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Abstract: A pharmacophore describes the framework of molecular features that are vital for the biological
activity of a compound. Pharmacophore models are built by using the structural information about the
active ligands or targets. The pharmacophore models developed are used to identify novel compounds that
satisfy  the  pharmacophore  requirements  and  thus  expected  to  be  biologically  active.  Drug  discovery
process is a challenging task that requires the contribution of multidisciplinary approaches. Pharmacophore
modeling has been used in various stages of the drug discovery process. The major application areas are
virtual screening, docking, drug target fishing, ligand profiling, and ADMET prediction. There are several
pharmacophore modeling programs in use. The user must select the right program for the right purpose
carefully.  There are new developments in pharmacophore modeling with the involvement of the other
computational  methods.  It  has  been  integrated  with  molecular  dynamics  simulations.  The  latest
computational  approaches  like  machine  learning  have  also  played  an  important  role  in  the  advances
achieved. Moreover, with the rapid advance in computing capacity, data storage, software and algorithms,
more advances are anticipated. Pharmacophore modeling has contributed to a faster, cheaper, and more
effective  drug  discovery  process.  With  the  integration  of  pharmacophore  modeling  with  the  other
computational methods and advances in the latest algorithms, programs that have better perfomance are
emerging. Thus, improvements in the quality of the phamacophore models generated have been achieved
with this new developments.
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INTRODUCTION

Drug  discovery  and  development  is  an  expensive
and complex process that takes more than 10 years
(1). Drug design and discovery is a challenging task
that  needs  the  involvement  of  multidisciplinary
approaches.  Computer-aided  drug  design  (CADD)
methods are mainly employed in the early to mid-
stage of the drug discovery process. CADD methods
have  contributed  much  to  the  drug  discovery
process  with  the  rapid  advance  in  computing
capacity, data storage, software and algorithms (2–
4). CADD has applications in target fishing, target

validation, hit identification and selection of the lead
and  its  optimization  (5).  Herein,  pharmacophore
modeling,  which  is  among the  CADD methods,  is
reviewed.

A  pharmacophore  is  a  molecular  frame  that
describes  the  vital  features  responsible  for  the
biological activity of a molecule (6). Pharmacophore
models are generated to increase the understanding
about the ligand–protein interactions. They can be
empolyed in identifying new molecules that satisfy
the pharmacophore requirements and thus expected
to be active (7). Pharmacophore models can be built
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by using the structural information about the active
ligands that bind to the target if the target structure
is  not  available.  This  is  known  as  ligand-based
pharmacophore  modeling  approach  (8).  In
conditions  where  the  structure  of  the  target  is
available,  pharmacophore  models  can  be  built  by
using the structural properties of the target. This is
known as structure-based pharmacophore modeling
approach (Figure 1) (7).

There are several pharmacophore modeling tools in
use.  HipHop,  HypoGen,  Pharmer,  PHASE,  GASP,

PharmaGist,  PharmMapper, MOE, LigandScout, and
GALAHAD  are  examples  of  softwares  used  for
pharmacophore model generation (5). With the use
of  such  softwares,  pharmacophore  modeling  has
been employed at  the  various  stages of  the  drug
discovery process (9). Virtual screening, drug target
fishing,  ligand  profiling,  docking  and  ADMET
(absorption,  distribution,  metabolism,  excretion,
toxicity)  prediction  are  among  its  popular
application areas (Figure 1) (10–12).

 
Figure 1: Overview of pharmacophore modeling and its applications.

The  scope  of  the  application  of  pharmacophore
modeling in  the  drug  discovery  process  has  been
increased  by  solving  the  challenges  being  faced.
There  are  challenges  in  pharmacophore  scoring
functions used in virtual screening, modeling ligand
flexibility,  molecular  alignment, and  selection  of
training  sets  (13).  In  order  to  overcome  these
challenges  the  contribution  of  the  other
computational  methods  is  crucial.  Thus,  the
integration  of  pharmacophore  modeling  with  the
other computational methods is performed in a way
that  solves  some  of  these  limitations  (14).  For
example,  phamacophore  modeling  has  been
integrated  with  molecular  dynamics  simulations.
With this integration better pharmacophore models
have  been  built  (15).  Furthermore,  with  the
contribution of the latest computational approaches
such  as  machine  learning  the  advances  in
pharmacophore modeling has got momentum (16).

