

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

347

Celal Bayar University Journal of Science

A New Hybrid Scatter Search Method for Solving the Flexible Job Shop

Scheduling Problems

Safa Külahlı1 , Orhan Engin2* , İsmail Koç3

1 Management and Organization Department, Vocational School, Selçuk University, Konya, Turkey

2 Industrial Engineering Department, Engineering and Natural Science Faculty, Konya Technical University, Konya,

Turkey
3 Software Engineering Department, Engineering and Natural Science Faculty, Konya Technical University, Konya,

Turkey

* orhanengin@yahoo.com

* Orcid: 0000-0002-7250-0317

Received: 23 April 2021

Accepted: 11 November 2021

DOI: 10.18466/cbayarfbe.926756

Abstract

Flexible job shop scheduling (FJSS) is derived by inheriting the features of the job-shop scheduling

problem. It has an extra routing sub-problem of the job-shop scheduling. FJSS is well known as an NP-

hard problem in the literature. A new hybrid scatter search method is proposed to solve the FJSS problem.

The objective function of the proposed hybrid scatter search method is minimizing the maximum

completion time (Cmax) for FJSS problems. The proposed hybrid scatter search method is integrating a

local and global search for generating an initial population. The performance of the proposed new hybrid

scatter search method is dependent on the selected parameters. These parameters are the size of the initial

population and reference set; the number of subsets, reference set updating and population sub updating;

reproduction, crossover, and mutation operators, and their ratio. A full factorial experimental design is

made to determine the best values of control parameters and operators for the proposed new hybrid scatter

search to solve the FJSS problems. The proposed new hybrid scatter search method is tested on a set of

the well-known benchmark flexible job shop scheduling instances from the literature. The computational

results indicated that the proposed new hybrid scatter search is an effective method for solving the FJSS

problems.

Keywords: Flexible job shop scheduling problem, Full factorial experimental design, Hybrid scatter

search method, Makespan.

1. Introduction

Job shop scheduling (JSS) is the hardest problem in this

domain [1]. The flexible job shop scheduling is a much

more complicated version of the JSS. In the FJSS

problem, processes are permitted to be committed on

any machine chosen from inside a set of available

machines. The FJSS is an extremely NP-hard problem

[2]. FJSS can be solved via two main approaches called

integrated and hierarchical. While in the integrated

approach allocating and ordering of problems are

concurrently considered, in hierarchical approaches,

these two operations are processed one by one [3].

Though designing integrated approaches are more

difficult, their results are better than the other in general

[4,5]. Brucker and Schlie [6] studied first on the FJSS

problems. They developed a polynomial algorithm for

FJSS problems. Kacem et al. proposed an evolutionary

optimization method for solving the FJSS problem [7].

Tay and Wibowo studied the representation of the four

different chromosomes for the evolutionary algorithms

to solve the FJSS [8]. They indicated that the

representation of the chromosome also plays an

important role in the solution success of FJSS problems.

Ong et al. developed an algorithm with an integrated

approach attempting based on the clonal selection

mechanism for solving the FJSS problems with the

repetition processing [9]. Ho et al. generated a genetic

architecture method for FJSS problems [10]. Gao et al.

presented a hybrid genetic algorithm for FJSS problems

[11]. Fattahi et al. developed a heuristic approach for

solving the FJSS problems [12]. They also presented the

mathematical model of the problems. Gholami and

Zandieh integrated the simulated annealing and genetic

algorithm approaches for the dynamic FJSS problems

[13]. Xing et al. developed a search method for the

mailto:orhanengin@yahoo.com
https://orcid.org/0000-0003-1652-4928
https://orcid.org/0000-0002-7250-0317
https://orcid.org/0000-0003-1311-5918

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

348

multi-objective FJSS problem [14]. Zhang et al.

presented a particle swarm optimization method for

multi-objective FJSS problems [15]. Bagheri et al.

developed an artificial immune algorithm based on an

integrated approach for FJSS problems [16]. Guohui et

al. hybridized a tabu search and genetic algorithm

approaches for the FJSS [17]. Wang and Yu considered

an FJSS with constraints of the machine [18]. Zhang et

al. proposed a genetic algorithm to solve the FJSS

problems with minimizing the makespan value [1].

They determined global and local selection to produce a

high-grade starting population in the stage of

initialization in their method. Birgin et al. presented a

MILP model for the FJSS [19]. Demir and İşleyen

compiled four of the most used formulations of the

FJSS and proposed a time-indexed model for FJSS [20].

Yuan and Xu proposed a hybrid differential evolution

algorithm to solve FJSS with the makespan

minimization criterion [21]. Demir and İşleyen

considered the FJSS with overlapping in operations

[22]. Abdelmaguid dealt with the makespan

minimization problem in scheduling FJSS whenever

there exist distinguishable sequence-dependent setup

times [23]. He presented a randomized neighborhood

searching function, and he experimentally specified its

best parameters using modified FJSS benchmark

samples. Gao et al. developed an artificial bee colony

algorithm (ABCA) to schedule and reschedule with a

new job(s) to minimize makespan for FJSS [24].

Besides, they proposed a new rule for initializing the

bee colony populations. González et al. developed

influential neighborhood structures for the FJSS

containing feasibility and non-improvement

circumstances, as well as procedures for fast prediction

of the quality of neighbors [25]. They included these

neighborhoods in a scatter search (SS) algorithm that

employs tabu search and path relinking. They

determined a new dissimilarity measurement to

construct these meta-heuristics. Ishikawa et al. proposed

a novel optimization mechanism for distributing genetic

algorithms to solve FJSS problems [26]. Singh and

Mahapatra developed a particle swarm optimization for

solving FJSS [27]. They introduced mutation operators

used commonly in genetic algorithms. Zabihzadeh and

Rezaeian presented the integer linear programming

model for the FJSS [28]. Li et al. proposed a hybrid

ABCA for solving FJSS problems [29]. They integrated

tabu search and bee colony algorithm. Shen et al.

considered the FJSS problem with sequence-dependent

setup times [30]. Min et al. proposed a genetic

algorithm for solving the multi-objective FJSS problem

with transportation constraints [31]. Li et al. generated a

java algorithm for solving the FJSS problem [32].

Currently, there is no reported paper on the hybrid

scatter search (HSS) method for solving the FJSS

problems. The main contributions of this paper are

summarized as follows:

• In this paper, the basic scatter search method is

hybridized first by new strategies and new methods

to obtain a good balance between exploration and

exploitation in SS.

• At the proposed HSS, local and global search

methods are used to determine the initial

populations.

• Also, at the proposed HSS, the crossover and

mutation operators and ratios are used first.

