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Abstract

We investigate in this manuscript, we study a new type of mappings so called Fs−contractive, in addition
to we establish some �xed point results related to Fs−contractive type mappings in controlled type metric
spaces. Also, examples are provided to illustrate our results.
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Banach in [1], proved the existence and uniqueness of a �xed point for a contractive self-mapping on a
metric space, which was an inspiration to researchers around the world to generalize his result. That is due to
the fact that the more general is the result, the more area it can be applied on such as an examples in computer
sciences, di�erential equations, engineering. Some researchers generalize metric spaces by introduced an new
extension to metric spaces such as partial metric spaces by assuming that the self-distance is not necessary
zero. One of these extensions called b−metric spaces, which is basically changing the triangle inequality by
multiplying the right hand side by a constant s ≥ 1. Another approach to extend the result of Banach is
to generalize the contraction principle, to get the necessary background on these extensions, we refer the
reader to ([2], [3], [5], [3], [6], [7], [18], [19], [20], [21], [22], [23] ). One of the these extensions was given
by Wardowski in [8], where he presented a new kind of contraction so referred to F-contraction. In this
manuscript, we present improvement and generalization of some results on F -contraction in controlled type
metric spaces which was introduced in 2018 by Mlaiki et. al. in [4].
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In the �rst section, we introduce some feasibility requirements. In the second section, We illustrate some
goals along with consequences for Fs-contractive mappings. In the third section, we introduce Fs-expanding
type mappings in controlled metric type spaces, along with �xed point results in such mappings.

1. Preliminary

First in this preliminary, we remind the reader of the de�nition of controlled metric type spaces.

De�nition 1.1. [4] Consider the set X ̸= ∅ and θ : X × X → [1,∞). If for all x, y, z ∈ X, the function
d : X ×X → [0,∞) satis�es the following:
(d1) d(x, y) = 0 ⇐⇒ x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ θ(x, z)d(x, z) + θ(z, y)d(z, y),
then the pair (X, d) is referred a controlled type metric space.

Next, we give some examples of controlled metric type spaces.

Example 1.2. [4] Assume that X = {1, 2, · · · }. De�ne d : X ×X → [0,∞) by

d(x, y) =


0, ⇐⇒ x = y
1
x , if x = 2κ and y = 2n+ 1
1
y , if x = 2n+ 1 and y = 2κ

1, otherwise.

Suppose θ : X ×X → [1,∞) as

θ(x, y) =


x, if x = 2κ and y = 2n+ 1

y, if x = 2n+ 1 and y = 2κ

1, otherwise.

It is simple to see that (d1) and (d2) hold. To prove that (d3) maintains.
Case 1: If z = x or z = y, (d3) holds.
Case 2: If z ̸= x and z ̸= y, (d3) maintains when x = y. Now, suspect that x ̸= y. Then we have x ̸= y ̸= z.
It is not di�cult to see that (d3) maintains for the proceeds subcases:

� x = 2κ, z = 2n and y = 2i+ 1;

� x = 2κ and y = 2n+ 1, z = 2i+ 1;

� x = 2n+ 1, z = 2i+ 1 and y = 2κ;

� x = 2n, y = 2κ, z = 2i ;

� x = 2κ, y = 2n and z = 2i+ 1;

� x = 2n+ 1, y = 2i+ 1 and z = 2κ;

� x = 2n+ 1, y = 2i+ 1, z = 2κ+ 1,

where n, i, κ are natural numbers.
As a results, (X, d) is a controlled type metric space.
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Example 1.3. [4] Assume that X = {0, 1, 2}. De�ne d : X ×X → [0,∞) as

d(0, 0) = d(1, 1) = d(2, 2) = 0,

and

d(0, 1) = d(1, 0) = 1, d(0, 2) = d(2, 0) =
1

2
, d(1, 2) = d(2, 1) =

2

5
.

