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Abstract

In the current manuscript, we study the uniqueness and Ulam-stability of solutions for sequential fractional
pantograph differential equations with nonlocal boundary conditions. The uniqueness of solutions is es-
tablished by Banach’s fixed point theorem. We also define and study the Ulam-Hyers stability and the
Ulam-Hyers-Rassias stability of mentioned problem. An example is presented to illustrate the main results.
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1. Introduction

Differential equations of arbitrary order have recently been studied by many researchers, these equations
will be used to describe phenomena of real world problems. For more details, see the works [2] [14], 21| 27] and
the references therein. Many interesting and important area concerning of research for differential equations
with fractional calculus are devoted to the existence theory and stability analysis of the solutions, for instance,
for instance, see papers [4],[7, 9], 12, 17, 24]. Recently, several scholars have discussed the existence, uniqueness
and different types of Ulam-stability of solutions for some classes of differential equations involving fractional
derivatives, for instance, see [6l, 13| 15} 16, 26] and the references cited therein. Considerable attention has
been given to the study of the existence, uniqueness and Ulam stability of solutions for sequential fractional
differential equations, we refer the reader to the monographs [20] 22, 29] and the reference therein. In the
present work, we shall be concerned with a very special delay differential equation that has many applications
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in different fields of pure and applied mathematics. The equation is called pantograph equation. For more
information and some applications on pantograph equation, we refer the reader to the works [8| 10} 11} 23].
It is to note that the standard form of pantograph equation has the form

u (t) = Au (t) + Bu(nt), t €[0,T], 0 <n <1,

u (0) = uo.

In recent years, many researchers have discussed the existence, uniqueness and different types of Ulam-Hyers
stability of the above equation, For more details, see the monographs [II, [, 18] 25, 28] and the references
therein. In [5] the authors considered the following problem of the pantograph type

DY () = ¢ (t,u(t),u(nt)),t €[0,T], 0<a,n <1,
u (0) = uo,

where © D9 is the Caputo fractional derivative. The uniqueness results were obtained by applying Banach’s
contraction mapping principle. In this paper, we discuss the uniqueness, Ulam-Hyers stability and Ulam-
Hyers-Rassias stability of solutions for the following sequential fractional pantograph equation

D+ kD | u(t) = 6 (L u(t),u(nt), DPulnt)) ¢ € 0,7, (1)

under the conditions
0)=f(u), u(l)=0, 0eR, (2)

u
where k € RTY,0 < n < 1,1 < a < 2,0 < f < 1, D% D? are the Caputo type fractional derivatives,
¢:[0,T]xRxRxR — Rand f:C([0,T],R) — R are given continuous functions. The operator D? is the
fractional derivative in the sense of Caputo, defined by

1 t
D'p(t) = ——— t— )"0 ) d
o) = gy | =TT (s
= J"PM @) t>0,n—1<9<n, neN*
and the Riemann-Liouville fractional integral of order ¥ > 0, defined by

1

JVp(t) = W/o (t—5)"" o (s)ds,t >0,

where T (¢9) = [° e “a?"!da.
Now, we give the following lemmas [19, 21]:
Lemma 1.1. Let m,s >0, p € L1([a,b]). Then J™J5p(t) = J™T5¢(t), D5 J5p(t) = (), t € [a,b].
Lemma 1.2. Let s >m >0, ¢ € Li([a,b]). Then D™ J%p(t) = J* ™(t), t € [a,b].
Also we give the following lemmas [19]:
Lemma 1.3. For ¢ > 0, the general solution of the fractional differential equation DYu (t) = 0 is given by

n—1

u(t) = Z cit!,

=0

where ¢; € R, 1=0,1,2,..,n—1, n =[] + L.
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Lemma 1.4. Let 9 > 0. Then
JD%u(t) = u (1) + Z Gt

for some c; e R, 1 =0,1,2,...n—1,n =[]+ 1.
Let us now define the space W = {u:u € C ([0,T],R),D’u € C([0,T],R)} equipped, with the norm
lully = 2 ||lull + || DPul| , where

lul = sup |u(t)] and HDﬁ H— su ‘Dﬁ ‘
te[0,T) tEOT]

It is clear that (W, ||u|ly,) is a Banach space.

In that follows, we present the Ulam stability for the sequential fractional pantograph differential equa-
tions .

Definition 1.5. The sequential fractional pantograph differential equations 1s Ulam-Hyers stable if there
ewists a real number Ay > 0 such that for each > 0 and for each solution v € W of the inequality

[+ kD% 0 (1) = 6 (t,0(8) 0 (nt) . Do ()| < s, € (0,71, 3)
there ezists a solution u € W of the sequential fractional pantograph differential equations with
[0(6) — u ()] < Agps £ € [0,7].