• The proposed new HSS method is the first used to

solve the FJSS problems. The objective of the

proposed HSS is to minimize the Cmax.

• The proposed HSS method found the new best Cmax

values for four benchmark problems from the

literature.

• A full experimental design is done for determining

the best parameter sets of the new HSS method for

solving the FJSS problems.

• The proposed new HSS method is tested on a set of

benchmark FJSS problems.

The proposed new hybrid scatter search method (HSS)

is analyzed. The results of HSS are compared to the

Fattahi et al. [12], Özgüven et al. [33], Bagheri et al.

[16], and Birgin et al. [19] from the literature.

The paper is organized as follows. Section 2 gives the

FJSS formulation. Section 3 provides the proposed HSS

method. Section 4 gives the computational results.

Finally, the conclusion and future research are presented

in Section 5.

2. Flexible job shop scheduling

This paper considers FJSS problems. The problem can

be denoted as FJc / / Cmax, where FJc denotes the

flexible job shop with c work center. Each work center

has several identical machines in parallel. Cmax indicates

the performance measure, makespan. The objective is to

minimize the Cmax values for FJSS problems. The FJSS

problem has m machine and n job. Each job consists of

a sequence of operations. The assumptions in the FJSS

problems are given as follow:

• The jobs and machines numbers are known at the

beginning of the schedule,

• All processors, machines, and jobs are available,

• The processing time of each job on the machine is

given before,

• The processing time are including the setup time of

the jobs,

• The processing sequence of each job on the machine

is known previously,

• The objective function is minimizing the makespan

values.

The FJSS problem is formulated as a mixed integer

linear programming model as follow [12, 33, 19].

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

349

Parameters;

n : Jobs number (j = 1,...,n)

m : Machines number (i = 1,...,m)

k : Number of operations (k = 1,...kj)

Mj,k : Job j requires operation k on Machine

Oj,k : k th operation of the j th job

𝑍𝑖,𝑗,𝑘 : Capable machines set Mj,k assigned to

operation Oj,k

ti,j,k : Processing time of operation Oj,k if

performed on machine i (ti,j,k ˃0)

LN : Large number

Cmax : Makespan

Sj,k : Start time of operation Oj,k

pi : The assigned operations number on

machine i; (p = 1,...pi)

SWTi,p : Start of working time for machine i in

priority p (p = 1,...pi)

Tj,k : Processing time of operation Oj,k after

select a machine

Decision variables;

𝑋𝑖,𝑗,𝑘,𝑝 = {
1 𝑖𝑓 𝑂𝑗,𝑘 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒

 𝑖 𝑖𝑛 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑌𝑖,𝑗,𝑘 = {
1 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑂𝑗,𝑘

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍𝑖,𝑗,𝑘 = {
1 𝑖𝑓 𝑂𝑗,𝑘 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mixed integer linear programming model;

The objective function is to minimize the makespan.

Min Cmax

Subject to

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑗,𝑘𝑗 + 𝑇𝑗,𝑘𝑗 ; (j=1,…,n) (2.1)

∑ (𝑌𝑖,𝑗,𝑘)(𝑡𝑖,𝑗,𝑘) =𝑖 𝑇𝑗,𝑘 ;(j=1,…,n); (k = 1,...kj) (2.2)

𝑆𝑗,𝑘 + 𝑇𝑗,𝑘 ≤ 𝑆𝑗,𝑘+1 ;(j=1,…,n); (k = 1,...kj-1) (2.3)

𝑆𝑊𝑇𝑖,𝑝 + (𝑇𝑗,𝑘)(𝑋𝑖,𝑗,𝑘,𝑝) ≤ 𝑆𝑊𝑇𝑖,𝑝+1 ; (i = 1,...,m)

(j=1,…,n); (k = 1,...kj); (p = 1,...pi-1) (2.4)

𝑆𝑊𝑇𝑖,𝑝 ≤ 𝑆𝑗,𝑘 + (1 − 𝑋𝑖,𝑗,𝑘,𝑝). 𝐿𝑁 ; (i = 1,...,m)

(j=1,…,n); (k = 1,...kj); (p = 1,...pi) (2.5)

𝑆𝑊𝑇𝑖,𝑝 + (1 − 𝑋𝑖,𝑗,𝑘,𝑝)𝐿𝑁 ≥ 𝑆𝑗,𝑘 ; (i = 1,...,m)

(j=1,…,n); (k = 1,...kj); (p = 1,...pi) (2.6)

𝑌𝑖,𝑗,𝑘 ≤ 𝑍𝑖,𝑗,𝑘 ;(i = 1,...,m);

(j=1,…,n); (k = 1,...kj) (2.7)

∑ ∑ 𝑋𝑖,𝑗,𝑘,𝑝 = 1𝑘𝑗 ; (i = 1,...,m);

(p = 1,...pi) (2.8)

∑ 𝑌𝑖,𝑗,𝑘 = 1𝑖 ;(j=1,…,n); (k = 1,...kj) (2.9)

∑ 𝑋𝑖,𝑗,𝑘,𝑝 = 𝑌𝑖,𝑗,𝑘𝑝 ;(i = 1,...,m)

(j=1,…,n); (k = 1,...kj) (2.10)

𝑆𝑗,𝑘 ≥ 0 ; (j=1,…,n); (k = 1,...kj) (2.11)

𝑇𝑗,𝑘 ≥ 0 ; (j=1,…,n); (k = 1,...kj) (2.12)

𝑆𝑊𝑇𝑖,𝑝 ≥ 0 ; (i = 1,...,m);

(p = 1,...pi) (2.13)

𝑋𝑖,𝑗,𝑘,𝑝 𝜖{0, 1} ; (i = 1,...,m); (j=1,…,n);

(k = 1,...kj); (p = 1,...pi) (2.14)

𝑌𝑖,𝑗,𝑘𝜖{0, 1} ; (i = 1,...,m); (j=1,…,n);

(k = 1,...kj) (2.15)

𝑍𝑖,𝑗,𝑘𝜖{0, 1} ; (i = 1,...,m); (j=1,…,n);

(k = 1,...kj) (2.16)

Constraint (2.1) determines the makespan (Cmax).

Constraint (2.2) provides the processing time of

operation Oj,k. Constraint (2.3) determines each job to

follow a specified operation sequence. Constraint (2.4)

defines each machine to process one operation at a time.

Constraints (2.5) and (2.6) denote each operation Oj,k

can be started after its assigned machine is idle.