Take θ : X ×X → [1,∞) to be symmetric (i.e., θ(x, y) = θ(y, x) for all x, y ∈ (X) and be de�ned by

θ(0, 0) = θ(1, 1) = θ(2, 2) = θ(0, 2) = 1, θ(1, 2) =
5

4
, θ(0, 1) =

11

10
.

It is simple to see that (X, d) is a controlled metric type space.

Now, we remind the reader of the de�nition of Cauchy and convergent sequences in controlled metric
type spaces.

De�nition 1.4. [4] let (X, d) be a controlled type metric space and a sequence {xn}n≥0 in X.
(1) We say that the sequence {xn} is convergent to x ∈ X, if for every ϵ > 0, there exists N = N(ϵ) ∈ N
such that d(xn, x) < ϵ for others n ≥ N. In this case, we write limn→∞ xn = x.
(2) We say that the sequence {xn} is Cauchy, if for every ϵ > 0, there exists N = N(ϵ) ∈ N such as
d(xm, xn) < ϵ for all m,n ≥ N.
(3) An controlled type metric space (X, d) is said to be complete if every Cauchy sequence is convergent.

De�nition 1.5. [4] Let that (X, d) be a controlled type metric space. Presumed that x ∈ X and ε > 0.
(i) The open ball B(x, ε) is

B(x, ε) = {y ∈ X, d(x, y) < ε}.

(ii) The mapping T : X → X is said to be continuous at x ∈ X if for all ε > 0, there exists δ > 0 such as
T (B(x, δ)) ⊆ B(Tx, ε).

De�nition 1.6. Consider the family F of maps F : (0,∞) → R that satis�es the following four instances;

(F1) F(α) < F(γ) if and only if α < γ.

(F2) For any sequence {γn}n∈N of positive numbers we have γn converges to 0 if and only if limn→∞F(γn) =
−∞.

(F3) There exists 0 < κ < 1 where limγ→0+ γκF(γ) = 0.

(F4) Let s ≥ 1 be a real number. For each sequence {γn}n∈N of positive numbers such as

τ + F(sγn) ≤ F(γn−1),∀n ∈ N, τ > 0,

then
τ + F(snγn) ≤ F(sn−1γn−1), ∀n ∈ N, τ > 0,

Example 1.7. Consider the mappings from (0,∞) to R de�ned by:

1. F1(x) = log x,

2. F2(x) = x+ log x,

3. F3(x) = log(x2 + x).
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Note that, it is not di�cult to see that F1,F2,F3 ∈ F.

De�nition 1.8. For a controlled metric type space (X, d), a mapping T : X → X is said to be an Fs-
contractive type mapping if there exists F ∈ F, τ > 0 and s ≥ 1, where d(x, Tx)d(y, Ty) ̸= 0 infers

τ + Fs(sd(Tx, Ty)) ≤
1

3
{Fs(d(x, y)) + Fs(d(x, Tx)) + Fs(d(y, Ty))} (1)

and d(x, Tx)d(y, Ty) = 0 infers

τ + Fs(sd(Tx, Ty)) ≤
1

3
{Fs(d(x, y)) + Fs(d(x, Ty)) + Fs(d(y, Tx))} (2)

for all x, y ∈ X.

2. Main results

Now, We present our main result.

Theorem 2.1. Assume that (X, d) be a complete controlled type metric space and let T : X → X be an Fs-
contractive type mapping. Also, assume that there exists x0 ∈ T de�ne the sequence {xn} by xn = Txn, n ∈ N
such that for all natural numbers n, we have;

sup
m≥1

lim
i→∞

θ(xi+1, xi+2)

θ(xi, xi+1)
θ(xi+1, xm) < s. (3)

Also, assume for every x ∈ X, we have reached

lim
n→∞

θ(xn, x) and lim
n→∞

θ(x, xn) exist and are �nite. (4)

Then T has a unique �xed point.

