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Abstract 
Conference paper 

In high energy physics experiments data quality plays a significant role for particle identification. Methods used in particle analysis are 

mainly based on high level knowledge and complex computation skills of human experts and require long time for data quality assurance. 

Artificial intelligence (AI) applications in various fields are getting important to improve the speed, accuracy and efficiency of human 

efforts. For this purpose, artificial intelligence-based machine learning approach can be used in particle physics analysis. Dielectrons (e-

e+) are electromagnetic probes that provide information about dynamics of the medium formed in high energy collisions due to lack of 

final state interactions. A high purity sample of e-e+ pairs can be obtained by traditional cut-based methods resulting in low efficiency. In 

this contribution, application of machine learning approaches in dielectron analysis is discussed. 
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1 Introduction  
 

The purpose of particle collisions at ultra-relativistic 

energies is to understand the evolution of the universe by 

creating little ‘Big Bang’ under laboratory conditions. 

When two nuclei collide, the nucleons at the collision zone 

interact initially resulting production of high momentum 

particles. The non-interacting particles in the collision 

region begin to thermalize and form dense and hot quark 

and gluon soup, QGP phase. This fireball expands and 

cools down until the chemical freezeout temperature (Tc) 

at which particle species are fixed. At this stage, the 

particles are in the form of partonic and hadronic states [1, 

2, 3]. The medium continues its expansion until the kinetic 

freezeout temperature (Tk) at which the particle yields are 

fixed [1, 2, 3]. In the end of these stages the particles are 

identified by detectors. Dynamics of the medium formed in 

the high energy particle collisions are shown in Figure 1 

[4]. 

 

 
Figure 1. Dynamics of heavy ion collisions [4]. 

1.1 Dielectrons 
 
The medium evolution in high energy collisions may 

be investigated by studying experimental probes which 

provide information about the characteristic features of 

each phase. Dielectrons are electron – positron pairs that 

are the unique tools to study different stages of the 

collisions. Since dielectrons are leptons they do not 

participate in strong interactions resulting lack of medium 

effect on their production. Therefore they can be used to 

probe the inner regions of collisions. In addition, their 

production any stage of the collision makes them a 

significant tool to investigate the whole dynamics of the 

system.  

 

 
Figure 2. The dielectron spectrum in high energy collisions [5]. 
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A schematic view of dielectron mass spectrum with 

corresponding sources in ultra-relativistic heavy-ion 

collisions is represented in Figure 2 [5]. Basic properties of 

the collision medium such as evolution of hadronic matter, 

phase transition and medium temperature can be 

determined by studying spectrum of dielectron pairs. In 

addition, different mass ranges of the distribution are 

sensitive for different stages and physical properties of the 

medium. In the spectrum, higher mass region gives 

information about early stage of the system evolution since 

these pairs are production of virtual photon produced by 

quark – anti quark interactions called Drell-Yan process 

[6]. Quarkonium decays such as J/ and  are other 

sources of the pairs in this region providing information 

about hard scattering process.  Dielectron pairs between 1 

– 3 GeV/c2 are produced during the thermalization stage by 

D+D- meson decays. Since D+D- may decay 

semileptonically, at the intermediate mass region the pairs 

have continues distribution. Low mass dielectron pairs are 

produced due to , , φ resonances and Dalitz decays. In 

order to investigate initial state of the medium, higher mass 

region of the pair spectrum between 2 – 5 GeV/c2 can be 

studied.  

 
 

Figure 3. Schema of random forest classifier algorithm [14]. 

 

A high purity sample of electron – positron pairs are 

required to identify the dielectron spectrum. Due to various 

large sources of background, it is challenging to extract the 

pair signals. Rejection of those background components 

needs sophisticated analysis techniques that bring high 

purity samples with low signal efficiency resulting in high 

systematic uncertainties. For this reason, implementation 

of artificial intelligence (AI) based machine learning (ML) 

tools for pair identification is the necessity to improve 

dielectron spectrum with high efficiency. 