Constraint (2.7) defines the capable machines for each

operation. Constraint (2.8) determines the operations to

a machine and sequences assigned operations on all

machines. Constraints (2.9) and (2.10) define each

operation can be performed only on one machine at one

priority. Constraints (2.11); (2.12) and (2.13) denote the

non-negative parameters. Constraints (2.14); (2.15) and

(2.16) permitted the variables

𝑋𝑖,𝑗,𝑘,𝑝 ; 𝑌𝑖,𝑗,𝑘; 𝑍𝑖,𝑗,𝑘𝜖{0, 1} or equivalently are binary.

3. Proposed hybrid scatter search method

3.1. Scatter search method

Scatter search (SS) is one of the evolutionary methods

[34]. The SS method was proposed in the 1970s [35].

Contrary to other evolutionary methods, SS is

established on the premise which systematic designs

and methods to generate new solutions afford

significant benefits. It utilizes strategies for search

diversification and concentration that have verified

efficiency in various optimization problems [36].

SS is based on an approach to solution generation and

recombination [37]. The fundamental characteristic of

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

350

SS is the diversification of optimization solutions. The

steps of the SS method are given in Fig.1.

1. An initial population is created,
2. A reference set is generated from the population,
3. A subset is selected from the reference set,
4. A combination procedure is applied to the subset,
5. An improvement procedure is applied to the
combinations,
6. The reference set is updated,
7. Step 3 to Step 6 are repeated until a new reference set
is needed,
8. Step 2 to Step 7are repeated until a population is
needed,
9. Step 1 to Step 8 are repeated until the stopping
criterion is met.

Figure 1. The steps of the SS method. [38, 39]

The SS strategy is implemented by utilizing six

procedures and three stopping criteria for solving an

optimization problem. These six procedures are based

on five components. SS has five main methods namely

diversification generator, improvement, reference set

update, subset generation, and solution combination

method [40, 41, 42, 43]. A diversification generator is a

means to start the search procedure. Improvement

method is the procedure where local search procedure is

defined. The reference set update method is the

procedure by which the elements of the RefSet are

selected. The Subset generation method declares the

orders to choose the pairs of parents which will be

combined later to constitute new solutions combination

method. The method aims to generate new solutions by

using the existing solutions.

3.2. The Hybrid scatter search method

In this study, we hybridized the basic SS by new

strategies and new methods to obtain a good balance

between exploration and exploitation in SS. These

strategies are local and global search methods to

determine the initial population. This global search

method is used to escape from local optimum traps in

the solution space. These strategies are good for

exploration. Also, the new methods for basic SS are

crossover and mutation operator and ratios. These new

methods are good at exploitation.

The outline of the proposed HSS is given as follows:

Step 1. Setting initial parameters of HSS

 Number of the initial population,

 Number of reference set,

 Number of subsets,

 Number of updating initial population,

 Number of updating subset,

 Method of crossover,

 Method of mutation,

 The ratio of crossover,

 The ratio of mutation,

 Set CPU time.

Step 2. Solving problem,

 Determining initial population by the local and global

search,

 Generate reference set,

 Select subset,

 Choose two job sequences for crossover from the

subset,

 Do crossover

 If new job sequences are feasible and the objective

function is better than before;

 Add they subset

 Else

 Eliminate they

 Until crossover ratio

 Choose a job sequence for mutation from the subset,

 Do mutation

 If the new job sequences are feasible and the

objective function is better than before

 Add it subset

 Else

 Eliminate it

 Until mutation ratio

 Until the number of subsets

 Update the reference set

 Until the number of references set

 Until the stopping criterion met

Step 3. Output the minimum makespan (Cmax)

3.2.1. Initial population

The initial population is a crucial task in the scatter

search algorithm [44]. In this study, two methods are

presented to solve the first sub-problem by assigning

each operation to a suitable machine.

The steps of the first method are given as follows [1]:

Step 1: A new array is created and starts each member

to 0.

Step 2: Choose a job randomly.

Step 3: Add the processing time and the time of the

corresponding machine.

Step 4: Compare the added time to determine the

shortest time.

Step 5: Set the allele which corresponds with the current

process in the machine selection part to k.

Step 6: Add the processing time of the current chosen

machine.

Step 7: Select the next process of the current job and

execute Step 3 to Step 6 until all operations of the

current job are chosen, then go to Step 8.

Step 8: Until all jobs are selected once, go to step 2.

A local search is used as a second method.

3.2.2. Generating reference set and subset selection

The individual in the reference set comprises selecting

the best individuals in the initial population. The

individuals in the reference set rank from the worst to

the best according to the determinate objective function.

The objective function of this study is to minimize the

makespan (Cmax). The sorted individuals are selected by

starting from the best ones according to the predefined

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

351

reference set generation rate and the reference set is

generated. The subsets are constituted by choosing the

best individuals from individuals in the reference set

because the combination and improvement procedures

will be implemented over the best ones.

3.2.3. Crossover

Crossover is described as new individuals’ generation

from between two individuals selected from within the

whole population according to the given rules [45]. The

objective of the crossover method is to facilitate

achieving the optimal result by providing the formation

of better individuals. There exist different methods used

in the solution of several problems. In addition to these,

some methods are privately developed according to the

characteristic structure of the problems. In this study,

the four crossover operators are considered, namely

priority-based sequential, single point, operation

sequence change, and alternative machine change

crossover. In the priority-based sequential crossover

method, two jobs are randomly selected from the first

parent individual and all the processes which belong to

those jobs are selected. However, the other jobs are

transferred into the child individual by selecting from

the second parent individual. In the example below, 1st

and 3rd jobs are randomly selected from the first parent

individual (p1); the other jobs (2nd and 4th jobs) are

selected from the first parent individual (p2). Then, a

new child individual (c1) is generated by using p1 and

p2 as shown in Fig. 2.

Figure 2. An example of priority-based sequential

crossover operator.

Single point crossover, a point that is randomly

determined on any selected individual.

Figure 3. An example of a single-point crossover

operator.

It is replaced by splitting the chromosome into two parts

from that selected point. This method is used by

modifying in this study.

The part of the first chromosome until the predefined

cut point is transferred into the new chromosome from

the first one. However, after the genes transferred from

the first chromosome are extracted from the second

individual, the others are transferred into the new

chromosome in order. A sample of single-point

crossover is shown in Fig. 3.

In the operation sequence change crossover method, it is

operated on any single chromosome. Two jobs together

with their whole processes are randomly selected over a

single chromosome. Selected jobs are implemented by

replacing over the same chromosome. An example of

operation sequence change crossover is presented in

Fig. 4.

Figure 4. An example of operation sequence change

crossover operator.

In the alternative machine change crossover method, the

genes are randomly selected from the first chromosome.

The same selected genes are chosen from the second

chromosome, too. The machines of the selected genes

over the second chromosome are assigned to the

selected genes over the first chromosome. In sort, the

method is applied by changing the machine assignment

components of the same genes. An example an

alternative machine change crossover is presented in

Fig. 5.