Proof. Assume that x0 ∈ X be the point satisfying the hypothesis of our theorem, and refer the sequence
{xn} by xn = Txn, n ∈ N . Denote d(xn, xn+1) by µn. We may assume that µn > 0 for all n ∈ N. Otherwise,
if there exists n such that µn > 0, then xn+1 = xn and we are done because xn is a �xed point of T. Since
T is an Fs-contractive type mapping and Txn ̸= xn for all n ∈ N , We have reached

Fs(sµn) ≤
1

3
{Fs(d(xn−1, xn)) + Fs(d(xn−1, xn)) + Fs(d(xn, xn+1))} − τ.

Thus,

Fs(sµn) ≤
1

3
{Fs(d(xn−1, xn)) + Fs(d(xn−1, xn)) + Fs(d(xn, xn+1))} − τ.

Hence,

Fs(sµn) ≤ Fs(µn−1)−
3

2
τ

By condition (F4), We have reached

Fs(s
nµn) ≤ Fs(s

n−1µn−1)−
3

2
τ.

Therefore, we can simply deduce the following;

Fs(s
nµn) ≤ Fs(s

n−1µn−1)−
3

2
τ ≤ ... ≤ Fs(µ0)−

3

2
n ≤ Fs(µ0), (5)

which suggests that
snµn ≤ µ0, (6)
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For all natural numbers n < m, We have reached

d(xn, xm) ≤ θ(xn, xn+1)d(xn, xn+1) + θ(xn+1, xm)d(xn+1, xm)

≤ θ(xn, xn+1)d(xn, xn+1) + θ(xn+1, xm)θ(xn+1, xn+2)d(xn+1, xn+2)

+ θ(xn+1, xm)θ(xn+2, xm)d(xn+2, xm)

≤ θ(xn, xn+1)d(xn, xn+1) + θ(xn+1, xm)θ(xn+1, xn+2)d(xn+1, xn+2)

+ θ(xn+1, xm)θ(xn+2, xm)θ(xn+2, xn+3)d(xn+2, xn+3)

+ θ(xn+1, xm)θ(xn+2, xm)θ(xn+3, xm)d(xn+3, xm)

≤ · · ·

≤ θ(xn, xn+1)d(xn, xn+1) +
m−2∑
i=n+1

 i∏
j=n+1

θ(xj , xm)

 θ(xi, xi+1)d(xi, xi+1)

+
m−1∏

κ=n+1

θ(xκ, xm)d(xm−1, xm)

≤ θ(xn, xn+1)
1

sn
d(x0, x1) +

m−2∑
i=n+1

 i∏
j=n+1

θ(xj , xm)

 θ(xi, xi+1)
1

si
d(x0, x1)

+

m−1∏
i=n+1

θ(xi, xm)
1

sm−1
d(x0, x1)

= θ(xn, xn+1)
1

sn
d(x0, x1) +

m−1∑
i=n+1

 i∏
j=n+1

θ(xj , xm)

 θ(xi, xi+1)
1

si
d(x0, x1).

Hence,

d(xn, xm) ≤ θ(xn, xn+1)
1

sn
d(x0, x1) +

m−1∑
i=n+1

 i∏
j=n+1

θ(xj , xm)

 θ(xi, xi+1)
1

si
d(x0, x1).

Now, Assume that

Sp =

p∑
i=0

 i∏
j=0

θ(xj , xm)

 θ(xi, xi+1)
1

si
.

Hence, we have reached

d(xn, xm) ≤ d(x0, x1)

[
1

sn
θ(xn, xn+1) + (Sm−1 − Sn)

]
. (7)

By the ratio test and conditions 3, and 4, it not di�cult to see that

lim
n,m→∞

d(xn, xm) = 0.

So, {xn} is a Cauchy sequence. Since (X, d) is complete controlled metric type spaces, we deduce that
converges {xn} to some z ∈ X, that is

lim
n→∞

xn = z.

Also, using (1), we deduce that for all n ∈ N

τ + Fs(sd(Tz, Txn)) ≤
1

3
{Fs(d(z, xn)) + Fs(d(z, Tz)) + Fs(d(xn, xn+1))}.



