
Results in Nonlinear Analysis 5 (2022) No. 1, 29�41.
https://doi.org/10.53006/rna.928654
Available online at www.nonlinear-analysis.com

Research Article

Sequential fractional pantograph di�erential

equations with nonlocal boundary conditions:

Uniqueness and Ulam-Hyers-Rassias stability

Mohamed Houasa

aLaboratory FIMA, Khemis Miliana University, Khemis Miliana, Algeria.

Abstract

In the current manuscript, we study the uniqueness and Ulam-stability of solutions for sequential fractional
pantograph di�erential equations with nonlocal boundary conditions. The uniqueness of solutions is es-
tablished by Banach's �xed point theorem. We also de�ne and study the Ulam-Hyers stability and the
Ulam-Hyers-Rassias stability of mentioned problem. An example is presented to illustrate the main results.
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1. Introduction

Di�erential equations of arbitrary order have recently been studied by many researchers, these equations
will be used to describe phenomena of real world problems. For more details, see the works [2, 14, 21, 27] and
the references therein. Many interesting and important area concerning of research for di�erential equations
with fractional calculus are devoted to the existence theory and stability analysis of the solutions, for instance,
for instance, see papers [4, 7, 9, 12, 17, 24]. Recently, several scholars have discussed the existence, uniqueness
and di�erent types of Ulam-stability of solutions for some classes of di�erential equations involving fractional
derivatives, for instance, see [6, 13, 15, 16, 26] and the references cited therein. Considerable attention has
been given to the study of the existence, uniqueness and Ulam stability of solutions for sequential fractional
di�erential equations, we refer the reader to the monographs [20, 22, 29] and the reference therein. In the
present work, we shall be concerned with a very special delay di�erential equation that has many applications
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in di�erent �elds of pure and applied mathematics. The equation is called pantograph equation. For more
information and some applications on pantograph equation, we refer the reader to the works [8, 10, 11, 23].
It is to note that the standard form of pantograph equation has the form

u
′
(t) = Au (t) +Bu (ηt) , t ∈ [0, T ] , 0 < η < 1,

u (0) = u0.

In recent years, many researchers have discussed the existence, uniqueness and di�erent types of Ulam-Hyers
stability of the above equation, For more details, see the monographs [1, 3, 18, 25, 28] and the references
therein. In [5] the authors considered the following problem of the pantograph type

CDαu (t) = ϕ (t, u (t) , u (ηt)) , t ∈ [0, T ] , 0 < α, η < 1,

u (0) = u0,

where CDq is the Caputo fractional derivative. The uniqueness results were obtained by applying Banach's
contraction mapping principle. In this paper, we discuss the uniqueness, Ulam-Hyers stability and Ulam-
Hyers-Rassias stability of solutions for the following sequential fractional pantograph equation[

Dα + kDβ
]
u (t) = ϕ

(
t, u (t) , u (ηt) , Dβu (ηt)

)
, t ∈ [0, T ] , (1)

under the conditions
u (0) = f (u) , u (T ) = θ, θ ∈ R, (2)

where k ∈ R+, 0 < η < 1, 1 < α ≤ 2, 0 < β ≤ 1, Dα, Dβ are the Caputo type fractional derivatives,
ϕ : [0, T ]×R×R×R → R and f : C ([0, T ] ,R) → R are given continuous functions. The operator Dϑ is the
fractional derivative in the sense of Caputo, de�ned by

Dϑφ (t) =
1

Γ (n− ϑ)

∫ t

0
(t− s)n−ϑ−1 φ(n) (s) ds

= Jn−ϑφ(n) (t) , t > 0, n− 1 < ϑ < n, n ∈ N∗,

and the Riemann-Liouville fractional integral of order ϑ > 0, de�ned by

Jϑφ (t) =
1

Γ (ϑ)

∫ t

0
(t− s)ϑ−1 φ (s) ds, t > 0,

where Γ (ϑ) =
∫∞
0 e−uxϑ−1dx.

Now, we give the following lemmas [19, 21]:

Lemma 1.1. Let m, s > 0, φ ∈ L1([a, b]). Then J
mJsφ(t) = Jm+sφ(t), DsJsφ(t) = φ(t), t ∈ [a, b] .

