
Fire pools can be formed by mixing hazardous chemical 
liquids; on the other hand, mixing incompatible chemi-
cals can cause exothermic oxidation [1]. Fires involving 
self-incineration may accelerate depending on the na-
ture of the first spilled liquid and its proximity to the 
surrounding material. Hazardous chemical reactivity 
events have been conducted and lessons learned from 
these cases as presented in [2]. In most cases, oxidisers 
have caused these fires to start or have contributed to 
the increasing coverage of the fires [3]. The mixing of 
incompatible liquids during the use of chemical liquids 
found in small containers with open covers showed that 
accidents and fires occurred as a result of accidental 
spillage and contamination [4].  Therefore, classification 
of liquids plays an important role in ensuring fire safety 
[5]. Considering this, fire and explosion hazards of some 
flammable liquid mixtures were estimated [6] .

Most of the deaths in fires are caused by the inha-
lation of toxic gases produced during combustion, since 
it creates a complex toxic environment that includes fire, 
flame, heat, oxygen depletion, smoke and toxic gases [7]. 
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Researchers have provided methods for assessing life 
safety hazards in fires and understanding the effects of 
smoke, heat and toxic fire wastes on humans [8]. The 
use of machine learning techniques for process safety 
has been heavily investigated. For example, by conside-
ring aerosolisation liquid flammability levels were pre-
dicted using machine learning techniques [9]. Perfor-
mance estimation of suspension freezing crystallization 
was made for the treatment of hazardous liquid wastes 
with machine learning methods [10]. In addition, mac-
hine learning was used to predict flammability leading 
properties for liquid aerosol safety [11], to predict hazar-
dous properties of chemical mixtures [12], to set a ha-
zard index for logistics warehouses [13]. Classification 
of diesel and biodiesel mixtures was carried out using 
the electronic nose and Linear Discriminant Analysis 
(LDA) and Quadratic Discriminant Analysis (QDA) 
techniques [14]. A combustion risk index was developed 
for flammable liquids based on unsupervised clustering 
algorithms [15]. Microwave measurement method is 
fast and is not sensitive to environmental conditions [16] 
and it is generally used to determine the relative perme-

A B S T R A C T

Strong liquid explosives were obtained by mixing some chemical liquids and these ex-
plosives were used in many terrorist attacks in crowded places such as airports, railway 

stations and shopping malls. They were also used to cause sabotage to facilities that produce, 
store or use hazardous chemicals in their processes. For this reason, it is very important to 
take the necessary measures to prevent sabotage and terrorist attacks that may occur in such 
places in order to ensure public and environmental safety. In this study, a machine learning 
based liquid control system that can be used in airports, railway stations and shopping malls 
as well as in places with high fire probability is proposed. The difference of the proposed 
system from traditional liquid scanner systems is that it can detect the hazardous liquid 
concentration in the solutions as well as the detection of pure f lammable liquids. Linear 
Discriminant Analysis and Quadratic Discriminant Analysis are used as classifiers and the 
performances of these techniques are compared. The results show that Quadratic Discrimi-
nant Analysis offers higher accuracy and lower error rates compared to Linear Discriminant 
Analysis. 

Keywords: 
Security; Liquid classification; Scattering parameter; Linear discriminant analysis; Quadratic discriminant analysis; Accuracy; 
Performance metrics

INTRODUCTION

http://orcid.org/0000-0001-5444-6647
http://orcid.org/0000-0002-6466-4696


E.
 E

fe
oğ

lu
 a

nd
 G

. T
un

a/
 H

itt
ite

 J 
Sc

i E
ng

, 2
02

1, 
8 

(4
) 2
79

–2
85

280

The discriminant function is obtained from previously 
known units of group membership, and then this function 
is used to determine which group will be assigned to new 
units with unknown group membership. Using a score 
function defined by the algorithm, linear coefficients that 
give the highest values in the function are found (3). The 
aggregated covariance matrix is given in (4).

( ) 1 2
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−

=  (3)
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1c n c n c
n n

= +
+

(4)

The Mahalanobis distance is used to determine the 
best discriminate. The probability that the algorithm has 
classified correctly determines the value of this distance. A 
value less than 3 means that the probability of correct classi-
fication is high. The Mahalanobis distance between the two 
groups is given in (5).

( )2
1 2

Td a b b= − (5)

In order to end the classification process, the condition 
given in (6) must be met.

( )
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(6)

Here p shows class probabilities.