M. Abuloha et al., Results in Nonlinear Anal. 4 (2021), 149�158 154

Hence, as n → ∞ , and since d(z, xn) → 0 we deduce that

τ + lim
n→∞

Fs(sd(Tz, Txn)) ≤ −∞

this implies
lim
n→∞

d(Tz, xn+1) = lim
n→∞

d(Tz, Txn) = 0.

Thus, {xn} converges to Tz. Therefore, by the uniqueness of the limit we conclude that

Tz = z.

Now, we may assume that T has more than one �xed point say z∗ with z ̸= z∗. Thus,

τ + Fs(sd(Tz, Tz
∗)) ≤ 1

3
{Fs(d(z, z

∗)) + Fs(d(z, Tz
∗)) + Fs(d(Tz, z

∗))}

or
Fs(sd(z, z

∗)) < Fs(d(z, z
∗)),

that is a contradiction. Therefore, The �xed point is unique as desired.

The following example is an application of Theorem 2.1.

Example 2.2. Assume that X = [0, 1] ∪ [2,∞). De�ne d : X ×X → [0,∞) by

d(x, y) =

{
0, if and only if x = y,

min{x+ y, 2}, if x ̸= y .

Consider θ : X ×X → [1,∞) as

θ(x, y) =


x, if x = 2κ and y = 2n+ 1

y, if x = 2n+ 1 and y = 2κ

1, otherwise.

Note that, (X, d) is complete controlled metric type space. De�ne the mapping T : X → X as follows;

Tx =


1
2 , if 0 ≤ x < 1,

0, if x = 1,
1
2 − 1

x , if x ≥ 2,

It is simple to see that T is an Fs−contractive mapping with F(x) = log x, τ = 2 ln 3
3 and s = 1, which also

satis�es all hypothesis of Theorem 2.1. Thus, T has a unique �xed point that is x = 1
2 .

Corollary 2.3. Consider (X, d) to be a complete controlled type metric space and T : X → X be a mapping
such that, for some τ > 0, d(x, Tx)d(y, Ty) ̸= 0 implies

τ + Fs(sd(T
nx, Tny)) ≤ 1

3
{Fs(d(x, y)) + Fs(d(x, T

nx)) + Fs(d(y, T
ny))}

and d(x, Tx)d(y, Ty) = 0 infers

τ + Fs(sd(T
nx, Tny)) ≤ 1

3
{Fs(d(x, y)) + Fs(d(x, T

ny)) + Fs(d(y, T
nx))}

for some natural number n. Then T has a unique �xed point.
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Proof. Consider the map S = Tn, it not di�cult to see that by Theorem 2.1, S has a unique �xed point, say
w, that is Tnw = Sw = w. Since Tn+1w = Tw,

STw = Tn(Tw) = Tn+1w = Tw,

Now, since the �xed point of S is unique, we deduce that Tw = w.

Theorem 2.4. For a controlled type metric space (X, d), assume that for any closed subset Y of X any
Fs-contractive type mapping T on Y has a �xed point, then X is complete.

Proof. Assume that {xn} be a Cauchy sequence in X. Assume that {xn} does not have any convergent
subsequence. Thus,

β(xn) := inf{d(xn, xm) : m > n} > 0, ∀n ∈ N.

Note that β(xn) ≤ β(xm) for m ≥ n. For a given γ with 0 < γ < 1, we construct inductively a subsequence
{xnκ} such that

sd(xi, xj) < γβ(xnκ−1),∀i, j ≥ nκ.

Then Y = {xnκ : κ ∈ N} is a closed subset of X. De�ne T : Y → Y by

Txnκ = xnκ+1∀κ ∈ N

Then it is clear that T is �xed point free. Now,

sd(Txnκ , Txnκ+i) = d(xnκ+1 , xnκ+i+1) < γβ(xnκ)

By de�nition,

β(xnκ) ≤ d(xnκ , xnκ+i) = d(x, y)

≤ d(xnκ , xnκ+1) = d(x, Tx)

≤ β(xnκ+i) = d(y, Ty).