Definition 1.6. The sequential fractional pantograph differential equations 15 generalized Ulam-Hyers
stable if there exists g4 € C(R4,Ry), g4 (0) = 0, such that for each solution v € W of the inequality (@),
there ezists a solution u € W of the sequential fractional pantograph differential equations with

v (t) —u(t)] < g (u), t€l0,T].

Definition 1.7. The sequential fractional pantograph differential equations 18 Ulam-Hyers-Rassias stable
with respect to h € W if there exists a real number A\, > 0 such that for each p > 0 and for each solution
v e W of the inequality

[P+ kD 0 (1) = 6 (0 (1) 0 (t), Do (1)) | < wh (1), € [0,T1, (4)
there ezists a solution u € W of sequential fractional pantograph differential equations with
[0 (t) = u(t)] < Apph(t), t €0, T].

Definition 1.8. The sequential fractional pantograph differential equations 15 generalized Ulam-Hyers-
Rassias stable with respect to h € C (J,Ry) if there exists a real number Ay, > 0 such that for each solution
v e W of the inequality

[+ kD] 0 (6) = & (.0 (1) v (nt) . DPo () )| < R (1), € 0,71, (5)
there exists a solution uw € W of the sequential fractional pantograph differential equations with
[0 (t) —u @] < Agnh(t), t €[0,T].

Remark 1.9. A function v € W is a solution of the inequality (@ if and only if there exists a function
¥ :[0,T] — R (which depend on v) such that

W) [ (1) < ot € [0.T].

(2) : [D*+ kD) v (t) = 6 (t, 0 (t) v (nt), DPv () + 9 (1), € [0, 7).
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2. Main Results
We prove the following auxiliary lemma which is pivotal to define the solution for the problem —.

Lemma 2.1. Suppose that h € C ([0,T], R) and consider the problem
[DY+ kDPlu(t) =h(t), t 0,77,
u(0)=f(u), u(T)=20,0€cR, (6)
k>0, 1<a<2 0<p<1.

Then, we have

w(t) = I‘(al—ﬁ)/ot (t — 2)* B (1“(1[3)/0 (:U—S)B_lh(s)ds) do

L t — )Py () da
rm—&xﬁ“ ) (x)d (7)

e g [ o (e [ )

Proof. We have
[Da + wﬂ} w(t)=h(t). (8)

Now, writing the linear sequential fractional pantograph differential equation in as
DF [Da—ﬁ n k} w(t) =h(t). 9)

By taking the Riemann-Liouville fractional integral of order 3 for @, we get

w(t) = F(al_ﬁ)/ot (t — 2) B <F(1ﬁ)/o (x—s)ﬁ—lh(s)ds> da

R /t (t— 2P (@) de 4 — ot d (10)
I'(a—5) Jo CEEESTE
where ¢y and dy are arbitrary constants. By the boundary condition w(0) = f(u), we conclude that

do = [ (w).
Using the boundary condition u (T") = 6, we obtain that

- F(QT;B; D [9 - F(al_ 5 /OT (T — 2)o 01 (1“(15) /OZ (@ — )" h(s) ds> do

k T a—pB—1
+I‘(a—ﬁ)/0 (T —x) u(:z)dx—f(u)} (11)

Substituting the values of ¢ and ¢; in (L0]), we obtain the solution (7). This completes the proof.
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In view of Lemma 2.1, we define the operator O : W — W by:

Oult) = I‘(al—ﬁ)/o (t — )2 F1 (12)

X <F(16) /Ox (2= )"0 (t.u () u(ns) . DPu (ns)) ds) do

L t —2)* Py (2) da
e S (2)d

to—B 1 T o Bl
3 |-t , @9

« <F(15) /Ox (256 (s,u(s) . u(ns), DPu () ds) do
+ F(ak_ﬁ)/oT(T—x)a_ﬁ_lu(x)dx] - [ﬁjﬁq] f(u).

In the sequel, we need the following hypotheses:

(Hy): ¢:J xR xR xR — R is continuous function and there exists nonnegative constant w such that
for all t € [0,1] and y;, z; € R (1 =1,2,3),

|¢(t7y17y27y3) - (rb(t? Z17Z27Z3)’ < W(|t1 - Zl| + ‘y2 - 22‘ + ’y?’ - 23’) .