QDA
QDA has quadratic decision limits. Using it, data can be 
classified into two or more class datasets. It is generally 
used when the data show normal distribution and the 
variance-covariance matrices between groups are diffe-
rent. While applying this technique, it should be taken 
into consideration that the number of observations in 
each group should be more than the number of variables. 
The difference of QDA from LDA is that it estimates the 
covariance matrix for each class. The function specified 
in (7) is used.

( ) ( ) ( ) ( )11 1
2 2

T
k k k k k kL x x b c x b ln c lnP c−= − − − − +        (7)

where  kc  is the covariance matrix for class k, 1
kc− is the 

inverse of the covariance matrix, and kc  is the determinant 

of the covariance matrix,   ( )kP c is the previous probability of 

class k.  Here, the aim is to find the class with the highest L 
value.

ability values of liquids. Microwave measurement methods 
were used to measure the permeability of thin-layer materi-
als [17] and to measure parameters of silicon [18]. Although 
there are many microwave measurement methods, the most 
frequently used one is the open-ended coaxial probe (OECP) 
method. In this method, liquid measurement is carried out 
by immersing a probe in the liquid. The complex permeabi-
lity of glucose / water and water / fluoride solutions was es-
timated using OECP and artificial neural networks [19],[20].

In the past, X-ray safety systems were used for the de-
tection of hazardous liquids [21] and low energy X-ray trans-
mission technique was one of the techniques employed for 
this purpose [22]. As well as the low energy X-ray transmis-
sion technique, spectral droplet analysis was used for the 
same purpose [23] . However, since these methods cannot 
accurately detect some flammable liquids, in other words, 
the false alarm rate is high, two-stage control consisting of 
the combination of electronic nasal odour recognition tech-
nology and x-ray method has been proposed [24]. In this 
study, unlike the literature, a liquid identification system 
with high accuracy, fast and cheaper than other systems is 
proposed. This proposed system is capable of detecting even 
a mixture containing 10% hazardous liquid. Also, thanks to 
this system, unlike other systems, the hazardous liquid con-
centration in the mixtures can be determined. The measu-
rement system presented in the study can analyse the liquid 
remotely without any intervention to the liquid and without 
opening the lid of the bottle / container filled with liquid, as 
well as measuring by immersion in the liquid.

MATERIALS AND METHODS
Discriminant Analysis Methods
In the following subsections LDA and QDA are reviewed.
LDA
LDA is a simple and useful classification technique that 
gives good results in solving complex problems. It per-
forms the separation of classes by searching for the linear 
combination of variables. The discriminant function is 
the weighted average of the values of the independent va-
riables. These weights are chosen to divide observations 
into groups. The discriminant function (L) is given in Eq. 
(1).

1 1  2 2    n nL a x a x a x= + +…+ (1)

In (1), 1 2, nx x x……   represent the variables and 

1 2, na a a…… represent the weights, model coefficients. The 

weights are calculated using (2).

( 1)
1 2( )a c b b−= − (2)

where c represents covariance matrix, 1 2   and b b are 

mean vectors.
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Experimental Setup and Methodology
The schematic representation of the single-port measu-
rement system with the test setup is shown in Fig. 1. The 
arrangement consists of a 10 cm x 10 cm square-shaped 
antenna, vector network analyser (VNA) and 50 Ohm 
SubMiniature version A (SMA) coaxial cable to feed the 
system. Electromagnetic waves are transmitted by the 
transmitting antenna and reflected signals are collected 
after the electromagnetic radiation interacts with the li-
quid. These signals collected by a single-port measuring 
system are called scattering parameters (S11-parameter). 
The antenna patch was designed to be 55 mm in diameter 
and the antenna resonant frequency is calculated using 
(8) and (9). The design of the antenna was constructed on 
a FR4 based dielectric substrate with 1.6 mm height, 4.4
relative permittivity.
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(9)

where rε is relative permittivity of the substrate, rf is 

the resonant frequency, h is the height of the substrate, a is 
the radius of the patch.

The implementation of this method is easy and fast. 
Since there is an air gap between the measured liquid and 
the antenna, measurements should be performed by kee-
ping the antenna as close as possible to the liquid container 
in order to make more accurate measurements. Liquid me-
asurements can be carried out in closed containers, without 
opening the lid, non-destructively and by approaching the 
container filled with liquid 4-5mm. In the study, measure-
ments were made between 1-3 GHz and the S-parameter of 
each liquid in this frequency band was measured. The mea-
surements were made at room temperature and in the same 
type of containers. Antenna-liquid distance was 5 mm.
Flammable liquids should not be stored in the same place 