Lemma 1.2. Let s > m > 0, φ ∈ L1([a, b]). Then D
mJsφ(t) = Js−mφ(t), t ∈ [a, b] .

Also we give the following lemmas [19]:

Lemma 1.3. For ϑ > 0, the general solution of the fractional di�erential equation Dϑu (t) = 0 is given by

u (t) =

n−1∑
i=0

cit
i,

where ci ∈ R, i = 0, 1, 2, .., n− 1, n = [ϑ] + 1.
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Lemma 1.4. Let ϑ > 0. Then

JϑDϑu (t) = u (t) +
n−1∑
i=0

cit
i,

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [ϑ] + 1.

Let us now de�ne the space W =
{
u : u ∈ C ([0, T ] ,R) , Dβu ∈ C ([0, T ] ,R)

}
equipped, with the norm

∥u∥W = 2 ∥u∥+
∥∥Dβu

∥∥ , where
∥u∥ = sup

t∈[0,T ]
|u (t)| and

∥∥∥Dβu
∥∥∥ = sup

t∈[0,T ]

∣∣∣Dβu (t)
∣∣∣ .

It is clear that (W, ∥u∥W ) is a Banach space.

In that follows, we present the Ulam stability for the sequential fractional pantograph di�erential equa-
tions (1).

De�nition 1.5. The sequential fractional pantograph di�erential equations (1) is Ulam-Hyers stable if there

exists a real number λϕ > 0 such that for each µ > 0 and for each solution v ∈W of the inequality∣∣∣[Dα + kDβ
]
v (t)− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)∣∣∣ ≤ µ, t ∈ [0, T ] , (3)

there exists a solution u ∈W of the sequential fractional pantograph di�erential equations (1) with

|v (t)− u (t)| ≤ λϕµ, t ∈ [0, T ] .

De�nition 1.6. The sequential fractional pantograph di�erential equations (1) is generalized Ulam-Hyers

stable if there exists gϕ ∈ C(R+,R+), gϕ (0) = 0, such that for each solution v ∈ W of the inequality (3),

there exists a solution u ∈W of the sequential fractional pantograph di�erential equations (1) with

|v (t)− u (t)| ≤ gϕ (µ) , t ∈ [0, T ] .

De�nition 1.7. The sequential fractional pantograph di�erential equations (1) is Ulam-Hyers-Rassias stable

with respect to h ∈ W if there exists a real number λφ > 0 such that for each µ > 0 and for each solution

v ∈W of the inequality∣∣∣[Dα + kDβ
]
v (t)− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)∣∣∣ ≤ µh (t) , t ∈ [0, T ] , (4)

there exists a solution u ∈W of sequential fractional pantograph di�erential equations (1) with

|v (t)− u (t)| ≤ λφµh (t) , t ∈ [0, T ] .

De�nition 1.8. The sequential fractional pantograph di�erential equations (1) is generalized Ulam-Hyers-

Rassias stable with respect to h ∈ C (J,R+) if there exists a real number λϕ,h > 0 such that for each solution

v ∈W of the inequality∣∣∣[Dα + kDβ
]
v (t)− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)∣∣∣ ≤ h (t) , t ∈ [0, T ] , (5)

there exists a solution u ∈W of the sequential fractional pantograph di�erential equations (1) with

|v (t)− u (t)| ≤ λϕ,hh (t) , t ∈ [0, T ] .

Remark 1.9. A function v ∈ W is a solution of the inequality (3) if and only if there exists a function

ψ : [0, T ] → R (which depend on v) such that

(1) : |ψ (t)| ≤ µ, t ∈ [0, T ] .
(2) :

[
Dα + kDβ

]
v (t) = ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)
+ ψ (t) , t ∈ [0, T ] .
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2. Main Results

We prove the following auxiliary lemma which is pivotal to de�ne the solution for the problem (1)-(2).

Lemma 2.1. Suppose that h ∈ C ([0, T ] , R) and consider the problem

[
Dα + kDβ

]
u (t) = h (t) , t ∈ [0, T ] ,

u (0) = f (u) , u (T ) = θ, θ ∈ R,

k > 0, 1 < α ≤ 2, 0 < β ≤ 1.