(H2): f:C([0,7],R) — R is a continuous function with f(0) = 0 and there exists constant @ > 0 such
that

|f (u) = f(v)| €@ [lu—o], Vu,v € C([0,T],R).
For convenience, we define:

wl® kT

Vo i Tran) " Tagrn @ (13)
Wt (a=B)wTt kTP (o= B)ETOTPT w(a— )

Vi ST T Tt T Tla-pgrn T 1w
o 2TL _ (a—5)

HO = T(a+1) +’0|7 Hl_ To ’0’

2.1. Existence and uniqueness of solution

The result is concerned with the existence and uniqueness of the solution for the problem — and is
based on Banach’s fixed point theorem.

Theorem 2.2. Assume that (Hy) and (Ha) hold. If the inequalily
ViTY P <T(2-5) (1 —4V), (14)
1s valid, then the problem —(@ has a unique solution on [0,T].

Proof. Let us fix sup;cpo) ¢ (¢,0,0,0) = L < oo and define

oy + 22211,
s [27)

- T1-8 .
1 - 4V0 - mVl

We show that OB, C B,, where O defined by and B, = {fue W : ||lully, <}
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For u € B,, we have
o (tut),u ) (15)
< (‘qb(t,U(t (1)) = 6 (£,0,0,0)| + [ (£,0,0,0)])
(‘¢(tu (1)) — qﬁtoooDHgo(tooon
< w(Ju )]+ u(m)| + ‘Dﬁ 0]) + L <w (2lull+ | D) + 2
< wlully + N <wr+ L,
and
|f (w)| < @ |lull <@ |ully < or (16)
It follows from and , that
1 t
Ou(t)| < / R 17
[Ou (t)] F(a—ﬁ)o( ) (17)

X <F(15) /033 (z— )Pt ‘d) (t,u(s) .u(ns), DPu (775)) ‘ ds> dx
+F(ak_5)/0 (t—x)a5;|u(x)|dm
X <F(15) /Ow (z —s)°7! ‘gb (s,u(s) ,u(ns), DPu(ns )‘ds) dx

+F(ak_ﬂ>/0T(T—x)a_ﬁ_l\u(x)|dx} o B—l'lf

2< I + KT +w)r+2(TQL >+\6\
F'a+1l) T(a—-pg+1) I'(a+1) ’

= 2Vor + 1.

IN
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On the other hand, we have
/ 1 ¢
O (u) (¢ </ t— x)* P2 18
W 0] < fams=g | €= (18)

<F(15> /0 Chal ‘¢ (t’ u(s),u(ns), D’u (n8)> \ ds) d

ke a2 1 ) de
o [ e @)l

o — a—pB—1 T
e e, O

+
<I’() /Oz (x — s)’Bfl ‘qﬁ (s,u (s),u(ns) , DBy (7]5)) ) ds> dx
+
(

BT ampe (=gt
o | @ |+ R )
wl*'  (a—pwT*  ET* P71 (a—B)kT* P!

I'(a) I'(a+1) I'(a—p) F'(a—pB+1)

+_ﬁ7(0{—>5)> r+ 01%; )’9|

= VHT‘%IIh
which implies that

‘Dﬁou (t)‘ < /Ot ;t(_l 8_);; ‘O (u) (t)’ ds < F(j;_ﬁﬁ) (Vir+11) . (19)
Thus
[0uly = 2]0u] +||DPOu| (20)
< <4V0 + F(j;l_ﬁﬁ)v1> r 4+ 211p + F(I;_ﬂﬁ)ﬂl <
which implies that OB, C B,. Now for u,v € B, and for all t € [0, T], we obtain
|Ou (t) — Ov (t)] (21)

IN

T ACE CoY et
’gb (s,u (s),u(ns) , D"y (ns)) — ¢ (s,v (s),v(ns) , Dy (ns)) ’ ds) dx

1 t — )P u(2) — v (2)| da
s | o @) e @)

a=p T 1 * _
e, T (g ) e
’gb <s,u (s),u(ns), DPu (773)) -9 (s,v (s),v(ns), D (ns)) ’ ds) dx

a—p T a—p
e ), T @) — v @)+ s =1 1 ) = f o)
T w TP
= [F(a—i—l) "Tla-p+1) J””} = vllw

= 2Vqlju— UHW .
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We also have

oW (1) -0 () (22)