In  this  study, the  general  principles  of
pharmacophore modeling and its major application
areas in the drug discovery process are explained.
Moreover,  the challenges faced and their  probable

solutions through the advances in the computational
methods  are  covered.  This  work  aims  to  fill  the
information  gap  observed  in  pharmacophore
modeling and to provide an updated informaion for
the academia and the pharmaceutical industry.  

PRINCIPLES OF PHARMACOPHORE MODELING

The pharmacophore concept was introduced by Paul
Ehrlich  in  the  early  1900s.  Then,  the  term
pharmacophore  was  coined  and  defined  as
molecular  features  that  bears  (phoros)  the
necessary properties for the biological activity of a
drug  (pharmacon)  (17).  In  those  year’s
pharmacophore  was  understood  as  chemical  or
functional groups on a molecule that are responsible
for  the  biological  activity.  IUPAC  (International
Union  of  Pure  and  Applied  Chemistry)  defined
pharmacophore as the sum of steric and electronic
properties that are required for the interaction of a
molecule  with  a  target  and  thus  provide  the
biological activity (13). 
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Pharmacophore is a pattern of features responsible
for the biological activity of a compound. This shows
that the concept of pharmacophore is more of about
features than chemical groups. Each atom or group
of a compound that shows features associated with
molecular  recognition  can  be  converted  into  a
pharmacophore  pattern  (18,19).  Molecular
pharmacophore  patterns  can  be  hydrogen  bond
donors  (HBD),  hydrogen  bond  acceptors  (HBA),
positive features, negative features, aromatic rings,
hydrophobic  features  and  their  combinations
(20,21).

A  pharmacophore  model  includes several  patterns
arranged  in  a  particular  3D  (three  dimensional)
pattern. Each pattern is depicted by a typical sphere
containing  radius  that  determines  the  deviation
tolerance  from the  exact  position.  There  are  also
various other displaying ways. These patterns can
be  displayed  as  a  single  pattern  or  their
combinations (22).

There  are  two  principal  approaches  of
pharmacophore modeling that are used in the drug
discovery  process:  Ligand-based  pharmacophore
modeling  and  structure-based  pharmacophore
modeling.  In  the  ligand-based  pharmacophore
modeling approach, novel ligands are designed by
using  a  set  of  active  ligands  available  (23).  This
approach is employed if the target structure is not
available. In a similar manner, the structure-based
pharmacophore  approach  is  employed  when  the
structure of the target protein is available (24).

In the ligand-based pharmacophore modeling, first
active ligands are identified by using the literature
available or database search. The data set is split
into  a  training  set  and  test  set.  Then,  feature
analysis  of  the  training  set  ligands  is  done.  The
common  features  are  detected  through  the
alignment  of  the  active  ligands.  The  next  step  is
pharmacophore model generation and ranking of the
generated  models.  Finally,  pharmacophore  model
validation is performed and the best pharmacophore
model is selected depending on the results obtained
(23,25).

In  the  structure-based  pharmacophore  modeling,
selection and preparation of target protein structure
is  the  first  step.  The  second  step  is  binding  site
prediction. Then, complemental chemical features of
the binding site amino acids and their layouts are
identified  by  analyzing  it  carefully.  After  this,  the
pharmacophore features, which should be optimized
by the adjusted tools in the programs employed, are
generated.  Finally,  crucial  pharmacophore  features
responsible  for  the  activity  are  selected  (7).
LigandScout  (26),  MOE  (27),  Pocket  v2  (28) and
Snooker  (29) are  among  the  commonly  used
softwares  for  structure-based  pharmacophore
modeling. Similarly, there are various softwares and
servers  used  in  pharmacophore  modeling.  The
commonly  employed  programs  and  servers  are
summarized in the alphabetical order (Table 1).

Table 1: Programs and servers used in pharmacophore modeling.
Program/Server Brief Description
CATALYST-HipHop (30) CATALYST is now part of the BIOVIA Discovery Studio. It consists

of  algorithms  used  in  pharmacophore  generation:  HipHop  and
HypoGen. HipHop gives the alignment of active ligands against a
specific  target and finds the three dimensional  arrangements of
common features by overlapping various structures. 

CATALYST-HypoGen (8) It generates hypotheses that are able to estimate the activity of
molecules quantitatively by using biological analysis data. Thus, it
allows  the  correlation  of  the  structural  and  activity  data  for
pharmacophore modeling. 