(6)

Then, we have

u (t) =
1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx

− k

Γ (α− β)

∫ t

0
(t− x)α−β−1 u (x) dx (7)

+
tα−β

Tα−β

[
θ − 1

Γ (α− β)

∫ T

0
(T − x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx

+
k

Γ (α− β)

∫ T

0
(T − x)α−β−1 u (x) dx

]
−
[
tα−β

Tα−β
− 1

]
f (u) .

Proof. We have [
Dα + kDβ

]
u (t) = h (t) . (8)

Now, writing the linear sequential fractional pantograph di�erential equation in (8) as

Dβ
[
Dα−β + k

]
u (t) = h (t) . (9)

By taking the Riemann-Liouville fractional integral of order β for (9), we get

u (t) =
1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx

− k

Γ (α− β)

∫ t

0
(t− x)α−β−1 u (x) dx+

tα−β

Γ (α− β + 1)
c0 + d0, (10)

where c0 and d0 are arbitrary constants. By the boundary condition u (0) = f (u), we conclude that
d0 = f (u).

Using the boundary condition u (T ) = θ, we obtain that

c0 =
Γ (α− β + 1)

Tα−β

[
θ − 1

Γ (α− β)

∫ T

0
(T − x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx

+
k

Γ (α− β)

∫ T

0
(T − x)α−β−1 u (x) dx− f (u)

]
. (11)

Substituting the values of c0 and c1 in (10), we obtain the solution (7). This completes the proof.
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In view of Lemma 2.1, we de�ne the operator O :W →W by:

Ou (t) =
1

Γ (α− β)

∫ t

0
(t− x)α−β−1 (12)

×
(

1

Γ (β)

∫ x

0
(x− s)β−1 ϕ

(
t, u (s) , u (ηs) , Dβu (ηs)

)
ds

)
dx

− k

Γ (α− β)

∫ t

0
(t− x)α−β−1 u (x) dx

+
tα−β

Tα−β

[
θ − 1

Γ (α− β)

∫ T

0
(T − x)α−β−1

×
(

1

Γ (β)

∫ x

0
(x− s)β−1 ϕ

(
s, u (s) , u (ηs) , Dβu (ηs)

)
ds

)
dx

+
k

Γ (α− β)

∫ T

0
(T − x)α−β−1 u (x) dx

]
−
[
tα−β

Tα−β
− 1

]
f (u) .

In the sequel, we need the following hypotheses:

(H1) : ϕ : J × R× R× R → R is continuous function and there exists nonnegative constant ω such that
for all t ∈ [0, 1] and yi, zi ∈ R (i = 1, 2, 3) ,

|ϕ (t, y1, y2, y3)− ϕ (t, z1, z2, z3)| ≤ ω (|t1 − z1|+ |y2 − z2|+ |y3 − z3|) .

(H2) : f : C ([0, T ] ,R) → R is a continuous function with f(0) = 0 and there exists constant ϖ > 0 such
that

|f (u)− f (v)| ≤ ϖ ∥u− v∥ , ∀u, v ∈ C ([0, T ] ,R) .

For convenience, we de�ne:

∇0 : =
ωTα

Γ (α+ 1)
+

kTα

Γ (α− β + 1)
+ϖ, (13)

∇1 : =
ωTα−1

Γ (α)
+

(α− β)ωTα−1

Γ (α+ 1)
+
kTα−β−1

Γ (α− β)
+

(α− β) kTα−β−1

Γ (α− β + 1)
+
ϖ (α− β)

Tα
,

Π0 : =
2TαL

Γ (α+ 1)
+ |θ| , Π1 =

(α− β)

Tα
|θ| .

2.1. Existence and uniqueness of solution

The result is concerned with the existence and uniqueness of the solution for the problem (1)-(2 and is
based on Banach's �xed point theorem.

Theorem 2.2. Assume that (H1) and (H2) hold. If the inequality

∇1T
1−β < Γ (2− β) (1− 4∇0) , (14)

is valid, then the problem (1)-(2) has a unique solution on [0, T ].

Proof. Let us �x supt∈[0,T ] ϕ (t, 0, 0, 0) = L <∞ and de�ne

r ≥
2Π0 +

2T 1−β

Γ(2−β)Π1

1− 4∇0 − T 1−β

Γ(2−β)∇1

.