< w0 (g [ e

r
6 (s,u(s),u(ms), DPu(ns)) =6 (5.0 (s) v (ns), D70 (s) )| ds) da
1

(

_— t —2)¥ P2y (2) — v (2)| dx
o 0 ) — v @)

o BB [T . )
+(Taﬁf“)(ta_5;/o (Tﬂﬂ)aﬁl(F(l)/ (z—s)"
6 (s.u(s). u(ns) DPuns)) — o (5.0(5).v (1), D% (ns) ) | ds)

o — a—pB—1 T - a—F
e @ ) —o@lde+ C T @ - £ ()
wl*t  (a—B)wT* ! To—B-1 (a — B) T A1
( T(@) © T(atl) T@-p5 T-5+1)
+ 2 ol
= Vifu— vl

Thus we obtain

t(t_s (a+8) ,
DﬁOu(t)—DﬁOv(t)‘ < /0 M‘o () — 0 (v) (t)] ds
Vi T
< ﬁ”“‘””w- (23)

From the above inequalities, we get

10w —Ovlly, = 2]0u—Ov|| + HDﬁou - DﬁovH

VlTl_ >
< | 4Vo+ — | [lu— vy - 24
(490 + r5 =5 ) Bl (29
By , we see that O is a contractive operator. Consequently, by the Banach fixed point theorem, O has
a fixed point which is a solution of system (1)-(2). This completes the proof. O

2.2. Ulam-Hyers-Rassias stability

In the following section, we will study Ulam’s type stability of the sequential fractional pantograph
differential equations .

Theorem 2.3. Assume that ¢ : [0,7] x R x R x R — R is a continuous function satisfying (Hi). If

kTo—5 wT™

Ma—f+1) ' TlatD) (25)

Then the sequential fractional pantograph differential equations 1s Ulam-Hyers stable and consequently,
generalized Ulam-Hyers stable.

Proof. Let v € W be a solution of the inequality , ie.

HD“—i—kDﬁ} v (t) —<z5(t,v(t),v(nt),D’BU(nt))) <u,tel0,T],
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and let us denote by u € W the unique solution of the problem
[DO‘ +/<:DB} u(t) = ¢ (t,u(t),u(nt),Dﬁu(nt)) ,k>0,t€1]0,7T],0<n<1,
u(0) = v(0), u(T)=v(T).
Thanks to Lemma 2.1, we can write
a—p
w(t) = 1°7P [Iﬁh (t)} — kIO Pu () + cor(at_M + do.
By integration of the inequality , we obtain
_ a8 kI Py (1) — A
v(t)— I [1 he (t)} BP0 (0) ey~
pt” pwI
S Tla+D “T(atl) (26)
where
ho (8) = & (0 (6), v (nt), D% () ) (27)
On the other hand, if v (0) = v (0) and u (T') = v (T'), then
Co = C1 and do = dl.
For any t € [0,T], we have
a—p
v(t)—ut) = wv(t)— 19" [Iﬂhu (t)} kI Py (F) — cll“(at—M —d
1P 12 (ho(9) = hu(8))] = K1 (0 (8) — (). (28)
where
P (t) = 6 (1 (0) s u(nt) , D7u(nt)) (29)
then
1978 (17 (h() = ha()] (30)
= 12717 (o (tu () u (o), DPu ) ) = 6 (1,0(8) 0 (), D (1)) )|
__ 1 ' ap-1( 1 [7 B-1 8
_F(a—ﬁ)/o (t—x) <F(5)/0 (z —s) qb(tau(t)au(nt)aD U(Wt))
— (t, v(t),v(nt), D% (nt)) ds) dx.
By (H1), we can write
1" [Iﬁ (ho(t) — hu(t))} (31)

< o [ (g [ e et~ wls)ly ds)
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Using , we get
a—p3
@) —u®] < [o() 177 [Phy (1)] ~ k1P (t)—qr(at_M—dl
v t —p) AL L J:x—sﬁ_lvs—us s | dx
b | -0 (g [ = ) — ol ds)
L t — ) P u(s) — u(s s
g 9 ) )l s (32)
Hence, 5
wre wT KT~
0O w0l < s+ (o * T gy ) 106~ o) (33)
Then - et -
w « o— /1/ (67
[os) = uls)lw [1_ <F(a+1) + I‘(a—ﬁ—l—l))} *TlatD) (34)
For each ¢ € [0,T]
Ju(t) = v (1)) < = (35)

= Ay L.
(e e |

Therefore, the sequential fractional pantograph differential equations is Ulam-Hyers stable. By tak-
ing g (0) = Appt, g (0) = 0 yields that the sequential fractional pantograph differential equations is

generalized Ulam-Hyers stable.

O

Now, we will study Ulam-Hyers-Rassias stability of the sequential fractional pantograph differential equa-

tions ([I)).