3.2.4. Mutation

The mutation operator is implemented after crossover.

Mutation used to provide diversity in the population is

generally employed in small proportions because that

mutation rate is great can destroy the good individuals.

Figure 5. An example of an alternative machine change

crossover operator.

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 4-3 1-4 3-3 2-2 2-4 3-4 4-4

1 2 4 3 3 2 4 2 1 3 2 4 1 2 3 1

1-1 1-2 3-1 2-1 2-2 4-1 3-2 2-3 4-2 1-3 2-4 1-4 3-3 4-3 3-4 4-4

3 2 4 3 2 1 2 4 1 2 3 2 1 4 1 2

2-1 3-1 1-1 1-2 2-2 4-1 1-3 3-2 2-3 4-2 1-4 3-3 2-4 4-3 3-4 4-4

3 2 4 3 2 1 4 2 4 1 2 4 3 4 3 2

p1

p2

c1

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 4-3 1-4 3-3 2-2 2-4 3-4 4-4

1 2 4 3 3 2 4 2 1 3 2 4 1 2 3 1

1-1 1-2 3-1 2-1 2-2 4-1 3-2 2-3 4-2 1-3 2-4 1-4 3-3 4-3 3-4 4-4

3 2 4 3 2 1 2 4 1 2 3 2 1 4 1 2

4-1 3-1 1-1 1-2 2-1 4-2 1-3 3-2 2-2 2-3 2-4 1-4 3-3 4-3 3-4 4-4

1 2 4 3 3 2 4 2 2 4 3 2 1 4 1 2

p1

p2

c1

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

352

In mutation, it is altered over the genes of only one

individual. It is decided whether mutation will be

implemented over the individual according to a defined

possibility value. In this study, the four mutation

operators are considered, namely random assignment

machine, operation relocation, best machine change,

and last operation relocation.

The random assignment machine method, a machine

where a process randomly selected from the

chromosome would be operated is randomly changed.

This operation is performed regardless of the processing

time on the machine. For example, while the machine,

where the process 2-3 would be operated, is the 1st

machine before mutation, the machine is changed as the

4th machine at the end of the mutation. An example of a

random assignment machine is presented in Fig. 6.

Figure 6. An example of a random assignment machine

mutation operator.

In Operation Relocation Method, a process is randomly

selected on the chromosome. The position of this

process is changed by considering its predecessor and

subsequent processes of this selected process. In the

example below, the randomly selected process 1-2 is

replaced with a position that is determined randomly

between the process 1-1 and 1-3. A sample of operation

relocation is shown in Fig. 7.

Figure 7. An example of operation relocation mutation

operator.

In the best machine change method, a machine where a

randomly selected process would be operated is

changed by considering the processing time. In Fig. 8,

the machine where process 2-3 would be operated is

changed by detecting which machine process 2-3 is

operated in the shortest time on.

Figure 8. An example of the best machine change

mutation operator.

While the present machine where this process is

operating in the 1st machine, the 3rd machine was

assigned to operate this process after mutation. A

sample of the best machine change is presented in Fig.

8. The last process on the chromosome which is

randomly selected and will be mutated is determined.

The position of the determined last process is randomly

replaced by considering the position of the predecessor

process. A sample of the last operation relocation is

given in Fig. 9.

Figure 9. An example of last operation relocation

mutation operator.

3.2.5. Local search and reference set updating

procedure

In the local search procedure, before two chromosomes

which would be crossover are subjected to the crossover

method, the value Cmax is calculated according to the

available machine assignment and recorded, to perform

the assignment of the machine where the processes

would be operated in the shortest time according to the

determined process array. Then, indices of all the

machines are reset. By considering the process

sequences of the chromosomes in which the index of the

machine has been reset, these chromosomes are

subjected to crossover.

New chromosomes generated at the end of the crossover

are assigned to the machine which has the earliest

completion time, by starting from the beginning of the

chromosome via the local search procedure. In this

procedure, for the process which would assign, the

algorithm assigns the machine that has the earliest

completion time by scanning all the alternative

machines.

The steps of the local search procedure are given as

follows:

Step 1: Reset the indices of machines in the

chromosome.

Step 2: Select operations from the chromosome

depending on the order of the processes.

Step 3: Determine the processing times on the

alternative machines where the selected operation can

be processed.

Step 4: Find the completion time of the previous

operation from the selected operation.

Step 5: Find enough time spans according to the empty

time span and the processing time on the alternative

machine.

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 4

Before

Mutation

After

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 2-2 3-1 1-2 3-2 1-3 2-3

2 1 4 3 3 2 3 4

After

Mutation

Before

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 3

Before

Mutation

After

Mutation

1-1 2-1 1-2 2-2 3-1 3-2 1-3 2-3

2 1 3 4 3 2 3 1

1-1 2-1 1-2 2-2 3-1 2-3 1-3 3-2

2 1 3 4 3 4 3 2

Before

Mutation

After

Mutation

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

353

Step 6: Assign the machine which has the earliest

completion time and enough time spans as the machine

where the operation will be processed.

Step 7: Go to Step 2 until all the processes are selected.

The main objective of the local search procedure is to

determine the span where the operations at the

chromosome with the process sequence which occurs in

the end of the crossover and mutation are earliest

processed. Therefore, by assuming that the end of the

previous operation is the lower limit, the whole

alternative machines should be scanned for finding the

machine where the operation would be earliest

processed when assigning.

The solutions occurring at the end of the local search are

compared to the solutions in the reference set and after

new solutions are included in the reference set, the

worst solutions in the reference set are removed.

3.2.6. Reference set population updating and

stopping criteria

The values Cmax obtained in the result of mutation are

compared to the values in the reference set, if the new

value is the better solution, by including it in the

reference set the worst result is removed from the set

and therefore the reference set is updated. This loop is

executed until a new reference set is needed.

The generation and updating procedure of both

population and the reference set included in the SS

method contains 3 stopping criteria. These are given as

follows [38]:

1. New Reference Set Criterion; contains the decision

about when a new reference set should be created

from the population.

2. New Population Criterion; contains the decision

about when a new initial population should be

generated.

3. Stopping Criterion; contains the decision about

when the whole searching operations set should be

stopped.

4. Computational results

4.1. Parameter test

A full factorial experimental design is made to

determine the best values of control parameters and

operators for the proposed new HSS to solve the FJSS

problems.

The developed new HSS algorithm is examined on the

benchmark instances. First studies are conducted on the

problem group that belongs to Fattahi et al. [46].

Besides, the algorithm is also carried out for the

problem groups formed by Kacem et al. [7,47] and

Fattahi et al. [12].

