

**Konuralp Journal of Mathematics** 

**Research Paper** 

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X



# **On Super Magic Algorithm for Union of Comb and Star Graph**

Rongbing Huang<sup>1</sup>, Muhammad Farhan Hanif<sup>2</sup>, Muhammad Kamran Siddiqui<sup>2\*</sup> and Muhammad Faisal Nadeem<sup>2</sup>

<sup>1</sup>School of Computer Science Chengdu University, Chengdu, China <sup>2</sup>Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan <sup>\*</sup>Corresponding author

#### Abstract

In [7], Enomoto *et al.* identified the concept of super edge magic total labeling of graphs by getting motivation from the idea of edge-magic labeling of graphs that was brought into light by Kotzig and Rosa [20]. An edge magic total labeling of a graph *G* is a one to one map  $\phi$  from  $V(G) \cup E(G)$  onto the set  $\{1, 2, ..., |V(G)| + |E(G)|\}$  with the property that, there is an integer constant  $\alpha$  such that  $\phi(u) + \phi(uv) + \phi(v) = \alpha$  for any  $(u, v) \in E(G)$ . Moreover if  $\phi(V(G)) = \{1, 2, ..., |V(G)|\}$ , then edge magic total labeling is called super edge magic total labeling. In this paper, we study the super edge magic total labeling of generalized comb graph.

*Keywords:* magic graph; SEM total labeling; comb graph; star 2010 Mathematics Subject Classification: 05C78

# 1. Introduction

In this paper, we consider only finite, simple and undirected graphs. We denote the vertex set by V(G), edge set by E(G) of a graph G and their cardinalities by p and q respectively, i.e. |V(G)| = p and |E(G)| = q. A *labeling* of a graph is a map that carries the graph elements to numbers (usually positive integers). In this paper the domain will usually be the set of all vertices and edges, such labelings are called *total labeling*. Some labelings use the vertex-set only, or the edge-set only, this type of labeling is called *vertex-labeling* and *edge-labeling* respectively. Other domains are also possible like the set of faces of the graph. There are many types of labelings namely, graceful labeling, alpha labeling, antimagic labeling etc [1,2].

In this paper, we focus on one type of labeling called *edge-magic total labeling*. An *edge magic total labeling* of a graph *G* is a bijection  $\phi: V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$  such that  $\phi(x) + \phi(xy) + \phi(y)$  is constant, for every edge  $xy \in E(G)$ . A graph with an edge magic total labeling is called *edge magic graph*. An edge magic total labeling  $\phi$  is called *super edge magic total* if  $\phi(V(G)) = \{1, 2, ..., p\}$ . A graph with super edge magic total labeling is called a *super edge magic graph*[14,15,16,17].

Graph theory can be applied to a wide range of fields and problems. In chemistry and physics graph theory can be used to study molecules or chemical reactions. A graph makes a natural model for a molecule, where vertices represent atoms and edges bonds. Graph theory has applications in cheminformatics, medicinal chemistry, biology, and biochemistry[6]. This approach is especially used in computer processing of molecular structures, ranging from chemical editors, database searching, find similarity functions, sub-structure searching, all of which are important in drug design algorithms [7,8]. Zhang et. al [9, 10, 11] discuss the topological indices of generalized bridge molecular graphs, Carbon Nanotubes and product of chemical graphs. Zhang et. al [12, 13, 14] provided the physical analysis of heat for formation and entropy of Ceria Oxide

The subject of edge-magic total labeling of graph has its origin in the work of Kotzig and Rosa [20], on what they called magic valuations of graphs. The notation of super edge-magic labeling was introduced by Enomotp *et al.* in [7] as super edge magic total labeling. A number of classification studies on super edge-magic total graphs has been intensively investigated. More detail, the results on edge magic and super edge magic labeling of some graphs can be seen in [9,10,11,12,13] and a complete survey [15] and for more details see [3, 4, 5]. In this paper, we mainly focussing on the comb and star graphs.

