizon 2, followed by the KRR and BRR, with 74% and 60%. 
Both the LR and SVR remain below 50% at horizon 2, meaning that they fail to 
improve the accuracy of survey forecasts.  

Significant fractional improvement is achieved by the models at horizon 3, 
with 99% probability by RFR and 98% by KRR, BRR, and SVR. The accuracy 
gain by LR occurs with lower probability than the other models, but with 
68%, it can still improve the survey forecast at horizon 3. 
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Table 1. Probability of Fractional Improvement by 
Machine-Learning Models 

Forecast horizon RFR KRR LR BRR SVR 
h=1 0.33 0.36 0.68 0.32 0.39 
h=2 0.87 0.74 0.49 0.60 0.30 
h=3 0.99 0.98 0.68 0.98 0.98 

Note: Forecast horizons are in months. Bold text indicates the most accurate model 
for the forecast horizon.  
Abbreviations: RFR: Random Forests Regression, 
KRR: Kernel Ridge Regression, LR: Linear Regression, 
BRR: Bayesian Ridge Regression, SVR: Support Vector Regression 
 

Table 2 gives RMSEs and relative RMSEs for the forecasts. Although the 
survey forecasts performed worse than the CBT and TBATS, all the models 
scored smaller RMSEs, in the range of 0.76 to 0.83. With 0.76 RMSE, LR 
outperformed the other machine-learning models, but the difference is negli-
gible, except for KRR, which has an RMSE of 0.83. TBATS produced better 
forecasts than the CBT.   

MA yielded the worst forecast performance due to the rapidly changing 
inflation dynamics during the forecast period. The CBT scored only 7% less 
than the RMSE. By comparison, the TBATS scored 18% better than the sur-
vey forecasts. The machine-learning models improved on the survey forecasts 
by up to 38%. 

Table 2. Quarterly CPI Forecast Performances 

Forecast 
by 

RMS
E 

Relative RMSE 
(MA) 

Relative RMSE 
(Survey) 

MA 1.70 1.00 1.39 
CBT 1.14 0.67 0.93 

TBATS 1.01 0.59 0.82 
Survey 1.23 0.72 1.00 

LR 0.76 0.45 0.62 
BRR 0.78 0.46 0.64 
RFR 0.77 0.45 0.63 
KRR 0.83 0.49 0.68 
SVR 0.77 0.45 0.63 

Note: Forecast period from 2016-Q4 to 2017-Q5.  
Abbreviations: CPI: Consumer-Price Inflation, MA: Naïve Moving Average forecast, 
CBT: Central Bank of Turkey forecasts, TBATS: A univariate model by de Livera et 
al. (2011). See note to Table 1 for other abbreviations. 
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The quarterly inflation forecasts of the machine-learning models, surveys, 
CBT and TBATS are shown in Figure 2. Due to the limited number of fore-
casting points and changing performances of the models for different periods, 
it is difficult to judge the forecast accuracies from the figure. On the other 
hand, Figure 3 shows the ECDF of the Bootstrap means of forecast absolute 
errors, which reveals the forecasting performances.  

It is apparent from the figure that the machine-learning models outperform 
the CBT forecasts, which are slightly more accurate than the surveys. Even 
though the TBATS produced the best forecasts, its performance was not con-
sistent, and large forecasting errors moved the TBATS to a ranking between 
the CBT and the machine-learning models. 

Figure 2. Quarterly CPI Forecasts  

 
Note: See the note to Table 2 for abbreviations. 

To summarize, even though the surveys performed worse than the CBT 
and the TBATS forecasts, the machine-learning models relying only on the 
summary statistics of the survey data produced significant levels of accuracy, 
which led to better forecasts than those of the CBT and the TBATS, as measured 
by the RMSE. In particular, the RFR yielded the best performance among the 
selected machine-learning models.  
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Further accuracy improvement of the models is possible through parameter 
optimization and an increase in the size of the training data. In addition, 
extending the forecast period with new data as they become available will 
contribute to better evaluation of the machine-learning models and improve 
the forecasting capability of inflation-expectations surveys. 

Figure 3. Bootstrap Means of Forecast Errors.  

 
Note: See the note to Table 2 for abbreviations. 

5. Conclusion 

We have employed a suite of machine-learning models to improve the ac-
curacy of surveys of inflation expectations, conducted by the Central Bank of 
Turkey (CBT). A training set consisting of only the summary statistics of 
survey data and actual inflation in Turkey was used. The comparison of fore-
cast performances vis-a-vis the forecasts by the CBT and a univariate model 
(TBATS) shows that the proposed method not only improves the accuracy of 
the surveyed forecasts but also outperforms the CBT and TBATS, which are 
themselves more accurate than the surveys. 

We treat the inflation forecasting as an estimation problem in machine 
learning. The summary statistics of survey data form the features set and the 
actual inflation is used as labels. The time-series cross validation procedure 
ensures that the forecast horizon data are not included in the training set for 
the machine-learning model.  Among the models, the RFR yielded the best 
fractional improvement. 
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