GALAHAD (31) The  program uses  modified  genetic  algorithm and  fixes  certain
shortcomings  of  the  GASP  program  and  thus  increases  its
performance.  It  increases  the  computational  speed  by  using
prebuilt structures as a starting point.

GASP (32) GASP is available in the SYBYL package. It uses genetic algorithm
for  the  detection  of  pharmacophores.  Unlike  the  other
pharmacophore  determinations,  conformational  search  is  carried
out instantly in the GASP process and is an integral part of the
program. A single low energy structure and random spinings are
applied to examine conformational changes before superimposing
on each input compound.

LigandScout (26) Though it is possible to perform both structure-based and ligand-
based phamacophore modeling with LigandScout, it is among the
first  programs  specialized  in  structure-based  pharmacophore
modeling.  Especially,  if  the  structure  of  the  target  protein  is
present in its ligand bound state, LigandScout is widely used. 

MOE (27) MOE  is  able  to  perform  ligand-based  and  structure-based
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pharmacophore  modeling.  Model  building  is  performed  by  the
pairwise  alignment  of  the  active  ligands.  It  is  recommended to
decrease the magnitude of  the  training set  by grouping similar
molecules.

PharmaGist (33) It is a freely accessible server used in ligand-based pharmacophore
generation. This web server detects pharmacophores via multiple
flexible alignments of the input molecules.

Pharmer (34) It is a pharmacophore method that makes searching based on the
width and complexity of the query instead of the molecular library
screened. It is a very fast method and its source code is available
under an open-source license.

PharmMapper (35) It is a freely accessible web server used for the identification of
potential  targets  for  the  input  ligands.  It  calculates
pharmacophores by using semi-rigid pharmacophore mapping.

PHASE (36) It is provided by Schrödinger package. It is a convenient approach
used in drug discovery with or without its receptor structure. It
creates  a  hypothesis  from  one  or  more  ligands,  protein-ligand
complexes and apo proteins. It has a special algorithm designed
for use in optimization of lead compounds and virtual screening. 

APPLICATIONS  OF  PHARMACOPHORE
MODELING IN DRUG DISCOVERY

Pharmacophore  modeling  is  employed  in  virtual
screening,  fishing  drug  targets,  ligand  profiling,
docking,  and  ADMET prediction.  New perspectives
are  also  expected  for  various  applications  of
pharmacophore modeling in the future due to the
simplicity and versatility of the concept. In this way,
besides the applications explained here, it may have
applications in polypharmacology, drug repurposing
and side effect prediction (24). In order to explain

the  scope  of  the  application  of  pharmacophore
modeling in drug discovery, publications in the last
two  decades  are  depicted  here  (Figure  2).  These
figures are the average of the number of documents
published  in  Scopus,  PubMed, and  ScienceDirect.
They  are  obtained  by  searching  in  these  search
engines using ‘pharmacophore modeling’ and ‘drug
discovery’  as  keywords.  As  illustrated  by  the
publications generated,  the use of  pharmacophore
modeling  in  drug  discovery  has  been  increasing
(Figure 2).

Figure 2: Publications in the application of pharmacophore modeling in drug discovery.

Applications in virtual screening
Pharmacophore  modeling  is  frequently  used  in
virtual screenings to identify compounds that trigger
the  intended  biological  activity.  Therefore,
researchers generate a pharmacophore model that

codes  the  3D structure  of  the  desired  interaction
pattern  correctly.  There  are  various  options  to
create  a  pharmacophore  model  according  to  the
information about the query protein  target.  When
several active ligands and their inactive derivatives
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are  available,  separating  the  ligand  data  into
training set and test set, for the validation of the
pharmacophore  models  generated,  is  a  common
practice (37).

For example, pharmacophore modeling and virtual
screening  together  with  docking  were  used  to
identify  novel  Mycobacterium  tuberculosis InhA
(MtInhA)  inhibitors.  In  this  work,  pharmacophore
models were built using 36 known crystal structures
of MtInhA. By the combination of ligand-based and
structure-based data, four pharmacophore features
were used to filter compounds that  can meet the
essential  binding  features  of  MtInhA.  The
compounds  obtained  from  the  pharmacophore-
based virtual screening of the ZINC database was
docked to compare the binding mode and score of
the screened compounds. After thorough analysis of
the  in  silico results,  experimental  testing  was
perfomed  on  six  selected  ligands.  Three  of  these
compounds  were  found  to  be  potential  InhA
inhibitors (38). 