with oxidising liquids, and their mixing as a result of any 
impact should be prevented. Because oxidising liquids 
enter into exothermic reactions with flammable liquids 
and cause fires and explosions. For this reason, the hazar-
dous liquid recognition system we recommend consists 
of 3 stages. It makes the S-parameter measurement using 
a liquid measurement system of unknown type and at the 
first stage, from this measurement, it decides whether 
there is a hazardous liquid such as flammable or oxidant 
in the liquid. It tells you that the liquid is safe if there is 
no hazardous liquid concentration in the liquid. In step 2, 
if there is a hazardous liquid concentration in the liquid 
content, it decides the type of the liquid, i.e. whether it 
is flammable or oxidant (oxidiser). In the third stage, if 
the liquid is a flammable liquid, it finds the type of liquid 
(Methanol, ethanol, 1-propanol and Isopropanol) and % 
of the flammable concentration in the liquid. The steps 
of the algorithm are given in Fig. 2.

For liquid identification, predictions were made for a to-
tal of 49 liquids, 41 hazardous and 8 non-hazardous liqu-
ids. In this prediction, 2 different algorithms were used to 
select the most successful algorithm and the performan-
ces of the algorithms were compared. The types of the 
liquids tested are given in Table 1.

Figure 2. Flowchart of the classification phase

Figure 1. Experimental setup a) The measurement system b) Front view 
and structure of the antenna c) Back view of the antenna.

Table 1.Liquid types.

Hazardous liquids
Non-hazardous 

liquidsInflammable
Oxidant

Pure Impure

Ethanol Ethanol-water 
(10%-90%) Hydrogen peroxide Cola

Methanol Methanol-water 
(10%-90%) Liquid Soap

1-propanol 1-propanol-water 
(10%-90%) Shampoo

Isopropanol Isopropanol-water 
(10%-90%) Milk

Body lotion

Buttermilk

Ice-tea

Cherry juice
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RESULTS AND DISCUSSION
The proposed microwave measurement system was used 
to measure all liquids. S parameter measurement of pure 
(100% flammable liquids) and their aqueous solutions 
containing 10-90% flammable liquid by volume are given 
in Fig. 3 and the measurement of other liquids are given 
in Fig. 4.

Performance Metrics
There are some performance metrics used to compare 
the classification performance of algorithms. These met-
rics indicate which classification algorithm performs bet-
ter in the given setting. One of the performance metrics 
used in the study is the accuracy criterion, which gives 
the total sample rate of correctly classified samples. The 
accuracy rate of the classification algorithm is calculated 
using (10).

TP TNAccuracy
TP TN FP FN

+
=

+ + +
       (10)

where, TP (True positive) is positive test result when 
actual state is positive, FP (False positive) is positive test re-
sult when actual state is negative, TN (True negative) is ne-
gative test result when actual state is negative, and FN (False 
negative) is negative test result when actual state is positive.

Precision and Recall values are also among the perfor-
mance metrics used and it is accepted that a classifier with 
high Precision and high Recall values makes a good classifi-
cation. Precision (P) is the number of TP over the number of 
TP plus the number of FP (11).

TPP
TP FP

=
+

(11)

Recall (R) is the number of TPs over the number of TP 
plus the number of FN (12).

TPR
TP FN

=
+

(12)

Another commonly used performance metric is Kappa 
and is calculated using (13). P(a) represents the algorithm's 
accuracy, P(e) represents the weighted average of the expec-
ted accuracy of the algorithm, which makes random pre-
dictions in the same dataset. If a classification is successful, 
precision and recall values become close to 1.

( ) ( )
( )

P a P e
K

1 P e
−

=
−

(13)

One of the indicators of how many errors occurred du-
ring classification is Root Mean Square Error (RMSE) value 
and it is calculated using (14).

2 2
1 1  1   ( ) . ( )n na b a bRMSE

n
− +… + −

= (14)

where a represents the estimated values and b repre-
sents the actual values. Confusion matrices are used to 
measure the success of the algorithm and contain the most 
descriptive information about the classification results.

Overall Results
The recall precision, Kappa and RMSE values obtai-
ned from the classification made using LDA and QDA 
are given in Fig. 5(a) and (b) in order to compare their 
performances. As can be seen in Fig. 5(a) the RMSE of 
QDA was 0.008 but the RMSE of LDA was 0.075. The 
low RMSE value indicates that QDA classified with fewer 
errors. While the accuracy of LDA was 92%, the accuracy 
of QDA was 98%. Recall, Precision and Kappa value also 
indicate the success of QDA. The Precision value of LDA 
in classifications was 0.97, the Recall and Kappa values 
were 0.96 and 0.91, respectively. The higher of these valu-
es (precision 1, recall 0.99 and Kappa 0.99) indicates that 

Figure 3. S11 parameters of the water- flammable liquids solutions of 
different flammable liquid concentrations a) Ethanol b) Methanol c) 
1-Propanol, d) Isopropanol.