The parameters used in the HSS method are utilized as

fixed in all the problems. The optimization where all the

levels are examined is carried out by dividing 20 parts

which have Intel Xenon CPU E5-1650 3Ghz and 8GB

RAM. The parameters and the ratio (levels) are given in

Tables 1, 2, 3, and 4.

Table 1. The ratios of the global, local, and random

methods.

The best values of global, local, and random search

methods rations are found as follows:

• Global search method : 0.6

• Local search method : 0.3

• Random method : 0.1

Table 2. Parameter ratios.

Parameter Ratio (Level)

Initial population size 20 30 40 50 60 70 80 90 100

Size of reference set (%) 20 30 40 50 60 70 80 90 100

Number of subsets 2 4 6

Number of reference set updating 50 100 150 200 250

Number of population set updating 50 100 150 200 250

Table 3. Parameter ratios for crossover methods.

Crossover Methods Ratio

Priority-based sequential 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Single point 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Operation sequence change 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Alternative machine change 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Method Ratio

Global search 0.6 0.5 0.4 0.3

Local search 0.3 0.4 0.5 0.6

Random 0.1 0.1 0.1 0.1

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

354

Table 4. Parameter ratios for mutations methods.

Mutation methods Ratio

Random assignment machine 0.05 0.1 0.15

Operation relocation 0.05 0.1 0.15

Best machine change 0.05 0.1 0.15

Last operation relocation 0.05 0.1 0.15

The best parameter values are found by the full factorial

experimental design. These parameters are given in

Tables 5, 6, and 7.

Table 5. Initial parameter values.

Initial parameters of proposed HSS

Size of the initial population 40

Size of reference set (%) 30

Number of subsets 6

Number of reference set updating 200

Number of population set updating 40

Table 6. The best ratios for crossover methods.

Crossover methods Ratio

Priority-based sequential 0.6

Single point 0.2

Operation sequence change 0.2

Alternative machine change 0.7

Table 7. The best ratios for mutation methods.

Mutation methods Ratio

Random assignment machine 0.05

Operation relocation 0.1

Best machine change 0.1

Last operation relocation 0.05

4.1.1. Performance comparison of HSS

The objective function of the proposed HSS is

minimizing the maximum completion time (Cmax). The

algorithm is examined on two different benchmark sets

of problems.

The first test set of the problem is SFJS and MFJS

group containing 20 problems and developed by Fattahi

et al. [12]. While 10 of the problems in this group

consist of small jobs; the remaining 10 problems consist

of major jobs. To solve these problems, Fattahi et al.

[12] proposed a mathematical model and heuristic

approach. For small jobs (SFJS1,…, SFJS10) their

mathematical model achieved optimal solution but for

major jobs did not find any optimal solutions in a

reasonable time by mathematical model since FJSS

problem is NP-hard. Then, Özgüven et al. [33]

developed a mixed-integer linear programming model

for solving FJSS problems. They used the same

benchmark problems with Fattahi et al. [12]. They

obtained optimal solutions for small jobs (SFJS1,…,

SFJS10) like Fattahi et al. [12]. They also found for

only five of major jobs problems optimal solutions in a

reasonable time. Later, Birgin et al. [19] proposed a new

a mixed-integer linear programming model for solving

FJSS problems. They used the same benchmark

problems with Fattahi et al. [12]. They obtained optimal

solutions for small jobs (SFJS1,…, SFJS10) like Fattahi

et al. [12] and Özgüven et al. [33]. They also found for

only seven of major jobs problems optimal solutions in

a reasonable time. For this reason, we proposed a new

HSS method for solving the FJSS problems.

The results, in Table 8, acquired by running the

algorithm are compared to the studies which are

conducted for this set of problems in the literature. For

all benchmark problems relative percentage deviation is

calculated. The performance of the heuristic is

calculated as the relative percentage deviation (RPD)

with Equation 4.1 [12, 33, 16, 19].

RPD =
Heuristic Algorithm(𝐶𝑚𝑎𝑥)−Lower Bound

Lower Bound
x100 (4.1)

In Equation 4.1, Lower Bound (LB) states the known

lower bound of Cmax obtained from the literature for

benchmark problems. In Table 8, the proposed HSS

method found the known best Cmax value for eighteen

problems. Only two benchmark problems, the proposed

HSS couldn’t find the best Cmax.

The RPD and average relative percentage deviation

(ARPD) of the proposed HSS method are compared

with the Fattahi et al. [12]; Özgüven et al. [33]; Bagheri

et al. [16] and Birgin et al. [19] from the literature. The

ARPD is evaluated with Equation 4.2. The number of

instances for each method is defined as I (L = 1,...,I)

notation at Equation 4.2.

𝐴𝑅𝑃𝐷 = ∑
𝑅𝑃𝐷

𝐼

𝐼
𝐿=1 (4.2)

In Table 8, the proposed HSS method found the

minimum ARPD value for all twenty benchmark

problems. When the obtained results are analyzed; the

proposed HSS method is effective for the FJSS

problems.

The proposed HSS method found the new job sequence

for the MFJS9 benchmark problem The Gant schema of

the MFJS9 benchmark problem is given in Fig. 10. It

can be seen from Fig. 10, the best Cmax is found 1060.

The second test instance is consisting of three different

problems (K-A1, K-A2 and K-B1). The instances are

developed by Kacem et al. [7,47]. These problems are

also used by several studies in the literature for testing.

The proposed new HSS’s results are compared with the

Kacem et al. [7,47], Xia and Wu [48]; Gao et al. [11]

and Bagheri et al. [16] results from the literature.

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

355

The results are given in Table 9. It can be seen from

Table 9 the proposed new HSS is found the best values

of these three benchmark instances. The Gant schema of

K-B1 in this problem group is presented in Fig. 11.

Table 9. The comparison of the Cmax for the second

benchmark instances.

Problem K-A1a K-A2b K-B1c

i*k 8*8 10*10 15*10

j 27 30 56

C
m

a
x

Kacem et al. [7,47] 14 7 11

Xia and Wu [48] 15 7 12

Gao et al. [11] 14 7 11

Bagheri et al. [16] 14 7 11

Proposed HSS 14 7 11
a Benchmark Problems 8*8 [7]

b Benchmark Problems 10*10 [7]

c Benchmark Problems 15*10 [47]

The proposed HSS is compared with the Kacem and

SFJS-MFJS benchmark instances from the literature.

The results are given in Tables 10 and 11.

Table 10. The performance of the proposed new HSS

compared with Kacem benchmark problems.