Thus, we can easily conclude that

τ + Fs(sd(Tx, Ty)) ≤
1

3
{Fs(d(x, y)) + Fs(d(x, Tx)) + Fs(d(y, Ty))}.

where τ > 0, which leads us to a contradiction.

Now, we de�ne Kannan Fs-contractive type mappings and prove some �xed point results for the same
in a controlled type metric space.

De�nition 2.5. Assume that (X, d) be a controlled type metric space. A mapping T : X → X is said to be
a Kannan Fs-contractive type mapping if there exists τ > 0 and s ≥ 1 such that d(x, Tx)d(y, Ty) ̸= 0 infers

τ + Fs(sd(Tx, Ty)) ≤
1

2
{Fs(d(x, Tx)) + Fs(d(y, Ty))} (8)

and d(x, Tx)d(y, Ty) = 0 infers

τ + Fs(sd(Tx, Ty)) ≤
1

2
{Fs(d(x, Ty)) + Fs(d(y, Tx))} (9)

for all x, y ∈ X.

Theorem 2.6. Assume that (X, d) be a complete controlled type metric space and let T : X → X be a
Kannan Fs-contractive type mapping. Then T has a unique �xed point.
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Proof. The goal follows, following the proof of Theorem 2.1.

De�nition 2.7. We say that a self mapping on a controlled matric type space T is an asymptotically regular
mapping, if

lim
n→∞

d(Tnx, Tn+1x) = 0 forall x ∈ X.

Theorem 2.8. Assume that (X, d) be a complete controlled type metric space and T : X → X be an
asymptotically regular mapping such that, for some τ > 0, d(x, Tx)d(y, Ty) ̸= 0 implies

τ + Fs(sd(Tx, Ty)) ≤ Fs(d(x, Tx)) + Fs(d(y, Ty) (10)

and d(x, Tx)d(y, Ty) = 0 infers

τ + Fs(sd(Tx, Ty)) ≤ Fs(d(x, Ty)) + Fs(d(y, Tx) (11)

assume that there exists x0 ∈ T such that for all natural numbers n, we have reached;

sup
m≥1

lim
i→∞

θ(xi+1, xi+2)

θ(xi, xi+1)
θ(xi+1, xm) < s. (12)

Also, assume for every x ∈ X, we have reached

lim
n→∞

θ(xn, x) and lim
n→∞

θ(x, xn) exist and are �nite. (13)

for all x, y ∈ X. Then T has a �xed point z ∈ X.

Proof. Assume that x0 ∈ X be an arbitrary point (but �xed) and consider the sequence xn, where xn =
Tnx0, n ∈ N . Assume thatd(xn, xn+1) = µn and suppose that µn > 0 for all n ∈ N . Since T is asymptotically
regular, we have reached

lim
n→∞

µn = 0. (14)

Now, since Txn ̸= xn for all n ∈ N , we have for n < m ∈ N ,

τ + Fs(sd(xn, xm)) ≤ Fs(d(T
n−1x0, T

nx0)) + Fs(d(T
m−1x0, T

mx0))

= Fs(µn−1) + Fs(µm−1).

Now, by (14) we can simply deduce that;

lim
n→∞

Fs(sd(xn, xm)) = −∞.

Hence, by condition (F2) we have reached;

lim
n→∞

d(xn, xm) = 0,

Therefore, {xn} is a Cauchy sequence. Since (X, d) is complete controlled metric type spaces, we deduce
that converges {xn} to some z ∈ X, that is

lim
n→∞

xn = z,

that is limn→∞ d(xn, z) = 0. Also, we have for all n ∈ N

τ + Fs(sd(Tz, Txn)) ≤ Fs((d(z, Tz)) + Fs(d(xn, Txn)).