# 2. The generalized comb graph

A generalized comb graph is obtained from a path  $P_{n+1}$  having vertices  $u_{0,1}, u_{1,1}, u_{2,1}, u_{3,1}, \dots, u_{n,1}$  by joining *n* new paths  $P_i$ ;  $1 \le i \le n$  of order  $t_i$  with vertices  $u_{1,1}, u_{2,1}, u_{3,1}, \dots, u_{n,1}$  respectively and is denoted by  $Cb_n(t_1, t_2, \dots, t_{n-1}, t_n)$ . So the vertex set and the edge set of

*Email addresses*: huangrb2006@126.com (Rongbing Huang), farhanlums@gmail.com (Muhammad Farhan Hanif), kamransiddiqui75@gmail.com (Muhammad Kamran Siddiqui), mfaisalnadeem@ymail.com (Muhammad Faisal Nadeem)

generalized comb graph are defined as follows:

$$V(Cb_n) = \{u_{i,j} : 1 \le i \le n, \ 1 \le j \le t_i\} \cup \{u_{0,1}\},\$$

 $E(Cb_n) = \{(u_{i-1,1}u_{i,1}) : 1 \le i \le n\} \cup \{(u_{i,i}u_{i,i+1}) : 1 \le i \le n, 1 \le j \le t_i - 1\}$ 

with  $|V(Cb_n)| = 1 + \sum_{i=1}^{n} t_i$  and  $|E(Cb_n)| = \sum_{i=1}^{n} t_i$ . Now, we investigate the super edge magic total labeling of generalized comb graph. In order to prove our main results, we will frequently use the following lemma:

**Lemma 2.1.** [8] A(p,q) graph G is super edge magictotal if and only if there exists a bijective function  $\phi: V(G) \rightarrow \{1, 2, \dots, p\}$  such that the set  $S = \{\phi(x) + \phi(y) : xy \in E(G)\}$  consists of q consecutive integers. In such a case,  $\phi$  extends to a super edge magictotal labeling of G with magicconstant  $\alpha = p + q + s$ , where s = min(S).

**Theorem 2.2.** For  $n \ge 3$ ,  $t_1 \ge 3$ , the generalized comb  $Cb_n(t_1, t_1 + 1, t_1 + 2, \dots, t_1 + n - 2, t_1 + n - 1)$  admits super edge magictotal labeling.

**Proof:** By the construction of generalized comb, we find that

 $t_i = t_1 - 1 + i$ , for  $2 \le i \le n$ , with  $|V(Cb_n)| = \frac{n(2t_1 + n - 1) + 2}{2}$  and  $|E(Cb_n)| = \frac{n(2t_1 + n - 1)}{2}$ .

Now Its come to show that  $Cb_n$  is super edge magic we define the labeling  $\phi: V(Cb_n) \rightarrow \{1, 2, 3, \dots, \frac{n(2t_1+n-1)+2}{2}\}$  for  $1 \le i \le n$  and  $1 \le j \le t_i$  as follows:

*Case 1*: when  $t_1$  is odd

(a) If *i*, *j* have same parity,

$$\phi(u_{i,j}) = \begin{cases} \frac{j+1}{2}, & \text{if } i = 1\\ \sum_{\substack{r=1 \pmod{2}\\r=1 \pmod{2}}}^{i-2} t_r + \frac{i+j}{2}, & \text{if } 3 \le i \le n, odd\\ \sum_{\substack{r=1 \pmod{2}\\r=1 \pmod{2}}}^{i-1} t_r + 1 + \frac{i-j}{2}, & \text{if } 2 \le i \le n, even. \end{cases}$$

(**b**) If *i*, *j* have different parity and

(i) *n* is odd

$$\phi(u_{i,j}) = \begin{cases} \sum_{r=1}^{n-2} t_r + \sum_{r=1}^{i-1} t_r + \frac{2n+t_1+2-j}{2}, & \text{if } 2 \le i \le n, even \\ \sum_{r=1}^{n-2} t_r + \sum_{r=1}^{i-2} t_r + \frac{2n+t_1+1+j}{2}, & \text{if } 3 \le i \le n, odd \end{cases}$$
  
$$\phi(u_{0,1}) = \sum_{r=2}^{n-2} t_r + \frac{2n+t_1+1}{2} \phi(u_{1,1}) = \sum_{r=2}^{n-2} t_r + \frac{2n+t_1+1+j}{2} \end{cases}$$

 $\phi(u_{0,1}) = \sum_{\substack{r=1\\r \equiv 1 (mod2)}}^{n-2} t_r + \frac{2n+i_1+1}{2}, \ \phi(u_{1,j}) = \sum_{\substack{r=1\\r \equiv 1 (mod2)}}^{n-2} t_r + \frac{2n+i_1+1+j_2}{2},$ It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