Algorithm
 Proposed new HSS (Cmax)

Equal Better Total

Kacem et al. [7,47] 3 3

Xia and Wu [48] 1 2 3

Gao et al. [11] 3 3

Bagheri et al. [16] 3 3

In Table 10, the proposed new HSS method is given a

better makespan (Cmax) for two problems according to

the Xia and Wu [48] method. Also, the proposed new

HSS method is given equal makespan (Cmax) for

eleven problems according to Kacem et al [7,47], Xia

and Wu [48], Gao et al. [11], and Bagheri et al. [16]

methods from the literature.

It can be seen in Table 11, the proposed new HSS

method is given the better makespan (Cmax) for 77

instances according to the Fattahi et al. [12]; Özgüven et

al. [33]; Bagheri et al. [16], and Birgin et al. [19]’s

methods. Also, the proposed new HSS method is given

equal makespan (Cmax) for 103 instances according to

the Fattahi et al. [12]; Özgüven et al. [33]; Bagheri et al.

[16], and Birgin et al. [19]’s methods from the literature.

Table 11. The performance of the proposed new HSS

compared with SFJS-MFJS benchmark problems.

Algorithm
Proposed new HSS (Cmax)

Equal Better Total

[12]

HSA/SAa 10 10 20

HSA/TSb 10 10 20

HTS/TSc 10 10 20

HTS/SAd 9 11 20

ISAe 9 11 20

ITSf 9 11 20

[33] MILPg 14 6 20

[16] AIAh 14 6 20

[19] AMILPi 18 2 20

a Hierarchical approach and SA heuristic for assignment problem and SA heuristic for

sequencing problem.

b Hierarchical approach and SA heuristic for assignment problem and TS heuristic for

sequencing problem.

c Hierarchical approach and TS heuristic for assignment problem and TS heuristic for

sequencing problem.

d Hierarchical approach and TS heuristic for assignment problem and SA heuristic for

sequencing problem.

e Integrated approach with simulated annealing heuristic

f Integrated approach with tabu search heuristic

g Mixed-integer linear programming

h Artificial immune algorithm

i A mixed-integer linear programming

Celal Bayar University Journal of Science

Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

356

Table 8. The comparison results of the first twenty benchmark instances from the literature.

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

R
P

D

Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU Cmax CPU

SFJS1 2*2*2 66 66 12 - 66 1 - 66 1 - 66 2 - 66 25 - 66 1 - 66 0.02 - 66 0.03 - 66 0 - 66 1 -

SFJS2 2*2*2 107 107 13 - 107 1 - 107 1 - 107 3 - 107 35 - 107 1 - 107 0 - 107 0.03 - 107 0.01 - 107 1 -

SFJS3 3*2*2 221 221 14 - 221 1 - 221 1 - 221 5 - 221 40 - 221 1 - 221 0.02 - 221 0.04 - 221 0.05 - 221 1 -

SFJS4 3*2*2 355 355 14 - 355 1 - 355 1 - 355 7 - 355 45 - 355 1 - 355 0 - 355 0.04 - 355 0.02 - 355 1 -

SFJS5 3*2*2 119 119 14 - 119 2 - 119 1 - 119 9 - 119 50 - 119 1 - 119 0.06 - 119 0.04 - 119 0.04 - 119 1 -

SFJS6 3*3*2 320 320 18 - 320 3 - 320 1 - 320 7 - 320 50 - 320 2 - 320 0.03 - 320 0.04 - 320 0.01 - 320 1 -

SFJS7 3*3*5 397 398 19 - 398 4 - 398 1 - 398 9 - 398 55 - 398 2 - 398 0.02 - 398 0.04 - 398 0 - 398 1 -

SFJS8 3*3*4 253 253 17 - 253 5 - 253 2 - 256 10 1.2 253 35 - 253 2 - 253 0.02 - 253 0.05 - 253 0.04 - 253 1 -

SFJS9 4*3*5 210 210 19 - 210 6 - 210 2 - 210 11 - 215 55 2.3 215 3 2.3 210 0.03 - 210 0.05 - 210 0.01 - 210 1 -

SFJS10 5*3*5 516 516 21 - 516 7 - 516 4 - 516 10 - 516 55 - 516 3 - 516 0.02 - 516 0.05 - 516 0.02 - 516 1 -

MFJS1 5*3*6 396 479 22 21.0 491 55 24.0 469 15 18.4 469 30 18.4 488 60 23.2 548 9 38.4 468 0.44 18.2 468 9.23 18.2 468 0.26 18.2 468 7 18.2

MFJS2 5*3*7 396 495 62 25.0 482 55 21.7 482 12 21.7 468 30 18.2 478 60 20.7 457 8 15.4 446 6.49 12.6 448 9.35 13.1 446 0.87 12.6 446 24 12.6

MFJS3 6*3*7 396 553 82 39.6 538 75 35.9 533 20 34.6 538 50 35.9 599 107 51.3 606 8 53.0 466 4.14 17.7 468 10.06 18.2 466 1.66 17.7 466 32 17.7

MFJS4 7*3*7 496 656 102 32.3 650 85 31.0 634 27 27.8 618 80 24.6 703 195 41.7 870 9 75.4 564 1779.03 13.7 554 10.54 11.7 554 27.43 11.7 554 253 11.7

MFJS5 7*3*7 414 650 105 57.0 662 110 59.9 625 40 51.0 625 64 51.0 674 240 62.8 729 10 76.1 514 50.98 24.2 527 10.61 27.3 514 4.55 24.2 514 219 24.2

MFJS6 8*3*7 469 762 125 62.5 785 130 67.4 717 96 52.9 730 102 55.7 856 330 82.5 816 50 74.0 635 3600 35.4 635 22.18 35.4 634 52.48 35.2 634 180 35.2

MFJS7 8*4*7 619 1020 197 64.8 1081 290 74.6 964 129 55.7 947 190 53.0 1066 480 72.2 1048 240 69.3 935 3600 51.1 879 24.82 42.0 879 1890 42.0 879 6000 42.0

MFJS8 9*4*7 619 1030 230 66.4 1122 325 81.3 970 405 56.7 922 182 48.9 1328 610 114.5 1220 370 97.1 905 3600 46.2 884 26.94 42.8 884 3600 42.8 884 7200 42.8

MFJS9 11*4*8 764 1180 330 54.5 1243 660 62.7 1105 660 44.6 1105 330 44.6 1148 840 50.3 1124 680 47.1 1192 3600 56.0 1088 30.76 42.4 1137 3600 48.8 1060 7200 38.7

MFJS10 12*4*8 944 1538 425 62.9 1615 600 71.1 1404 960 48.7 1384 430 46.6 1546 850 63.8 1737 763 84.0 1276 3600 35.2 1267 30.94 34.2 1251 3600 32.5 1208 7200 28.0

48.59 52.96 41.22 39.69 58.30 62.98 31.02 28.53 28.57 27.10

a
 Hierarchical approach and simulated annealing (SA) heuristic for assignment problem and SA heuristic for sequencing problem.

f
 Integrated approach with TS heuristic.

b
Hierarchical approach and SA heuristic for assignment problem and tabu search (TS) heuristic for sequencing problem.

g
 Mixed-integer linear programming

c
Hierarchical approach and TS heuristic for assignment problem and TS heuristic for sequencing problem.

h
Artificial immune algorithm

d
Hierarchical approach and TS heuristic for assignment problem and SA heuristic for sequencing problem.