We show that OBr ⊂ Br, where O de�ned by (10) and Br = {u ∈W : ∥u∥W ≤ r}.
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For u ∈ Br, we have∣∣∣ϕ(t, u (t) , u (ηt) , Dβu (ηt)
)∣∣∣ (15)

≤
(∣∣∣ϕ(t, u (t) , u (ηt) , Dβu (ηt)

)
− ϕ (t, 0, 0, 0)

∣∣∣+ |φ (t, 0, 0, 0)|
)

(∣∣∣ϕ(t, u (t) , u (ηt) , Dβu (ηt)
)
− ϕ (t, 0, 0, 0)

∣∣∣)+ |φ (t, 0, 0, 0)|

≤ ω
(
|u (t)|+ |u (ηt)|+

∣∣∣Dβu (t)
∣∣∣)+ L ≤ ω

(
2 ∥u∥+

∥∥∥Dβu
∥∥∥)+ L

≤ ω ∥u∥W +N ≤ ωr + L,

and
|f (u)| ≤ ϖ ∥u∥ ≤ ϖ ∥u∥W ≤ ϖr. (16)

It follows from (15) and (16), that

|Ou (t)| ≤ 1

Γ (α− β)

∫ t

0
(t− x)α−β−1 (17)

×
(

1

Γ (β)

∫ x

0
(x− s)β−1

∣∣∣ϕ(t, u (s) , u (ηs) , Dβu (ηs)
)∣∣∣ ds) dx

+
k

Γ (α− β)

∫ t

0
(t− x)α−β−1 |u (x)| dx

+
tα−β

Tα−β

[
|θ|+ 1

Γ (α− β)

∫ T

0
(T − x)α−β−1

×
(

1

Γ (β)

∫ x

0
(x− s)β−1

∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)
)∣∣∣ ds) dx

+
k

Γ (α− β)

∫ T

0
(T − x)α−β−1 |u (x)| dx

]
+

∣∣∣∣ tα−β

Tα−β
− 1

∣∣∣∣ |f (u)|
≤ 2

(
ωTα

Γ (α+ 1)
+

kTα−β

Γ (α− β + 1)
+ϖ

)
r + 2

(
TαL

Γ (α+ 1)

)
+ |θ| .

= 2∇0r +Π0.
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On the other hand, we have∣∣∣O (u)
′
(t)

∣∣∣ ≤ 1

Γ (α− β − 1)

∫ t

0
(t− x)α−β−2 (18)(

1

Γ (β)

∫ x

0
(x− s)β−1

∣∣∣ϕ(t, u (s) , u (ηs) , Dβu (ηs)
)∣∣∣ ds) dx

+
k

Γ (α− β − 1)

∫ t

0
(t− x)α−β−2 |u (x)| dx

+
(α− β) tα−β−1

Tα−β

[
|θ|+ 1

Γ (α− β)

∫ T

0
(T − x)α−β−1(

1

Γ (β)

∫ x

0
(x− s)β−1

∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)
)∣∣∣ ds) dx

+
k

Γ (α− β)

∫ T

0
(T − x)α−β−1 |u (x)| dx

]
+

(α− β) tα−β−1

Tα−β
|f (u)|

≤
(
ωTα−1

Γ (α)
+

(α− β)ωTα

Γ (α+ 1)
+
kTα−β−1

Γ (α− β)
+

(α− β) kTα−β−1

Γ (α− β + 1)

+
ϖ (α− β)

Tα

)
r +

(α− β)

Tα
|θ|

= ∇1r +Π1,

which implies that ∣∣∣DβOu (t)
∣∣∣ ≤ ∫ t

0

(t− s)−β

Γ (1− β)

∣∣∣O (u)
′
(t)

∣∣∣ ds ≤ T 1−β

Γ (2− β)
(∇1r +Π1) . (19)

Thus

∥Ou∥W = 2 ∥Ou∥+
∥∥∥DβOu

∥∥∥ (20)

≤
(
4∇0 +

T 1−β

Γ (2− β)
∇1

)
r + 2Π0 +

T 1−β

Γ (2− β)
Π1 ≤ r,

which implies that OBr ⊂ Br. Now for u, v ∈ Br and for all t ∈ [0, T ], we obtain

|Ou (t)−Ov (t)| (21)

≤ 1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)

)
− ϕ

(
s, v (s) , v (ηs) , Dβv (ηs)