Hence,
τ + lim

n→∞
Fs(sd(Tz, Txn)) ≤ −∞.

that is, limn→∞ d(Tz, xn+1) = 0.
Since the convergent sequence {xn} converges to both z and Tz. Therefore, by the uniqueness of the limit
we have Tz = z.
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3. F-expanding type mappings

In this section, we de�ne new kinds of Fs-expanding mapping and we prove a �xed point goals in controlled
type metric spaces.

De�nition 3.1. A mapping T : X → X is said to be an Fs-expanding type mapping if there exists t > 0
such that d(x, Tx)d(y, Ty) ̸= 0 infers

t+ Fs(sd(x, y)) ≤
1

3
{Fs(d(Tx, Ty)) + Fs(x, Tx) + Fs(d(y, Ty))} (15)

and d(x, Tx)d(y, Ty) = 0 infers

t+ Fs(sd(x, y)) ≤
1

3
{Fs(d(Tx, Ty)) + Fs(x, Ty) + Fs(d(y, Tx))} (16)

for all x, y ∈ X.

Next, we remind the reader of the following well knowning lemma.

Lemma 3.2. [16] Assume that T be a surjective, self-mapping on a controlled type metric space (X, d). Then
there exists a mapping T ∗ : X → X such that T ◦ T ∗ is the identity map on X.

In the next theorem We prove the existence and uniqueness of a �xed point for Fs-expanding type
mappings in controlled metric type spaces.

Theorem 3.3. Assume that T be a surjective, self-mapping on a controlled type metric space (X, d) as a
result T is additionally an Fs-expanding type mapping. Then T has a unique �xed point z ∈ X.

Proof. Lemma (3.2) implies that there exists a self-mapping mapping T ∗ on X such that T ◦T ∗ is the identity
map on X. Take any arbitrary pointsx, y ∈ X such that x ̸= y, and de�ne u = T ∗x and v = T ∗y. It is
obvious that u ̸= v. Applying (15) on u and v, we have, for d(u, Tu)d(v, Tv) ̸= 0,

τ + Fs(sd(u, v)) ≤
1

3
{Fs(d(Tu, Tv)) + Fs(u, Tu) + Fs(d(v, Tv))}.

and, for d(x, Tx)d(y, Ty) = 0,

τ + Fs(sd(u, v)) ≤
1

3
{Fs(d(Tu, Tv)) + Fs(u, Tv) + Fs(d(v, Tu))}.

Since Tu = T (T ∗(x)) = x and Tv = T (T ∗y) = y, we get

τ + Fs(sd(T
∗x, T ∗y)) ≤ 1

3
{Fs(d(x, y)) + Fs(x, T

∗x) + Fs(d(y, T
∗y))}.

for d(x, Tx)d(y, Ty) ̸= 0 and

τ + Fs(sd(T
∗x, T ∗y)) ≤ 1

3
{Fs(d(x, y)) + Fs(x, T

∗y) + Fs(d(y, T
∗x))}.

for d(x, Tx)d(y, Ty) = 0, showing that T ∗ is an Fs-contractive type mapping. By Theorem (2.1), T ∗ has a
unique �xed point z ∈ X and for every x0 ∈ X the sequence {T ∗nx0} converges to z. In particular, z is also
a �xed point of T since T ∗z = z reveals that
Tz = T (T ∗z) = z.
At long last, if w = Tw is another �xed point, then from (16).

τ + Fs(sd(z, w)) ≤
1

3
{Fs((d(Tz, Tw)) + Fs(d(z, Tw)) + Fs(d(w, Tz))}.

or

τ +
2

3
Fs(sd(z, w)) ≤

2

3
Fs((d(z, w)).

which is impossible. Additionally, the �xed point of T is unique.
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4. conclusion

In closing, we would like to present the following questions;

Question Under what conditions an Fs−contractive mapping in double controlled metric type space has a
unique �xed point?

Question Under what conditions an Fs−expanding mapping in double controlled metric type space has a
unique �xed point?

Note that, double controlled metric type space was introduced in 2018 by Abdeljawad et. al in [17].
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