ı
 A mixed-integer linear programming

e
 Integrated approach with SA heuristic.

Problem i,j,k LB

Fattahi et al. (2007)
Özgüven et al.

(2010)

Bagheri et al.

(2010)

Birgin et al.

(2013)
Proposed HSS

HSA/SA
a

AIA
h

AMILP
ı HSSITS

f
MILP

g

ARPD

HSA/TS
b

HTS/TS
c

HTS/SA
d

ISA
e

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

357

Figure 10. Gantt Schema of the MFJS9 instance.

Figure 11. The Gant schema of K-B1.

5. Conclusion and future research

The flexible job shop is extra routing sub-problems of

the job shop scheduling problems. The FJSS is known

as an NP-hard problem from the literature. In this study,

a new HSS method is proposed to solve the FJSS

problems. The proposed HSS method is iterated the

local and global search method for the initial

population. The HSS method is consisting of the initial

population, reference set, subset, reference set updating,

population sub updating, reproduction, crossover,

mutation operators, and their ratio. To determine the

best parameter set of the proposed HSS for solving the

FJSS problems a full factorial experimental design is

made. The performance of the proposed HSS method is

examined on the benchmark problems. There exist

several problems with various sizes in the literature.

First, the examinations on the problem groups

consisting of 20 examples and developed by Fattahi et

al. [12]. The proposed HSS method is found more

efficient results for these problems. The second test

problem is developed by Kacem et al. consisting of 3

instances [7,47]. When analyzed the results of the tests.

The developed new HSS method is seen to produce

efficient results on these benchmark instances.

According to the computational results, the proposed

new HSS method is influential in terms of reduced

makespan for the FJSS problems. The proposed new

M8

M7

M6

M5

M4

M3

M2

M1

T919 989 1060495 565 636 707 777 84842471 141 212 283 353

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

11 T7 8 9 101 2 3 4 5 6

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

358

HSS is an efficient problem-solving technique for FJSS

problems.

For future research, the proposed HSS heuristics may be

used for multi-objective FJSS problems.

Author’s Contributions

Safa KÜLAHLI: Methodology, Data curation, Writing-

original draft, Visualization, Investigation

Orhan ENGİN: Supervision, Methodology, Validation,

Writing-original draft, Investigation, Conceptualization.

İsmail KOÇ: Methodology, Software, Writing-original

draft, Visualization.

Ethics

There are no ethical issues after the publication of this

manuscript.

References

1. Zhang, G, Gao, L, Shi, Y. 2011. An effective genetic algorithm for
the flexible job-shop scheduling problem. Expert System with

Application; 38: 3563-3573.

2. Yazdani, M, Amiri, M, Zandieh, M. 2010. Flexible job-shop

scheduling with parallel variable neighborhood search algorithm.

Expert System with Application; 37: 678-687.

3. Rossi, R, Tarim, SA, Hnich, B, Prestwic, S, Karacaer, S. 2010.

Scheduling internal audit activities: a stochastic combinatorial
optimization problem. Journal of combinatorial optimization; 19:

325- 346.

4. Karimi, H, Rahmati, SHA, Zandieh, M. 2012. An efficient

knowledge-based algorithm for the flexible job shop scheduling

problem. Knowledge-Based System; 36: 236-244.

5. Hwang, S, Cheng, ST. 2001. Combinatorial optimization in real-

time scheduling: Theory and Algorithms. Journal of combinatorial
optimization; 5: 345- 375.

6. Brucker, P, Schlie, R. 1990. Job-shop scheduling with multi-
purpose machines. Computing; 45: 369-375.

7. Kacem, I, Hammadi S, Borne P. 2002. Approach by localization
and multi-objective evolutionary optimization for flexible job-shop

scheduling problems. IEEE Transactions on Systems, Man, and

Cybernetics; 32: 1-13.

8. Tay, J, Wibowo, D. 2004. An Effective Chromosome

Representation for Evolving Flexible Job Shop Schedules. In: Genetic
and Evolutionary Computation GECCO - Eds: Deb K: Springer Berlin

Heidelberg, 210-221.

9. Ong, Z, Tay, J, Kwoh, C. 2005. Applying the Clonal Selection

Principle to Find Flexible Job-Shop Schedules, Artificial Immune
Systems. Eds: Jacob C, Pilat M, Bentley P, Timmis J: Springer Berlin

Heidelberg, 442-455.

10. Ho, N, Tay, J, Lai, E. 2007. An effective architecture for learning

and evolving flexible job-shop schedules. European Journal of

Operational Research; 179: 316-333.

11. Gao, J, Sun, L, Gen, M. 2008. A hybrid genetic and variable

neighborhood descent algorithm for flexible job shop scheduling
problems. Computer Operation Research; 35: 2892-2907.

12. Fattahi, P, Mehrabad, MS, Jolai, F. 2007. Mathematical modeling

and heuristic approaches to flexible job shop scheduling problems.

Journal of Intelligent Manufacturing; 18: 331-342.

13. Gholami, M, Zandieh, M. 2008. Integrating simulation and genetic

algorithm to schedule a dynamic flexible job shop. Journal of
Intelligent Manufacturing; 20: 481-498.

14. Xing, L, Chen, YW, Zhao, Q, Xiong, J. 2009. A knowledge-based
ant colony optimization for flexible job shop scheduling problems.

Applied Soft Computing; 10: 888-896.

15. Zhang, G, Shao, X, Li, P, Gao, L. 2009. An effective hybrid

particle swarm optimization algorithm for multi-objective flexible job-

shop scheduling problem. Computers & Industrial Engineering; 56:
1309-1318.

16. Bagheri, A, Zandieh, M, Mahdavi, I, Yazdani, M. 2010. An
artificial immune algorithm for the flexible job-shop scheduling

problem. Future Generation Computer Systems; 26: 533-541.

17. Guohui, Z, Liang, G, Yang, S. 2010. Genetic algorithm and tabu

search for multi objective flexible job shop scheduling problems.

International Conference on Computing, Control, and Industrial
Engineering (CCIE); 251-254.