Theorem 2.4. Let ¢ : [0,T] x R x R x R — R be a continuous function and suppose that (Hy) and

hold. In addition, the following hypothesis holds

(Hs) : There exists an function h € C([0,T],R4) and there exists m, > 0 such that for any t € [0,T]

r(al—ﬁ) /Ot (t —z)* P71 <r(1ﬁ) /Om (z — )" h(s) ds> dz < mph(t).

Then the sequential fractional pantograph differential equations 15 Ulam-Hyers-Rassias stable.

Proof. Let us denote by v € W the solution of the inequality (4]), i.e.
[+ kD) v (1) = 6 (Lo (®) v (), Do (1) )| < wh (1), € [0,T].

Let uw € W be a the unique solution of the problem

[D%kpﬂu(t) - qs(t,u(t),u(nt),pﬁu(nt)),k>o,te 0,7],0 <75 < 1,

u(0) = v(0), u(T)=v(T).
Applying Lemma 2.1, we get

w(t) = 1978 {Iﬁh(t)} — kI Pu(t) + O e

—(a—,é’—l—l) + dy.
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Integrating the inequality (), we can state that

a—p
— 18| [Bp, — kI8 — e
v (t) [ (t)} BP0 () — e gy (36)
[ (o [ has) d
_— —x — x—s s)ds | dx,
T'(a—5)Jo r(B) Jo
where h, (t) is given by (27).
So, by (Hy), we obtain
() —u() < “/t (t — z)o B! (1 / (= 5) " (s) ds> do
- T(e=8)Jo I'(B) Jo
1 /t a—p-1 < 1 /a: B—1
+—>sx [ (t—2) — | (z—23s) v(s) —u(s)||y ds | dz
Ta—5) Jo TG o | hw
k /t —p-1
e t—s)? v(s) —u(s ds. 37
o= 5) 0( ) [o(s) — u(s)llw (37)
Now, using (H3), we have
wT™ kTP
t)—u(t) < h(t — 38
o0 w0 < imibld) + (o + T e gy ) 1)~ ) (39)
which implies that
wT™ kTP
- 1- - < h(t).
lo(6) = 1= i = T gy | S A (39)
For any t € [0,T], we have
Th
0 (8) = ()] < |~ | #h(t) = Aomh(2). (40)
T T(a+l)  T(a—B+1)
Then, the fractional boundary value problem is Ulam-Hyers-Rassias stable. O
3. An example
To illustrate our main results, we treat the following example.
Example 3.1. Let us consider the following fractional boundary value problem
<Dg + %D%> u(t) = ﬁ sin (27w (t)) + ﬁ sin (¢) u (5¢)
+5Diu (3) + &, te0,1], (41)

For this example, we have

. .
o (t,u, v, w) 7507, St (2mu) + = sin () u
1 5
— —, 1 0,1
toEW ot € 0.1,

and
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So, for any (u1,u2,us), (v1,ve,v3) € R and t € [0,1], we can write

1
lo (t, u1,v1,w1) — @ (t, uz, v2, wa)| < 202 (lur — vi| + |ug — vo| + |us — v3]) .

Hence the condition (Hy) holds with w = 555. Also for all u,v € C ([0,1],R), we have

1
_ < —|u—uvl.
£ )~ f @) < o o]
So, (Ha) is satisfied with © = &5.

Foraz%,ﬁz%,k:%o,T:l andn:%, we have

Vo =0.12168, V;=0.20905.
Using the given data, we find that

VlTl—B
————— =10.23064 <1 —4Vy =0.5132.
I'2-p)

Hence by Theorem the problem has a unique solution.

Also, we have
kTP wT™
—=0.10335 <1 — ——— = 0.998 34.
MNa-p+1) Ma+1)
Then, all the hypotheses of Theorem are satisfied. Thus, by the conclusion of Theorem problem
s Ulam-Hyers stable.

Let h(t) = vt*,v € R. We have

1 t S 1 xx—s’gfl s)ds | dz 2 =
ram 0 (w0 )< i = mate

Thus condition (H3) is satisfied with h(t) = vt* and m), = % It follows from Theoremproblem
3

s Ulam-Hyers-Rassias stable.

4. Conclusion

In this work, we have discussed the uniqueness and different types of Ulam-stability of solutions for
sequential fractional pantograph differential equations with nonlocal boundary conditions. We have establish
the uniqueness results applying the Banach contraction principle. Also, we have proved different types of
Ulam stability results including Ulam-Hyers stability, generalized Ulam-Hyers stability and Ulam-Hyers-
Rassias. For justification, a numerical example has been given to illustrate our main results.
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