 $S_{1} = \left\{ \frac{1}{2} \left[ \sum_{\substack{r=1 \\ r \equiv 1 (mod2)}}^{n-2} 2t_{r} + 2n + t_{1} + 1 \right] + i; \quad 1 \le i \le \frac{n(2t_{1}+n-1)}{2} \right\}$ (ii) *n* is even  $\phi(u_{0,1}) = \sum_{\substack{r=1 \\ r \equiv 1 (mod2)}}^{n-1} t_{r} + \frac{n+2}{2}, \quad \phi(u_{1,j}) = \sum_{\substack{r=1 \\ r \equiv 1 (mod2)}}^{n-1} t_{r} + \frac{n+2+j}{2},$  $\phi(u_{i,j}) = \begin{cases} \sum_{\substack{r=1\\r \equiv 1 \pmod{2}}}^{n-1} t_r + \sum_{\substack{r=1\\r \equiv 1 \pmod{2}}}^{i-2} t_r + \frac{n+2+j}{2}, & \text{if } 3 \le i \le n, odd \\ \\ \sum_{\substack{r=1\\r \equiv 1 \pmod{2}}}^{n-1} t_r + \sum_{\substack{r=1\\r \equiv 1 \pmod{2}}}^{i-1} t_r + \frac{n+3-j}{2}, & \text{if } 2 \le i \le n, even \end{cases}$ 

It is easy to see that under the labeling  $\phi$  the set of all edge-sums  $S_{2} = \left\{ \frac{1}{2} \left[ \sum_{\substack{r=1\\r \equiv 1 (mod2)}}^{n-1} 2t_{r} + n + 2 \right] + i; \quad 1 \le i \le \frac{n(2t_{1} + n - 1)}{2} \right\}$ *Case 2:* when  $t_{1}$  is even

(a) If *i*, *j* have different parity,

$$\phi(u_{0,1}) = \frac{t_{1}+2}{2}, \quad \phi(u_{1,j}) = \frac{t_{1}+2-j}{2},$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=1}^{i-1} 2t_r + 4 + i + 2j \right], & \text{if } 2 \le i \le n, even \\ \frac{1}{4} \left[ \sum_{r=1}^{i} 2t_r + 7 + i - 2j \right], & \text{if } 3 \le i \le n, odd \end{cases}$$
(b) If  $i$ ,  $i$  have some parity and

(**b**) If *i*, *j* have same parity and

(**i**) *n* is odd

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{n} 2t_r + 2t_1 + n + 5 - 2j \Big], & \text{if } i = 1 \\ \frac{1}{4} \Big[ \sum_{r=1}^{n} 2t_r + \sum_{r=1}^{i} 2t_r + n + 6 - i - 2j \Big], & \text{if } 3 \le i \le n, \text{odd} \\ \frac{1}{4} \Big[ \sum_{r=1}^{n} 2t_r + \sum_{r=1}^{i-1} 2t_r + n + 5 - i + 2j \Big], & \text{if } 2 \le i \le n, \text{even} \end{cases}$$

$$S_{3} = \left\{ \frac{1}{4} \left[ \sum_{r=1}^{n} 2t_{r} + n + 7 \right] + i; \quad 1 \le i \le \frac{n(2t_{1} + n - 1)}{2} \right\}$$
  
(ii) *n* is even  
$$\phi(u_{i,j}) = \left\{ \begin{array}{l} \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_{r} + 4t_{1} + 3n + 4 - 2j \right], \quad if \ i = 1 \\ \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_{r} + \sum_{r=1}^{i} 2t_{r} + 2t_{1} + 3n + 5 - i - 2j \right], if \ 3 \le i \le n, odd \\ \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_{r} + \sum_{r=1}^{i-1} 2t_{r} + 2t_{1} + 3n + 4 - i + 2j \right], if \ 2 \le i \le n, even \right\}$$

It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

$$S_4 = \left\{ \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_r + 2t_1 + 3n + 6 \right] + i; \ 1 \le i \le \frac{n(2t_1 + n - 1)}{2} \right\}$$

Clearly,  $|S_1| = |S_2| = |S_3| = |S_4| = \frac{n(2t_1+n-1)}{2}$ . Therefore, by using Lemma 2.1,  $\phi$  can be extended to a super edge-magictotal labeling. Hence, the graph  $Cb_n$  admits a super edge magictotal labeling.

**Theorem 2.3.** For  $n \ge 5$ , the generalized comb  $Cb_n(2,3,4,\ldots,\lfloor\frac{n}{2}\rfloor;\lfloor\frac{n}{2}\rfloor+1,\lfloor\frac{n}{2}\rfloor+1;\lfloor\frac{n}{2}\rfloor,\lfloor\frac{n}{2}\rfloor-1,\ldots;2)$  admits super edge magictotal labeling.