In  a  recent  work,  pharmacophore  modeling  was
used to repurpose drugs availabile in DrugBank for
the  fight  against  COVID-19.  In  this  work,  some
potential  candidates that can be used in the fight
against  the  Coronavirus  pandemic  were  screened
(39).

Applications in drug target fishing
When mechanism of action of drug molecules isn’t
well  known,  CADD  can  be  used  to  elucidate  the
mechanism. Chemoinformatics-based  similarity
search tools are used for the identification of similar
ligands  with  known  mechanisms  of  action  (40).
However, pharmacophore modeling can also be used
for other purposes that are different from searching
for  molecules  with  a  pharmacophore  query.  The
compound under investigation can be the query and
the  purpose  here  is  to  determine  the
pharmacophore model that may be suitable for the
compound.  Such  pharmacophore  models  can  be
developed manually or retrieved from the databases
(41). Furthermore, this method can be used to find
a target for a particular molecule whose activity is
still unknown. For example, many plant metabolites
have  been  investigated  and several  possible  drug
targets have been found for them (42).

Applications in ligand profiling
Pharmacophore  modeling  is  utilized  in  ligand
profiling  to  estimate  the  possible  targets,  their
adverse effects and suggest new targets for drugs.
Not only structure-based pharmacophore modeling
but  also  ligand-based  pharmacophore  modeling  is
utilized in ligand profiling however structure-based
pharmacophore  modeling  is  preferable  (43).
Pharmacophore modeling can be an alternative to
molecular docking for profiling of ligands (44).

In  a  study  conducted  by  using  pharmacophore
modeling-based  ligand  profiling,  targets  are
assigned  correctly.  In  this  study,  through  both
structure-based and ligand-based pharmacophores,
16 metabolites from Ruta graveolens were screened
against a dataset of 2208 pharmacophore models.
The  computational  results  were  validated  by
experimental  setups with a special  focus on AChE
(acetylcholinesterase), HRV (human rhinovirus) coat
protein and CB2 (cannabinoid receptor type 2). The
experimental  results  confirmed the  binding  profile
obtained from the pharmacophore modeling (42).

Applications in docking
There  are  various  means  to  combine
pharmacophore-based and docking-based molecular
modeling approaches. This may overcome some of
the drawbacks of both approaches and may lead to
generate better results. Pharmacophore models can
be used as  initial  filters  to reduce the number of
molecules to be docked, during the docking process
as  pharmacophore  guides  and  after  docking  as
filters  to  select  ligands  and  rank  the  poses  (45).
Pharmacophore  models  are  used  as  filters  to
determine molecules that meet the basic structural
and  chemical  functionality  requirements  of  the
query  before  molecular  docking  (46).  Before  the
evaluation using docking, pharmacophore is utilized
as  a  search  query  to  filter  the  ligand  database.
Pharmacophore-constrained  docking  is  also
applicable  in  docking  softwares  available  and
permits certain types of ligand-protein interactions
to  exist  in  the  docking  pose  (47).  Similarly,
pharmacophore models can be used in post-docking
filtering to identify  the correct  binding mode of  a
compound  (47,48).  Therefore,  pharmacophore
models  can  be  used  in  enriching  the  top  ranking
docking results (49).

For  instance,  pharmacophore  and  docking  were
used to filter Chk-1 (checkpoint kinase-1) inhibitors
from  a  compound  database.  The  pharmacophore
model was used as initial filter in searching for small
compounds  that  can  interact  with  the  adenine
region of Chk-1 through a HBA and a HBD features.
Then,  docking  was  undertaken  by  incorporating
these  interactions  in  the  pose  identification.  For
each  ligand,  multiple  poses  were  saved  and
rescoring was carried out. At the end of the study,
compounds  with  potential  binding  affinity  were
identified  (50). In  another  recent  study,
pharmacophore modeling and docking were used to
discover  new  dual  adenosine  A1/A2A  receptor
antagonists (51).

Applications in ADMET
Low ADMET property is among the principal reasons
for  the  failure  of  drug  development  efforts  (52).
Therefore,  the  necessity  of  determining  ADMET
properties  in  the  early  stages  of  the  drug
development  process  is  generally  accepted.
Pharmacophore  modeling  methods  are  used  in
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estimating  ADMET  properties  early  to  reduce  the
failures  in  the  endeavor  to  develop  novel  drugs
(53).