)∣∣∣ ds) dx
+

1

Γ (α− β)

∫ t

0
(t− x)α−β−1 |u (x)− v (x)| dx

+
tα−β

Tα−βΓ (α− β)

∫ T

0
(T − x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)

)
− ϕ

(
s, v (s) , v (ηs) , Dβv (ηs)

)∣∣∣ ds) dx
+

tα−β

Tα−βΓ (α− β)

∫ T

0
(T − x)α−β−1 |u (x)− v (x)| dx+

∣∣∣∣ tα−β

Tα−β
− 1

∣∣∣∣ |f (u)− f (v)|

≤ 2

[
Tαω

Γ (α+ 1)
+

Tα−β

Γ (α− β + 1)
+ϖ

]
∥u− v∥W

= 2∇0 ∥u− v∥W .
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We also have∣∣∣O (u)
′
(t)−O (v)

′
(t)

∣∣∣ (22)

≤ 1

Γ (α− β − 1)

∫ t

0
(t− x)α−β−2

(
1

Γ (β)

∫ x

0
(x− s)β−1∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)

)
− ϕ

(
s, v (s) , v (ηs) , Dβv (ηs)

)∣∣∣ ds) dx
+

1

Γ (α− β − 1)

∫ t

0
(t− x)α−β−2 |u (x)− v (x)| dx

+
(α− β) tα−β−1

Tα−βΓ (α− β)

∫ T

0
(T − x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1∣∣∣ϕ(s, u (s) , u (ηs) , Dβu (ηs)

)
− ϕ

(
s, v (s) , v (ηs) , Dβv (ηs)

)∣∣∣ ds) dx
(α− β) tα−β−1

Tα−βΓ (α− β)

∫ T

0
(T − x)α−β−1 |u (x)− v (x)| dx+

(α− β) tα−β

Tα−β
|f (u)− f (v)|

≤
(
ωTα−1

Γ (α)
+

(α− β)ωTα−1

Γ (α+ 1)
+

Tα−β−1

Γ (α− β)
+

(α− β)Tα−β−1

Γ (α− β + 1)

+
ϖ (α− β)

Tα

)
∥u− v∥W

= ∇1 ∥u− v∥W .

Thus we obtain∣∣∣DβOu (t)−DβOv (t)
∣∣∣ ≤

∫ t

0

(t− s)1−(α+β)

Γ (2− α− β)

∣∣∣O (u)
′
(t)−O (v)

′
(t)

∣∣∣ ds
≤ ∇1T

1−β

Γ (2− β)
∥u− v∥W . (23)

From the above inequalities, we get

∥Ou−Ov∥W = 2 ∥Ou−Ov∥+
∥∥∥DβOu−DβOv

∥∥∥
≤

(
4∇0 +

∇1T
1−β

Γ (2− β)

)
∥u− v∥W . (24)

By (14), we see that O is a contractive operator. Consequently, by the Banach �xed point theorem, O has
a �xed point which is a solution of system (1)-(2). This completes the proof.

2.2. Ulam-Hyers-Rassias stability

In the following section, we will study Ulam's type stability of the sequential fractional pantograph
di�erential equations (1).

Theorem 2.3. Assume that ϕ : [0, T ]× R× R× R → R is a continuous function satisfying (H1). If

kTα−β

Γ(α− β + 1)
< 1− ωTα

Γ (α+ 1)
. (25)

Then the sequential fractional pantograph di�erential equations (1) is Ulam-Hyers stable and consequently,

generalized Ulam-Hyers stable.

Proof. Let v ∈W be a solution of the inequality (3), i.e.∣∣∣[Dα + kDβ
]
v (t)− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)∣∣∣ ≤ µ, t ∈ [0, T ] ,
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and let us denote by u ∈W the unique solution of the problem[
Dα + kDβ

]
u (t) = ϕ

(
t, u (t) , u (ηt) , Dβu (ηt)

)
, k > 0, t ∈ [0, T ] , 0 < η < 1,

u (0) = v (0) , u (T ) = v (T ) .

Thanks to Lemma 2.1, we can write

u (t) = Iα−β
[
Iβh (t)

]
− kIα−βu (t) + c0

tα−β

Γ (α− β + 1)
+ d0.