Proof. By the definition of generalized comb, first we notice that

$$t_{i} = \begin{cases} i+1, & \text{if } 1 \le i \le \lfloor \frac{n}{2} \rfloor - 1 \\ \lfloor \frac{n}{2} \rfloor + 1, & \text{if } i = \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor + 1 \\ 2 \lfloor \frac{n}{2} \rfloor + 2 - i, & \text{if } \lfloor \frac{n}{2} \rfloor + 2 \le i \le n \text{ and } n \text{ even} \\ 2 \lfloor \frac{n}{2} \rfloor + 2 - i, & \text{if } \lfloor \frac{n}{2} \rfloor + 2 \le i \le n - 1 \text{ and } n \text{ odd} \\ 2, & \text{if } i = n \text{ odd} \end{cases}$$

 $|V(Cb_n)| = \frac{n^2 + 6n + 4}{4}, |E(Cb_n)| = \frac{n^2 + 6n}{4}, \text{ for } n \text{ even}$  $|V(Cb_n)| = \frac{n^2 + 4n + 7}{4}, |E(Cb_n)| = \frac{n^2 + 4n + 3}{4}, \text{ for } n \text{ odd}$ 

Now it comes to show that  $Cb_n$  is super edge magic we define the labeling  $\phi : V(Cb_n) \rightarrow \{1, 2, 3, \dots, |V(Cb_n)|\}$  as follows:

$$\phi(u_{0,1}) = 1, \ \phi(u_{1,2}) = 2, \ \phi(u_{2,j}) = \frac{2t_1 + 1 + j}{2}, \ if \ 1 \le j \le t_2, \ odd$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{i} 2t_r + 7 + i - 2j \Big], & if \ 3 \le i \le \lfloor \frac{n}{2} \rfloor, \ odd \\ and \ 1 \le j \le t_i, even \\ \frac{1}{4} \Big[ \sum_{r=1}^{i-1} 2t_r + 4 + i + 2j \Big], & if \ 4 \le i \le \lfloor \frac{n}{2} \rfloor + 1, even \\ and \ 1 \le j \le t_i, odd \end{cases}$$

#### Case 1: when n is odd

For 
$$3 \le i \le \lfloor \frac{n}{2} \rfloor$$
, odd and  $1 \le j \le t_i$ , odd  
 $\phi(u_{i,j}) = \frac{1}{4} \Big[ \sum_{r=1}^{n-2} 2t_r + \sum_{r=3}^{i} 2t_r + 2 \lfloor \frac{n}{2} \rfloor + 28 - n - i \Big] - \frac{j+1}{2}$ ,  
For  $4 \le i \le \lfloor \frac{n}{2} \rfloor + 1$ , even and  $1 \le j \le t_i$ , even  
 $\phi(u_{i,j}) = \frac{1}{4} \Big[ \sum_{r=1}^{n-2} 2t_r + \sum_{r=1}^{i-1} 2t_r + 2 \lfloor \frac{n}{2} \rfloor + 25 - n - i \Big] + \frac{j}{2}$ ,  
For  $\lfloor \frac{n}{2} \rfloor + 1 \le i \le n - 2$ , odd

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=1}^{i} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 7 - i - 2j \right], & \text{if } 1 \le j \le t_i, \text{even} \\ \frac{1}{4} \left[ \sum_{r=1}^{n-2} 2t_r + \sum_{r=1}^{i} 2t_r + 16 - n + i - 2j \right], & \text{if } 1 \le j \le t_i, \text{odd} \end{cases}$$

For  $\lfloor \frac{n}{2} \rfloor + 2 \le i \le n - 1$ , even

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{i-1} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 6 - i + 2j \Big], & \text{if } 1 \le j \le t_i, \text{odd} \\ \frac{1}{4} \Big[ \sum_{r=1}^{n-2} 2t_r + \sum_{r=1}^{i-1} 2t_r + 13 - n + i + 2j \Big], & \text{if } 1 \le j \le t_i, \text{even} \end{cases}$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=1}^{n-2} 2t_r + 2\lfloor \frac{n}{2} \rfloor - n + 17 \right] + i - 1, & \text{if } i = j = 1, 2\\ \sum_{r=1}^{n-2} t_r + 5, & \text{if } i = n, j = 1\\ \frac{1}{4} \left[ \sum_{r=1}^{n-2} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 13 - n \right], & \text{if } i = n, j = 2 \end{cases}$$

$$S_1 = \left\{ \frac{1}{4} \left[ \sum_{r=1}^{n-2} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 17 - n \right] + i; \ 1 \le i \le \frac{n^2 + 4n + 3}{4} \right\}$$