 

1.2 Machine Learning Approach in Particle Analysis 
 

In this study machine learning approach based on 

Random Tree method [7] was developed to enhance 

dielectron pair identification in particle and high energy 

experiments. For this purpose Random Forest Classifier 

[7], one of the supervised learning algorithm, was used. 

 

1.2.1 Random Forest Classifier 
 

Random Forest Classifier is a bagging classifier 

including Decision Trees. In the model, there is an 

ensemble of trees producing decisions according to a set of 

sub-decisions. In each decision tree there are nodes and 

leaves representing features and decisions respectively. 

The nodes are generated by choosing the best features from 

the subset of features applied to train current tree. The 

quality of the node split for each feature can be evaluated 

by estimation of entropy gain or Gini index, probability of 

wrong classification for a given property. [8] The model 

has two steps: the creation and prediction [9]. In the 

classifier firstly a set of trees are generated from subset of 

randomly chosen training sample. After this process the 

votes from different decision trees are collected to give 

final decision of the test sample [10, 11, 12, 13]. Schema 

of the classifier algorithm is represented in Figure 3 [14]. 

In ML approach depending on the model hyper-

parameters, a set of parameters initiated at the beginning of 

the learning process, can be adjusted.  In Random Forest 

Classifier hyper-parameters such as number of decision 

trees inside the forest, maximum depth of a tree and 

minimal impurity of a node can be tuned [8]. 

There are several advantages of using Random Forest 

Classifier. First of all the classifier can be used for both 

classification and regression. In ML studies, overfitting 

that is loss of correct classification ability of the model for 

the samples out of training set is one of the main problems 

[15]. Since it is a forest of decision trees the model is 

resistant for overfitting. In addition, the measurement of 

the relative importance of each feature on the prediction 

makes model interpretable. Lastly, compared to a Decision 

Tree method Random Forest Classifier is more precise due 

to having forest of decision trees. The cost of having forest 

is the long process time which is the main disadvantage of 

the model.  

 

2 Experimental Setup 

 

2.1 Data Set 

 
For ML based classifier development, proton proton 

collision at the center-of-mass energy 7 TeV with the 

integrated luminosity 41.47 pb-1 data set collected by the 

CMS experiment in 2010 was used to study electron pairs 

from 2 – 5 GeV/c2 [16 - 20]. In the analysis 10015 pairs 
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were analyzed. 67% of these pairs were e-e+ pairs, called 

signal, and 33% of these pairs were background including 

e-e- and e+e+ pairs. The spectrum of signal and background 

pairs is represented in Figure 4.  

 

 
Figure 4. Invariant mass spectrum of all pairs including signal (e-e+), 

and background (e-e- and e+e+). 

 

For identification of dielectron pairs python [21] 

implementation of the Random Forest classifier by scikit-

learn [22] package was used.  

 

2.2 Application of the Classifier 
 

ML application in particle physics is challenging as 

compared to its implementation in other research areas due 

to the nature of quantum mechanics resulting in 

interference between the particle signal and background 

[23]. Different ML approaches have been studied to 

advance the physics results such as higgs boson estimation 

[24, 25], and beam dynamics analyzation at the CERN 

Large Hadron Collider (LHC) [26]. It is revealed that with 

random forest classification particle recognition [8] and 

data quality investigation [27] can be accomplished. 

Therefore the random forest classification model was 

selected to analyze the production of dielectrons. 

In the end of high energy collisions, detectors identify 

the particles with the help of global features (GF) such as 

charge (q), pseudorapidity () and transverse momentum 

(pT) that are directly determined by the detectors. By using 

GF of the particles, characteristic features (CF) such as 

momentum (p), invariant mass (M) of pairs and opening 

angle between pair partners (θ) can be calculated for the 

pair identification [28]. Global and characteristic features 

are listed in Table 1.  

 
Table 1. Global and characteristic features used in the analysis. 