It  is  possible  to  use  pharmacophore  models  in
identifying the likely interactions between the drug
and  its  metabolizer  enzymes  by  comparing  the
similar chemical features of tested compounds and
drugs whose ADMET profile is well known (54). For
instance,  a  pharmacophore  model  that  is  able  to
estimate  the  binding  of  a  drug-like  molecule  to
some  CYP  (cytochrome  P450)  enzymes  was
generated by using the interactions of known drugs
with CYP enzymes and the probable degradation by
these enzymes was assesed (55). Similarly, ADMET
pharmacophore  model  was  generated  for  the  5′-
diphospho-glucuronosyl  transferase,  which  are
enzymes related to drug excretion (56).

CHALLENGES IN PHARMACOPHORE MODELING

There  are  limitations  in  pharmacophore  modeling
that should be overcome. Therefore, there are new
efforts to solve such problems and thus increase the
quality of the applied modeling (57). 

One  of  the  application  areas  of  pharmacophore
modeling  is  virtual  sceening  by  pharmacophore.
However, there are no good scoring functions used
in virtual screening by pharmacophore  (58). Here,
the  extent  of  matching  of  the  ligand  to  the
pharmacophore query is  usually  expressed by the
RMSD between the patterns of the query and atoms
of the compound. However, this measurement does
not consider the similarity with known inhibitors and
thus cannot estimate the overall similarity with the
receptor.  Therefore,  compounds  that  match  the
pharmacophore  query  may  differ  from  the  other
known inhibitors and contain functional groups that
cannot  bind  with  the  receptor  binding  site.  This
makes  the  molecules  inactive  though  they  are
perfect matches (59).

Another  challenging  problem  in  pharmacophore-
based  virtual  screening  is  higher  ‘false  positive’
rates,  that  is,  the  virtual  hit  ligands  may  not  be
biologically  active  (13).  This  limitation may result
from lack of the required hypothesis, quality of the
pharmacophore  model  and discrepancies  from the
real  biological  conditions.  Using  expertises,
exhaustive  validation,  including  important
information  about  the  target  and  integrating  with
the  other  computational  methods  need  to  be
considered to overcome this drawback (60). 

Modeling  ligand  flexibility  is  also  an  important
challenge. To solve this, structure analysis based on
predetermined  structure  databases  or  during  the
pharmacophore process can be used. The method
based  on  predetermined  structure  databases  has
been  found  to  have  a  better  performance  (61).
However, there are deficiencies in virtual screening

by  pharmacophore  that  is  performed  using  the
method  depending  on  predetermined  structural
databases.  These  databases  consist  of  a  few  low
energy structures per molecule. If the structure of
an active ligand is missing, there is a possibility of
not  detecting  it  (62).  This  is  especially  true  for
various  structures  with  rotatable  bonds  of  small
molecular functional groups like hydroxyl. It would
be  hard  to  differentiate  the  various  rotations  by
RMSD value difference during structure generation.
Generally,  pharmacophore  search  tools  can  rotate
such bonds during the matching process to find the
right directional conformations of small flexible polar
functional  groups.  The  other  limitation  is  the
absence of a clear way to create a pharmacophore
query (63).

Similarly,  in  structure-based  pharmacophore
modeling  protein  flexibility  and  ligand
conformational flexibility are the major challenges.
These  limitations  can  be  overcome  by  generating
the  pharmacophore  model  using  docked  complex
built through flexible docking or by the generation
and  alignment  of  the  models  from  protein-ligand
molecular  dynamics  simulations  simultaneously.  In
other  words,  combination  of  the  structure-based
approach  with  flexible  docking  and  molecular
dynamics simulations may alleviate these drawbacks
(64).  Furthermore,  in  structure-based  approach
generation  of  pharmacophore  models  is  not
straightforward.  Especially,  when  various
combination  of  features  are  likely,  each
pharmacophore model may lead to different set of
compounds (65). 

Molecular  alignment  is  a  difficult  matter  in
pharmacophore modeling. Molecular alignments can
be  classified  as  point-based  and  feature-based
approaches according to their basic nature. In the
point-based algorithms, double atoms, fragments or
chemical  pattern  points  are  overlapped using  low
square  matching.  The  need  for  predetermined
connection  points  is  a  major  drawback  of  this
approach.  The  feature-based  algorithms  use
molecular domain determinants, often represented
by  Gaussian  function  sets,  to  create  alignments.
Development of new alignment methods continues
(66).