Case 2: when n is even

For  $3 \le i \le \lfloor \frac{n}{2} \rfloor$ , odd and  $1 \le j \le t_i$ , odd  $\phi(u_{i,j}) = \frac{1}{4} \Big[ \sum_{r=1}^{n-1} 2t_r + \sum_{r=3}^{i} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 23 - n - i \Big] - \frac{j+1}{2},$ 

For  $4 \le i \le \lfloor \frac{n}{2} \rfloor + 1$ , even and  $1 \le j \le t_i$ , even

$$\begin{split} \phi(u_{i,j}) &= \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_r + \sum_{r=1}^{i-1} 2t_r + 2 \lfloor \frac{n}{2} \rfloor + 20 - n - i \right] + \frac{j}{2}, \\ \text{For } \lfloor \frac{n}{2} \rfloor + 1 \leq i \leq n-1, odd \end{split}$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{i} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 7 - i - 2j \Big], & \text{if } 1 \le j \le t_i, even \\ \frac{1}{4} \Big[ \sum_{r=1}^{n-1} 2t_r + \sum_{r=1}^{i} 2t_r + 11 - n + i - 2j \Big], & \text{if } 1 \le j \le t_i, odd \end{cases}$$

For  $\lfloor \frac{n}{2} \rfloor + 2 \le i \le n$ , even

$$\begin{split} \phi(u_{i,j}) &= \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{i-1} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 6 - i + 2j \Big], & \text{if } 1 \le j \le t_i, odd \\ \frac{1}{4} \Big[ \sum_{r=1}^{n-1} 2t_r + \sum_{r=1}^{i-1} 2t_r + 8 - n + i + 2j \Big], & \text{if } 1 \le j \le t_i, even \end{cases} \\ \phi(u_{i,j}) &= \begin{cases} \frac{1}{4} \Big[ \sum_{r=1}^{n-1} 2t_r + 2\lfloor \frac{n}{2} \rfloor - n + 12 \Big], & \text{if } i = j = 1 \\ \frac{1}{4} \Big[ \sum_{r=1}^{n-1} 2t_r + 2\lfloor \frac{n}{2} \rfloor - n + 16 \Big], & \text{if } i = j = 2 \end{cases} \end{split}$$

It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

$$S_2 = \left\{ \frac{1}{4} \left[ \sum_{r=1}^{n-1} 2t_r + 2\lfloor \frac{n}{2} \rfloor + 12 - n \right] + i; \ 1 \le i \le \frac{n^2 + 6n}{4} \right\}$$

Clearly,  $|S_1| = \frac{n^2 + 4n + 3}{4}$ ,  $|S_2| = \frac{n^2 + 6n}{4}$ . Therefore by using Lemma 2.1,  $\phi$  can be extended to a super edge-magictotal labeling. Hence, the graph  $Cb_n$  admits a super edge magictotal labeling.

In next theorems, we formulate super-edge magictotal labeling for disjoint union of generalized combs and star.

**Theorem 2.4.** For  $n \ge 4$ ,  $m \ge 3$ , the graph  $G \cong Cb_n(2,3,4,\ldots,n-1,n,n+1) \cup K_{1,m}$  admits super edge magictotal labeling.

**Proof.** Let  $G \cong Cb_n(2,3,4,\ldots,n-1,n,n+1) \cup K_{1,m}$ , the vertex set and edge set of G are defined as follows.

$$V(G) = \{u_{i,j} : 1 \le i \le n, \ 1 \le j \le t_i\} \cup \{u_{0,1}\} \cup \{c, v_l; 1 \le l \le m\}, \text{ and } E(G) = \{(u_{i-1,1}u_{i,1}) : 1 \le i \le n\} \cup \{(u_{i,j}u_{i,j+1}) : 1 \le i \le n, \ 1 \le j \le t_i - 1\} \cup \{(cv_l); 1 \le l \le m\} \text{ with } |V(G)| = \frac{n^2 + 3n + 2m + 4}{2}, \ |E(G)| = \frac{n^2 + 3n + 2m}{2}.$$

Also, we observe that  $t_i = 1 + i$ , for  $1 \le i \le n$ .