Global Features  

(GF) 

Characteristic Features  

(CF) 

q
1
,q

2 
(charge) M (invariant mass of pairs) 


1
,

2
(pseudorapidity)  p (momentum of pairs) 

φ
1
, φ

2
  

(azimuthal angle) 
 (opening angle) 

p
z1

, p
z2

 

(z component of momentum) 
 

p
T1

, p
T2

  

(transverse momentum) 
 

 

Since Random Forest Classifier provides information 

about relative importance of each feature on the prediction, 

in this study GF and GF+CF were implemented to model 

separately to understand the impact of features on 

classification. By using the classifier with and without CF 

it can be understood if detector responses are good enough 

for reconstructing pairs, if the highest importance feature 

matches with the ones used in traditional cut-based 

methods and if the pairs are derived with the highest 

efficiency. In both scenarios, hyper-parameters of the 

classifier were tuned to have the best prediction. In the 

experiment 60% of data was selected for training and 40% 

of data was selected for test. 

Thanks to the model, feature importance on 

classification of dielectron pairs in GF and GF+CF 

implemented models were studied and shown in Figure 5 

and 6, respectively. Comparison of feature importance 

represented in Figure 5 illustrated that GF implemented 

classifier highly used charges of particles to make 

prediction of the pairs which is also used in traditional cut 

– based pair identification method. GF+CF implemented 

model used characteristic features dominantly to predict 

dielectrons as shown in Figure 6.  
 

 
Figure 5. Feature importance of GF implemented Random Forest 

Classifier study. 

 

 
Figure 6. Feature importance of GF + CF implemented Random Forest 

Classifier study. 

 

3 Results  
 

In ML approaches precision, sensitivity and F-1 scores 

are widely used metrics to evaluate the success of 

implemented models. They are defined in Eq. (1), Eq. (2) 

and Eq. (3), respectively: 
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Precision =
TP

TP + FP
,                                                          (1) 

 

Sensitivity =
TP

TP + FN
,                                                       (2) 

 

F − 1 Score =
2 × Precision × Sensitivity

Precision + Sensitivity
.                  (3) 

 

In the equations TP, FP and FN represent number of 

correctly classified dielectron pairs, misclassified 

dielectron pairs and misclassified background pairs. As it 

is understood from Eq. (3) F-1 Score is the harmonic mean 

of precision and sensitivity.  The average precision, 

sensitivity and F-1 Score of GF and GF+CF implemented 

models are listed in Table 2. As it is demonstrated in the 

table compared to GF+CF implemented model, GF 

implemented classifier showed almost 20% more precise 

and sensitive results. 

 
Table 2. The average precision, sensitivity and F-1 Score of GF and 

GF+CF implemented classifiers 

Features Average 

Precision 

Average 

Sensitivity 

Average 

F-1 Score 

GF+CF 0.78 0.72 0.65 

GF 0.93 0.93 0.92 

 

Another popular metric for ML applied models is Area 

Under Receiver Operating Characteristic Curve (ROC-

AUC) [15] that is shown in Table 3 for GF and GF+CF 

implemented classifiers separately. It is concluded that by 

using global features Random Forest Classifier find e+e- 

12.43% better than CF applied model which is also used in 

traditional pair identification method in high energy 

experiments. 

 
Table 3. Comparison of ROC-AUC for GF and GF+CF implemented 

classifiers. 

Features ROC-AUC 

GF+CF 0.874 

GF 0.998 

 

4 Conclusion 
 

In this study, Random Forest Classifier model is 

applied for e-e+ pair identification produced in high energy 

collisions to understand early stage of universe. The 

classifier is selected due to having forest of decision trees 

preventing overfitting problem in ML models. To 

understand effect of features on prediction, GF and GF+CF 

were implemented separately in the model. It is shown that 

global features implemented Random Forest Classifier 

determined e+e- 12.43% better than CF applied model. The 

results showed that features directly from detectors are 

good enough to be used in ML based pair identification 

without further human effort. In addition, comparison of 

two different set of features implemented model showed 

that selection of features has an important role on 

predictions. The results also proved that without hard and 

time consuming background analysis the pairs can be 

identified with high efficiency.  Application of machine 

learning techniques is promising and may enhance the 

quality of particle experiment results. 
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