By integration of the inequality (3), we obtain∣∣∣∣v (t)− Iα−β
[
Iβhv (t)

]
− kIα−βv (t)− c1

tα−β

Γ (α− β + 1)
− d1

∣∣∣∣
≤ µtα

Γ (α+ 1)
≤ µTα

Γ (α+ 1)
, (26)

where
hv (t) = ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)
. (27)

On the other hand, if u (0) = v (0) and u (T ) = v (T ), then

c0 = c1 and d0 = d1.

For any t ∈ [0, T ] , we have

v (t)− u (t) = v (t)− Iα−β
[
Iβhu (t)

]
− kIα−βv (t)− c1

tα−β

Γ (α− β + 1)
− d1

+Iα−β
[
Iβ (hv(t)− hu(t))

]
− kIα−β (v (t)− u (t)) , (28)

where
hu (t) = ϕ

(
t, u (t) , u (ηt) , Dβu (ηt)

)
, (29)

then

Iα−β
[
Iβ (hv(t)− hu(t))

]
(30)

= Iα−β
[
Iβ

(
ϕ
(
t, u (t) , u (ηt) , Dβu (ηt)

)
− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

))]
=

1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 ϕ

(
t, u (t) , u (ηt) , Dβu (ηt)

)
−ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)
ds
)
dx.

By (H1), we can write

Iα−β
[
Iβ (hv(t)− hu(t))

]
(31)

≤ 1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 ω ∥v(s)− u(s)∥W ds

)
dx.
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Using (31), we get

|v (t)− u (t)| ≤
∣∣∣∣v (t)− Iα−β

[
Iβhu (t)

]
− kIα−βv (t)− c1

tα−β

Γ (α− β + 1)
− d1

∣∣∣∣
+

ω

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 ∥v(s)− u(s)∥W ds

)
dx

+
k

Γ (α− β)

∫ t

0
(t− s)α−β−1 ∥v(s)− u(s)∥W ds. (32)

Hence,

|v (t)− u (t)| ≤ µTα

Γ (α+ 1)
+

(
ωTα

Γ (α+ 1)
+

kTα−β

Γ(α− β + 1)

)
∥v(s)− u(s)∥W . (33)

Then

∥v(s)− u(s)∥W
[
1−

(
ωTα

Γ (α+ 1)
+

kTα−β

Γ(α− β + 1)

)]
≤ µTα

Γ (α+ 1)
. (34)

For each t ∈ [0, T ]

∥u (t)− v (t)∥ ≤ Tα

Γ (α+ 1)
[
1−

(
ωTα

Γ(α+1) +
kTα−β

Γ(α−β+1)

)]µ := λϕµ. (35)

Therefore, the sequential fractional pantograph di�erential equations (1) is Ulam-Hyers stable. By tak-
ing gϕ (σ) = λϕµ, gϕ (0) = 0 yields that the sequential fractional pantograph di�erential equations (1) is
generalized Ulam-Hyers stable.

Now, we will study Ulam-Hyers-Rassias stability of the sequential fractional pantograph di�erential equa-
tions (1).

Theorem 2.4. Let φ : [0, T ] × R × R × R → R be a continuous function and suppose that (H1) and (25)

hold. In addition, the following hypothesis holds

(H3) : There exists an function h ∈ C([0, T ] ,R+) and there exists πh > 0 such that for any t ∈ [0, T ]

1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx ≤ πhh(t).

Then the sequential fractional pantograph di�erential equations (1) is Ulam-Hyers-Rassias stable.

Proof. Let us denote by v ∈W the solution of the inequality (4), i.e.∣∣∣[Dα + kDβ
]
v (t)− ϕ

(
t, v (t) , v (ηt) , Dβv (ηt)

)∣∣∣ ≤ µh (t) , t ∈ [0, T ] .

Let u ∈W be a the unique solution of the problem[
Dα + kDβ

]
u (t) = ϕ

(
t, u (t) , u (ηt) , Dβu (ηt)

)
, k > 0, t ∈ [0, T ] , 0 < η < 1,

u (0) = v (0) , u (T ) = v (T ) .