We define the labeling  $\phi: V(G) \to \{1, 2, 3, \dots, \frac{n^2+3n+2m+4}{2}\}$  for  $1 \le i \le n$  and  $1 \le j \le t_i$  as follows:

Case 1: when *i*, *j* have different parities,

$$\phi(c) = 2, \ \phi(u_{1,2}) = 1, \ \phi(u_{2,3}) = 3, \ \phi(u_{2,1}) = 4, \ \phi(u_{0,1}) = 5,$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=3}^{i} 2t_r + 21 + i - 2j \right], & \text{if } 3 \le i \le n, \text{ odd} \\ \frac{1}{4} \left[ \sum_{r=3}^{i-1} 2t_r + 18 + i + 2j \right], & \text{if } 4 \le i \le n, \text{ even} \end{cases}$$

Case 2: when *i*, *j* have the same parity and

#### (i) *n* is odd

$$\begin{split} \phi(v_l) &= \frac{1}{4} \left[ \sum_{r=3}^n 2t_r + 17 + n + 4l \right], \quad if \ 1 \le l \le m, \\ \phi(u_{i,j}) &= \frac{1}{4} \left[ \sum_{r=3}^n 2t_r + 21 + n + 4m \right] + i - 1, \quad if \ i = j = 1, 2 \\ \phi(u_{i,j}) &= \begin{cases} \frac{1}{4} \left[ \sum_{r=3}^n 2t_r + \sum_{r=3}^i 2t_r + n + 4m + 30 - i - 2j \right], if \ 3 \le i \le n, odd \\ \frac{1}{4} \left[ \sum_{r=3}^n 2t_r + \sum_{r=3}^i 2t_r + n + 4m + 29 - i + 2j \right], if \ 4 \le i \le n, even. \end{cases}$$

It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

$$S_1 = \left\{ \frac{1}{4} \left[ \sum_{r=3}^n 2t_r + n + 25 \right] + i; \ 1 \le i \le \frac{n^2 + 3n + 2m}{2} \right\}.$$

(**ii**) *n* is even

$$\begin{split} \phi(v_l) &= \frac{1}{4} \Big[ \sum_{r=3}^{n-1} 2t_r + 3n + +20 + 4l \Big], \quad if \quad 1 \le l \le m, \\ \phi(u_{i,j}) &= \frac{1}{4} \Big[ \sum_{r=3}^{n-1} 2t_r + 24 + 3n + 4m \Big] + i - 1, \quad if \; i = j = 1, 2 \\ \phi(u_{i,j}) &= \begin{cases} \frac{1}{4} \Big[ \sum_{r=3}^{n-1} 2t_r + \sum_{r=3}^{i} 2t_r + 3n + 4m + 33 - i - 2j \Big], if \; 3 \le i \le n, odd \\ \frac{1}{4} \Big[ \sum_{r=3}^{n-1} 2t_r + \sum_{r=3}^{i-1} 2t_r + 3n + 4m + 32 - i + 2j \Big], if \; 4 \le i \le n, even \end{cases}$$

It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

$$S_2 = \left\{ \frac{1}{4} \left[ \sum_{r=3}^{n-1} 2t_r + n + 28 \right] + i; \ 1 \le i \le \frac{n^2 + 3n + 2m}{2} \right\}.$$

Clearly,  $|S_1| = |S_2| = \frac{n^2 + 3n + 2m}{2}$ . Therefore by using Lemma 2.1,  $\phi$  can be extended to a super edge-magictotal labeling. So, the graph *G* admits a super edge magictotal labeling. By now, the proof is complete.

**Theorem 2.5.** For  $n \ge 5$ ,  $m \ge 3$ , the graph  $G \cong Cb_n(2,3;2\lceil \frac{i}{2} \rceil + 1) \cup K_{1,m}$  for  $3 \le i \le n$ , admits super edge magictotal labeling.

**Proof.** Let  $G \cong Cb_n(2,3;2\lceil \frac{i}{2} \rceil + 1) \cup K_{1,m}$ , the vertex set and the edge set of G are defined as follows:

$$\begin{aligned} V(G) &= \{u_{i,j} : 1 \le i \le n, \ 1 \le j \le t_i\} \cup \{u_{0,1}\} \cup \{c, v_l; 1 \le l \le m\} \\ E(G) &= \{(u_{i-1,1}, u_{i,1}) : 1 \le i \le n\} \cup \{(u_{i,j}, u_{i,j+1}) \ 1 \le i \le n, \ 1 \le j \le t_i - 1\} \cup \{(cv_l); 1 \le l \le m\} \\ \text{with } |V(G)| &= \frac{n^2 + 4n + 2m + 3}{2}, \ |E(G)| = \frac{n^2 + 4n + 2m - 1}{2}, \text{ for } n \text{ odd} \\ |V(G)| &= \frac{n^2 + 4n + 2m + 2}{2}, \ |E(G)| = \frac{n^2 + 4n + 2m - 2}{2}, \text{ for } n \text{ even} \end{aligned}$$