Figure 4. S-parameter measurement of different liquids
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Information including all liquid recognition experiments 
and techniques used are given in Table 2. In liquid re-
cognition, the LDA algorithm predicted that buttermilk, 
which is actually a non-hazardous liquid, was a hazar-
dous liquid, and the hazardous liquid 10% Ethanol and 
10% Methanol aqueous solutions were predicted as non-
hazardous liquids. It could not accurately predict a total 
of 3 types of liquids. While the algorithm was estimating 
the liquid concentration, it predicted the isopropanol-
water solution with an isopropanol concentration of 40% 
as a hazardous liquid, but could not accurately predict its 
concentration. It can be seen that QDA correctly predic-
ted all liquid types. On the other hand, although it cor-
rectly predicted the type of isopropanol-water solution 
with an isopropanol concentration of 40%, it could not 
predict the concentration correctly.

CONCLUSION
Fire safety and liquid controls play a key role in preven-
ting loss of life and property that may occur as a result of 
terrorist attacks and sabotage. In this study, a system for 
liquid classification using S-parameter measurements 
and discriminant analysis of liquids in the microwave 
frequency band is proposed. The false alarm rate of the 
system is very low, it is a system with a high accuracy 
rate and can detect even a hazardous liquid with a con-
centration of 10% in its content. Another advantage of 
this proposed system is that while other systems only 
detect liquid, this system can determine both the type 
of hazardous liquid and the proportion of the hazardo-
us liquid concentration in the liquid. Moreover, this qu-
ick identification system is cheaper than other systems. 
LDA and QDA algorithms were used to select the best 
algorithm for liquid recognition on the data set obtai-

Table 2.Accuracy of the proposed approach for different liquids

Type of liquids Tested liquids

LDA QDA

Correctly predicted 
liquids

Incorrectly 
predicted 

liquids

Correctly predicted 
liquids

Incorrectly 
predicted 

liquids

1st Step

Non-hazardous 
liquids

Cola
Soap,

Shampoo
Milk

Body lotion
Buttermilk

Ice-tea (peach)
Cherry juice

Cola
Soap,

Shampoo
Milk

Body lotion
Ice-tea (peach)

Cherry juice

Buttermilk

Cola
Soap,

Shampoo
Milk

Body lotion
Buttermilk

Ice-tea (peach)
Cherry juice

---
---
---
---
---
---
---
---

Hazardous 
Liquids

Ethanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Methanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

1-Propanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Isopropanol
(10, 20, 30, 50, 60, 70, 

80, 90, 100)%

Ethanol
(20, 30, 40, 50, 60, 70, 80, 

90, 100)%
Methanol

(20, 30, 40, 50, 60, 70, 80, 
90, 100)%
1-Propanol

(10, 20, 30, 40, 50, 60, 70, 
80, 90, 100)%

Isopropanol
(10, 20,30, 40, 50, 60, 70, 

80, 90, 100)%

Ethanol %10

Methanol  
%10

Ethanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Methanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

1-Propanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Isopropanol
(10, 20, 30, 50, 60, 70, 

80, 90, 100)%

----
----
----
----
----
----
----
----
----
----
----
----
----
----
----
----

2nd Step Oxidising liquid Hydrogen peroxide Hydrogen peroxide --- Hydrogen peroxide ---

3rd Step
Detect flammable 

liquids 
concentration

Ethanol 
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Ethanol 
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

Ethanol 
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)%

----
----
----
----

Methanol
 (10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

Methanol
 (10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

Methanol
 (10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

----
----
----
----

1-Propanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

1-Propanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

1-Propanol
(10, 20, 30, 40, 50, 60, 

70, 80, 90, 100)% 

----
----
----
----

Isopropanol
 (10, 20, 30, 50, 60, 70, 

80, 90, 100)%  

Isopropanol
 (10, 20, 30, 50, 60, 70, 

80, 90, 100)%  

Isopropanol
40%

Isopropanol
 (10, 20, 30, 50, 60, 70, 

80, 90, 100)%  

Isopropanol
40%
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ned from microwave measurements and the performan-
ces of these algorithms were compared. The results show 
that QDA can detect liquids with lower RMSE values and 
higher accuracy rates compared to LDA. A prototype 
system that integrates the overall process proposed in 
this study and the experimental setup and uses QDA for 
liquid classification is under development. After a group 
of field tests, it can be used for liquid classification at se-
curity checkpoints.
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