Applying Lemma 2.1, we get

u (t) = Iα−β
[
Iβh (t)

]
− kIα−βu (t) + c0

tα−β

Γ (α− β + 1)
+ d0.
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Integrating the inequality (4), we can state that∣∣∣∣v (t)− Iα−β
[
Iβhv (t)

]
− kIα−βv (t)− c1

tα−β

Γ (α− β + 1)
− d1

∣∣∣∣ (36)

≤ µ

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx,

where hv (t) is given by (27).
So, by (H1), we obtain

|v (t)− u (t)| ≤ µ

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx

+
1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 ∥v(s)− u(s)∥W ds

)
dx

+
k

Γ (α− β)

∫ t

0
(t− s)α−β−1 ∥v(s)− u(s)∥W ds. (37)

Now, using (H3), we have

|v (t)− u (t)| ≤ µπhh(t) +

(
ωTα

Γ (α+ 1)
+

kTα−β

Γ(α− β + 1)

)
∥v(s)− u(s)∥W , (38)

which implies that

∥v(s)− u(s)∥
[
1− ωTα

Γ (α+ 1)
− kTα−β

Γ(α− β + 1)

]
≤ µπhh(t). (39)

For any t ∈ [0, T ] , we have

∥u (t)− v (t)∥ ≤

[
πh

1− ωTα

Γ(α+1) −
kTα−β

Γ(α−β+1)

]
µh(t) := λϕµh(t). (40)

Then, the fractional boundary value problem (1) is Ulam-Hyers-Rassias stable.

3. An example

To illustrate our main results, we treat the following example.

Example 3.1. Let us consider the following fractional boundary value problem

(
D

5
3 + 1

10D
3
4

)
u (t) = 1

2.202π
sin (2πu (t)) + 1

202
sin (t)u

(
1
2 t
)

+ 1
202
D

3
4u

(
1
2 t
)
+ 5

23 , t ∈ [0, 1] ,

x (0) = 1
60 tan

−1 u (t) , u (1) = 7
5 .

(41)

For this example, we have

φ (t, u, v, w) =
1

2.202π
sin (2πu) +

1

202
sin (t)u

+
1

202
w +

5

23
, t ∈ [0, 1] ,

and

f (u) =
1

60
tan−1 u.
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So, for any (u1, u2, u3) , (v1, v2, v3) ∈ R3 and t ∈ [0, 1] , we can write

|φ (t, u1, v1, w1)− φ (t, u2, v2, w2)| ≤
1

202
(|u1 − v1|+ |u2 − v2|+ |u3 − v3|) .

Hence the condition (H1) holds with ω = 1
202
. Also for all u, v ∈ C ([0, 1] ,R) , we have

|f (u)− f (v)| ≤ 1

60
|u− v| .

So, (H2) is satis�ed with ϖ = 1
60 .

For α = 5
3 , β = 3

4 , k = 1
10 , T = 1 and η = 1

2 , we have

∇0 = 0.121 68, ∇1 = 0.209 05.

Using the given data, we �nd that

∇1T
1−β

Γ (2− β)
= 0.230 64 < 1− 4∇0 = 0.513 2.

Hence by Theorem 11, the problem (41) has a unique solution.

Also, we have
kTα−β

Γ(α− β + 1)
= 0.103 35 < 1− ωTα

Γ (α+ 1)
= 0.998 34.

Then, all the hypotheses of Theorem 12 are satis�ed. Thus, by the conclusion of Theorem 12, problem (41)

is Ulam-Hyers stable.

Let h (t) = γt2, γ ∈ R. We have

1

Γ (α− β)

∫ t

0
(t− x)α−β−1

(
1

Γ (β)

∫ x

0
(x− s)β−1 h (s) ds

)
dx ≤ 2γ

Γ
(
14
3

) t2 = πhh(t).

Thus condition (H3) is satis�ed with h (t) = γt2 and πh = 2γ

Γ( 14
3 )
. It follows from Theorem 13 problem (41)

is Ulam-Hyers-Rassias stable.

4. Conclusion

In this work, we have discussed the uniqueness and di�erent types of Ulam-stability of solutions for
sequential fractional pantograph di�erential equations with nonlocal boundary conditions. We have establish
the uniqueness results applying the Banach contraction principle. Also, we have proved di�erent types of
Ulam stability results including Ulam-Hyers stability, generalized Ulam-Hyers stability and Ulam-Hyers-
Rassias. For justi�cation, a numerical example has been given to illustrate our main results.
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