Also, we observe that

$$t_i = \begin{cases} 1+i, & \text{if } i = 1,2\\ 2\lceil \frac{i}{2} \rceil + 1 & \text{if } 3 \le i \le n \end{cases}$$

We define the labeling  $\phi : V(G) \rightarrow \{1, 2, 3, \dots, |V(G)|\}$  for  $1 \le i \le n$  and  $1 \le j \le t_i$  as follows:

Case 1: when *i*, *j* have different parity

 $\begin{aligned} \phi(c) &= 2, \phi(u_{2,3}) = 1, \phi(u_{1,2}) = 4, \ \phi(u_{2,1}) = 5, \phi(u_{0,1}) = 3, \\ \phi(u_{3,2}) &= 6, \ \phi(u_{3,4}) = 7, \end{aligned}$ 

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{2} \left[ \sum_{r=3}^{i-1} t_r + 10 + j \right], & \text{if } 5 \le i \le n, odd \\ \frac{1}{2} \left[ \sum_{r=3}^{i} t_r + 11 - j \right], & \text{if } 4 \le i \le n, even \end{cases}$$

Case 2: when *i*, *j* have same parity and

(**i**) *n* is odd

$$\begin{split} \phi(v_l) &= \frac{1}{2} \bigg[ \sum_{r=3}^{n-1} t_r + 2 \big[ \frac{n}{2} \big] + 10 + 2l \bigg], \quad if \quad 1 \le l \le m \\ \phi(u_{i,j}) &= \frac{1}{2} \bigg[ \sum_{r=3}^{n-1} t_r + 2 \big[ \frac{n}{2} \big] + 2m + 12 \bigg] + i - 1, \quad if \quad i = j = 1, 2 \\ \phi(u_{3,j}) &= \frac{1}{2} \bigg[ \sum_{r=3}^{n-1} t_r + 2 \big[ \frac{n}{2} \big] + 2m + 15 + j \bigg], \quad if \quad 1 \le j \le t_3 \text{ odd} \end{split}$$

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{2} \Big[ \sum_{r=3}^{n-1} t_r + \sum_{r=3}^{i-1} t_r + 2 \lceil \frac{n}{2} \rceil + 2m + 15 + j \Big], & \text{if } 5 \le i \le n, odd \\ \frac{1}{2} \Big[ \sum_{r=3}^{n-1} t_r + \sum_{r=3}^{i} t_r + 2 \lceil \frac{n}{2} \rceil + 2m + 16 - j \Big], & \text{if } 4 \le i \le n, even \end{cases}$$

$$S_1 = \left\{ \frac{1}{2} \left[ \sum_{r=3}^{n-1} t_r + 2 \left\lceil \frac{n}{2} \right\rceil + 14 \right] + i; \ 1 \le i \le \frac{n^2 + 4n + 2m - 1}{2} \right\}.$$

(**ii**) *n* is even

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{2} \left[ \sum_{r=3}^{n} t_r + \sum_{r=3}^{i-1} t_r + 2m + 15 + j \right], & \text{if } 5 \le i \le n, odd \\ \frac{1}{2} \left[ \sum_{r=3}^{n} t_r + \sum_{r=3}^{i} t_r + 2m + 16 - j \right], & \text{if } 4 \le i \le n, even \end{cases} \\ \phi(v_l) = \frac{1}{2} \left[ \sum_{r=3}^{n} t_r + 10 + 2l \right], & \text{if } 1 \le l \le m \\ \phi(u_{i,j}) = \frac{1}{2} \left[ \sum_{r=3}^{n} t_r + 2m + 12 \right] + i - 1, & \text{if } i = j = 1, 2 \\ \phi(u_{3,j}) = \frac{1}{2} \left[ \sum_{r=3}^{n} t_r + 2m + 15 + j \right], & \text{if } 1 \le j \le t_3, odd \end{cases}$$

It is easy to see that under the labeling  $\phi$  the set of all edge-sums is

$$S_2 = \left\{ \frac{1}{2} \left[ \sum_{r=3}^n t_r + 14 \right] + i; \ 1 \le i \le \frac{n^2 + 4n + 2m - 2}{2} \right\}$$

Clearly,  $|S_1| = \frac{n^2 + 4n + 2m - 1}{2}$ ,  $|S_2| = \frac{n^2 + 4n + 2m - 2}{2}$ . Therefore by using Lemma 2.1,  $\phi$  can be extended to a super edge-magictotal labeling. So, the graph *G* admits a super edge magictotal labeling.