The other challenging issue in the practical  job is
the  right  selection  of  the  training  set  molecules.
Although  this  issue  is  non-technical  and
straightforward, it may confuse users. The type of
ligand molecule,  size of  the  dataset  and chemical
variety have been shown to significantly affect the
final pharmacophore model generated (13).

ADVANCES IN PHARMACOPHORE MODELING

The  scope  and  depth  of  the  utilization  of
pharmacophore  modeling  in  the  drug  discovery
process  are  increasing  (Figure  2).  As  a  result,  in
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order to keep up with the new developments in the
area,  contribution  of  the  other  computational
methods is in need (45). Herein, the latest methods
in the integration of the pharmacophore modeling
with molecular dynamics (MD) simulations and the
contribution of machine learning to its advance are
presented. The necessity of the integration of it with
the other compuational methods is apparent as it is
demonstrated by its  applications  in  the  last  three
years  (Table  2).  Thus,  more  integrational
approaches  with  the  other  complementary
computational  methods  are  anticipated  (18).
Moreover, the new approaches will help to overcome
the  difficulties  encountered  in  pharmacophore
modeling. 

Integration  with  molecular  dynamics
simulations
Since ligands and receptors are dynamic bodies, it is
clear that ligand-receptor complexes and thus the
underlying interactions are also dynamic. Based on
this  concept,  researchers  began  to  integrate  MD

simulations  in  the  generation  of  better
pharmacophore models  (67). In recent years most
of the pharmacophore modeling implementations in
the drug discovery process are in combination with
MD simulations (Table 2). Thus, the integration of
pharmacophore generation with MD simulations will
have a profound effect on the improvement of this
approach.

HSRP  (hydration  site  restricted  pharmacophore),
SILCS  (site  identification  by  ligand  competitive
saturation)  and  dynophores  are  examples  for
methods that use conformations obtained from MD
simulations for pharmacophore building (16). In the
HSRP approach, the aim is to reduce the number of
pharmacophore  features  by  determining  hydration
points on the surface of the protein (68). The SILCS
method  uses  the  binding  hot  spots  of  probe
compounds in MD simulations for the generation of
pharmacophore  models  (69).  On  the  other  hand,
the  dynophore  represents  the  fully  automated
integration  of  MD  simulations  with  the
pharmacophore generation (70). 

Table 2: Recent applications of pharmacophore modeling in combination with other computational
methods.

Aim of the Study Major Findings Other  Computational
Methods Used

Identification  of  20S
proteasome inhibitors (71)

Five  promising  compounds
that  might  inhibit  the  β5
subunit  of  20S  proteasome
were identified.

Virtual  screening,  molecular
docking, and MD simulations

Identification  of  new
Mycobacterium  tuberculosis
MurG inhibitors (72)

Ten  potential  inhibitors  of
MurG were identified.

Homology  modeling,  virtual
screening, molecular docking,
and MD simulations

Development  of  inhbitors
against  HER  family  proteins
(73)

A lead compound with better
properties than the reference
ligand, afatinib, was found.

Molecular  docking,  ADMET
property  analysis,  virtual
screening and MD simulations

Identification  of  novel
caspase-1 inhibitors (74)

Four compounds that can be
leads for the development of
new  anti-inflamatory  agents
were identified. 

Virtual  screening,  molecular
docking, MD simulations and
ADMET property analysis

Identification  of  novel
compounds that inhibit TNFα
and/or TNFR1 (75) 

Fifteen  promising  leading
compounds that can serve as
novel  TNFα  and/or  TNFR1
inhibitors were identified.  

Molecular  docking,  virtual
screening  and  ADMET
property analysis

Identification  of  new
therapeutic  agents  against
resistant  tuberculosis  by
targeting DNA Gyrase B (76)

Seven  potential  selective
inhibitors  of  Gyrase  B  were
detected.

MD  simulations,  virtual
screening  and  molecular
mechanics

Designing  of  new  DprE1
inhibitors  for  tuberculosis
(77)

A  potential  lead  compound
that  can  be  used  as  DprE1
inhibitor was identified.

Molecular  docking,  free
binding  energy  estimations,
MD simulations, and  ADMET
property analysis 

Elucidation  of  key
interactions  between  SARS-
CoV-2 main protease (Mpro)
and  its  possible  inhibitors
(78)

Residual  key  for  the
interactions  between  SARS-
CoV-2  Mpro  and  three  drug
candidates were revealed.