18. Wang, S, Yu, J. 2010. An effective heuristic for flexible job-shop
scheduling problem with maintenance activities. Computers &

Industrial Engineering; 59: 436-447.

19. Birgin, EG, Feofiloff, P, Fernandes, CG, EL. de Melo, Oshiro

MTI, Ronconi DP. 2013. A MILP model for an extended version of

the Flexible Job Shop Problem. Optimization Letters; 8: 1417-1431.

20. Demir, Y, İşleyen, SK. 2013. Evaluation of mathematical models
for flexible job-shop scheduling problems. Applied Mathematical

Modelling; 37: 977-988.

21. Yuan, Y, Xu, H. 2013. Flexible job shop scheduling using hybrid

differential evolution algorithms. Computers & Industrial

Engineering; 65: 246-260.

22. Demir, Y, İşleyen SK. 2014. An effective genetic algorithm for

flexible job-shop scheduling with overlapping in operations.
International Journal of Production Research; 52: 3905-3921.

23. Abdelmaguid, TF. 2015. A neighborhood search function for
flexible job shop scheduling with separable sequence-dependent setup

times. Applied Mathematical Computing; 260: 188-203.

24. Gao, KZ, Suganthan, PN, Chua, TJ, Chong, CS, Cai, TX, Pan,

QK. 2015. A two-stage artificial bee colony algorithm scheduling

flexible job-shop scheduling problem with new job insertion. Expert
System Applied; 42: 7652-7663.

25. González, MA, Vela, CR, Varela, R. 2015. Scatter search with
path relinking for the flexible job shop scheduling problem. European

Journal Operation Research; 245: 35-45.

26. Ishikawa, S, Kubota, R, Horio, K. 2015. Effective hierarchical

optimization by a hierarchical multi-space competitive genetic

algorithm for the flexible job-shop scheduling problem. Expert System
with Application; 42: 9434-9440.

27. Singh, MR, Mahapatra, SS. 2016. A quantum behaved particle
swarm optimization for flexible job shop scheduling. Computers &

Industrial Engineering; 93: 36-44.

28. Zabihzadeh, SS, Rezaeian, J. 2016. Two meta-heuristic algorithms

for flexible flow shop scheduling problem with robotic transportation

and release time. Applied Soft Computing; 40: 319-330.

29. Li, X, Peng, Z, Du, B, Guo, J, Xu, W, Zhuang. 2017. Hybrid

artificial bee colony algorithm with a rescheduling strategy for solving

Celal Bayar University Journal of Science
Volume 17, Issue 4, 2021, p 347-359

Doi: 10.18466/cbayarfbe.926756 O. Engin

359

flexible job shop scheduling problems. Computers and Industrial

Engineering; 113: 10- 26.

30. Shen, L, Dauzère-Pérès, S, Neufeld, JS. 2018. Solving the flexible

job shop scheduling problem with sequence-dependent setup times.

European Journal of Operational Research; 265: 503-516.

31. Min, D, Dunbing, T, Adriana, G, Salido, MA. 2019. Multi-

objective optimization for energy-efficient flexible job shop
scheduling problem with transportation constraints. Robotics-

Integrated Manufacturing; 59: 143-157.

32. Li, JQ, Deng, JW, Li, CY, Han, YY, Tian, J, Zhang, B, Wang,

CG. 2020. An improved Jaya algorithm for solving the flexible job

shop scheduling problem with transportation and setup
times. Knowledge-Based Systems; 200: 106032.

33. Özgüven, C, Özbakır, L, Yavuz, Y. 2010. Mathematical models
for job-shop scheduling problems with routing and process plan

flexibility. Applied Mathematical Modelling; 34: 1539-1548.

34. Engin, O, Yılmaz, MK, Baysal, ME, Sarucan, A, 2013. Solving

fuzzy job shop scheduling problems with availability constraints using

a scatter search method. Journal of Multi-Valued Logic and Soft
Computing; 21: 317-334.

35. Engin, O, Kahraman, C, Yılmaz, MK, 2009. A Scatter Search
Method for Multi Objective Fuzzy Permutation Flow Shop Scheduling

Problem: A Real-World Application, 169-189, Computational

Intelligence in Flow Shop and Job Shop Scheduling, Springer, Uday
K. Chakraborty (Ed.), ISBN:978-3-642-02836-6.

36. Marti, R. 2003. Principles of Scatter Search, Leeds School of
Business, University of Colorado, Campus Box 419, Boulder, CO.

37. Naderi, B, Ruiz, R. 2014. A scatter search algorithm for the

distributed permutation flow shop scheduling problem. European

Journal Operation Research; 239: 323-334.

38. Cano, DB, Santana, JB, Rodriguez, CC, DelAmo IJG, Torres MG,

Garcia, FJM, Batista, BM, Perez, JAM, Vega, JMM, Martin, RR.
2004. Nature-inspired components of the Scatter Search, Technical

Report.

39. Oktay, S, Engin, O. 2006. Scatter search method for solving

industrial problems: literature survey. Journal of Engineering and

Natural Sciences; 3: 144- 155.

40. Glover, F, 1998. A template for scatter search and path relinking,

Artificial Evolution; 1363: 3-51.

41. Glover, F, Laguna, M, Marti, R. 2000. Fundamentals of scatter

search and path relinking. Control Cybernetics; 29: 653-684.

42. Marti, R. 2006. Scatter search - Wellsprings and challenges.

European Journal Operation Research; 169: 351-358.

43. Marti, R, Laguna, M, z, F. 2006. Principles of scatter search.

European Journal Operation Research; 169: 359-372.

44. Engin, O, Ceran, G, Yılmaz, MK. 2011. An efficient genetic

algorithm for hybrid flow shop scheduling with multiprocessor task
problems. Applied Soft Computing; 11(3): 3056-3065.

45. Kahraman, C, Engin, O, Kaya, I, Yılmaz, MK. 2008. An
application of effective genetic algorithms for solving hybrid flow

shop scheduling problems. International Journal of Computational

Intelligence Systems; 1(2): 134- 147.

46. Fattahi, P, Jolai, F, Arkat, J. 2009. Flexible job shop scheduling

with overlapping in operations. Applied Mathematical Modelling; 33:
3076-3087.

47. Kacem, I., Hammadi, S., Borne, P. 2002. Pareto-optimality

approach for flexible job-shop scheduling problems: hybridization of

evolutionary algorithms and fuzzy logic. Mathematics and computers
in simulation, 60(3-5): 245-276.

48. Xia, W, Wu, Z, 2005. An effective hybrid optimization approach
for multi-objective flexible job-shop scheduling problems. Computers

& Industrial Engineering; 48(2): 409-425.