MD simulations

Exploration  of  novel  drugs Eight  molecules  that  might Homology  modeling,
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against  COVID-19  by
inhibiting its receptor binding
domain (79)

hinder the attachment of the
Spike  protein  of  novel
Coronavirus  to  the  host
receptor were predicted.

molecular  docking,  virtual
screening  and  ADMET
property analysis 

Identification  of  new
potential  Coronavirus
inhibitors (80)

Ten  potential  Coronavirus
inhibitors were identified.

Virtual  screening,  molecular
docking and MD simulations

Identification  of  new
molecules  for  the  regulation
of  glutamate  signaling
pathway (81)

Two  potential  dual  negative
allosteric  modulator
compounds  against  mGluRs
in  neurodegenerative
diseases were identified. 

Virtual  screening,  MD
simulations  and  ADMET
property analysis

Discovery  of  novel  TNF-α
inhibitors (82)

Sixteen molecules with better
binding  affinity  than  the
previously  known  TNF-α
inhibitors were identified.

Molecular  docking,  virtual
screening,  MD  simulations,
and  free  binding  energy
estimations

Identification of new GSTP1-
1 inhibitors (83)

Four  promising  hGSTP1-1
enzyme  inhibitors  were
screened.

Virtual screening and ADMET
analysis

Involvement of machine learning
The improvements  in  computing capacity  and  the
available data have contributed much to the drug
discovery  process.  Machine  learning,  which  is  a
subfield of artificial intelligence (AI), has been used
in pharmacophore modeling over the last years. In
the era of big data, machine learning methods have
developed into  more efficient  approaches such as
deep  learning.  Thus,  several  machine  learning
methods that  use the  concept of  pharmacophores
have  been  developed  (16).  In  addition  to  this,
machine learning has been used in improving the
scoring functions (84).

HSPharm  (hot  spots  guided  receptor  based
pharmacophores),  PharmIF (pharmacophore  based
interaction fingerprint) and DeepSite are examples
for  machine  learning  approaches  trained  with
pharmacophores. The HSPharm trains random forest
decision  trees  with  pharmacophoric  descriptors  to
decrease  the  number  of  pharmacophore  features
(85).  The  PharmIF  trains  support  vector  machine
(SVM)  with  pharmacophoric  fingerprints  to  rank
docking  poses  of  small  molecules  (86).  The
DeepSite trains convolutional neural network (CNN)
with pharmacophoric descriptors to find out cavities
and calculate binding affinities (87).

CONCLUSION

Pharmacophore is a pattern of features responsible
for the biological activity of a molecule. There are
various  programs  used  in  the  generation  of
pharmacophore models. The pharmacophore models
developed are used to identify new molecules that
satisfy  the  pharmacophore  requirements  and  thus
expected to be biologically active.

Pharmacophore modeling has several applications at
the various  stages of  the drug discovery process.
Pharmacophore  modeling  is  widely  employed  in
virtual  screenings  to  identify  the  molecules  that

trigger  the  desired  biological  activity.
Pharmacophore models are also used as filters  to
identify  molecules  that  meet  the  pharmacophore
requirements  prior,  during  and  after  docking.
Furthermore,  pharmacophore  models  are  used  in
drug  target  fishing,  ligand  fishing, and  ADMET
property predictions.

It  is  possible  to  overcome  the  challenges
encountered in  pharmacophore  modeling by using
the  other  advanced  computational  methods.  For
instance,  phamacophore  modeling  has  been
integrated  with  molecular  dynamics  simulations.
This has the potential to alleviate problems faced in
the modeling of the ligand flexibility. Lack of good
scoring  functions  used  in  virtual  screening  by
pharmacophore  is  another  challenge  observed.
Machine  learning  can  be  used  in  improving  such
scoring functions as it has been employed in various
computational approaches. Therefore, with the new
advances in pharmacophore modeling, it is possible
to  develop  pharmacophore  models  with  better
properties.

In  short,  pharmacophore  modeling  has  played  its
own  role  in  the  drug  discovery  process.
Improvements  in  computing  capacity,  increase  in
the  available  data,  integration  with  the  other
computational  methods  and  involvement  of  the
latest algorithms have enhanced the quality of the
pharmacophore models generated. As the quality of
the pharmacophore model developed increases, its
potential role in the drug discovery also increases.
With  this  in  mind,  further  improvements  that  will
increase the quality of the pharmacophore models
are still required.  
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