**Theorem 2.6.** For  $n \ge 6$ , even and

$$G \cong Cb_n(2,3,4,\ldots,n,n+1) \cup C'b_n(3,4,5;6,6,8,8,\ldots,n-2,n-2,n,n;n+2)$$

then the graph G admits super edge-magictotal labeling.

*Proof.* The vertex set and edge set of *G* are defined as follows:

 $V(G) = \{u_{i,j} : 1 \le i \le n, \ 1 \le j \le t_i\} \cup \{u_{0,1}\} \cup \{u'_{i,j} : 1 \le i \le n, \ 1 \le j \le t'_i\} \cup \{u'_{0,1}\}$   $E(G) = \{(u_{i-1,1}u_{i,1}) : 1 \le i \le n\} \cup \{(u_{i,j}u_{i,j+1}) : 1 \le i \le n, \ 1 \le j \le t_i - 1\} \cup \{(u'_{i-1,1}u'_{i,1}) : 1 \le i \le n\} \cup \{(u'_{i,j}u'_{i,j+1}) : 1 \le i \le n, \ 1 \le j \le t'_i - 1\}$   $U(G) = \{(u_{i-1,1}u_{i,1}) : 1 \le i \le n\} \cup \{(u'_{i,j}u'_{i,j+1}) : 1 \le i \le n, \ 1 \le j \le t_i - 1\} \cup \{(u'_{i-1,1}u'_{i,1}) : 1 \le i \le n\} \cup \{(u'_{i,j}u'_{i,j+1}) : 1 \le i \le n, \ 1 \le j \le t'_i - 1\}$ 

with  $|V(G)| = \frac{2n^2 + 7n + 8}{2}$ ,  $|E(G)| = \frac{2n^2 + 7n + 4}{2}$ 

Also we find that  $t_i = 1 + i$ , for  $1 \le i \le n$  $\begin{cases} 2+i, & \text{if } i = 1, 2, 3 \end{cases}$ 

$$t'_i = \begin{cases} 2\lfloor \frac{i}{2} \rfloor + 2 & \text{if } 4 \le i \le n-1\\ n+2, & \text{if } i=n \end{cases}$$

We define the labeling  $\phi: V(G) \to \{1, 2, 3, \dots, \frac{2n^2 + 7n + 8}{2}\}$  as follows:  $\phi(u'_{0,1}) = 1, \ \phi(u_{0,1}) = 2, \ \phi(u_{1,2}) = 3, \ \phi(u_{2,1}) = 4, \ \phi(u_{2,3}) = 5,$ 

$$\phi(u_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=2}^{i} 2t_r + 15 + i - 2j \right], & \text{if } 3 \le i \le n, odd \\ and \ 1 \le j \le t_i, even \\ \frac{1}{4} \left[ \sum_{r=2}^{i-1} 2t_r + 12 + i + 2j \right], & \text{if } 4 \le i \le n, even \\ and \ 1 \le j \le t_i, odd \end{cases}$$

$$\phi(u'_{i,j}) = \begin{cases} \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=i+1}^n 2t'_r + 14 + 3n + 2j \right], & \text{if } 3 \le i \le n-1, odd \\ and \ 1 \le j \le t'_i, even \\ \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=i}^n 2t'_r + 16 + 3n - 2j \right], & \text{if } 4 \le i \le n, even \\ and \ 1 \le j \le t'_i, odd \end{cases}$$

For  $3 \le i \le n-1$ , *odd* and  $1 \le j \le t_i$ , *odd* 

$$\phi(u_{i,j}) = \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^n 2t'_r + \sum_{r=3}^i 2t_r + 37 + 3n - i - 2j \right]$$
  
For  $4 \le i \le n$ , even and  $1 \le j \le t_i$ , even

$$\begin{split} \phi(u_{i,j}) &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^{n} 2t_r' + \sum_{r=3}^{i-1} 2t_r + 36 + 3n - i + 2j \right] \\ \text{For } 3 &\leq i \leq n-1, odd \text{ and } 1 \leq j \leq t_i', odd \\ \phi(u_{i,j}') &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 4t_r + \sum_{r=3}^{n} 2t_r' + \sum_{r=i+1}^{n} 2t_r' + 32 + 4n + 2j \right] \\ \text{For } 4 &\leq i \leq n, even \text{ and } 1 \leq j \leq t_i', even \\ \phi(u_{i,j}') &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 4t_r + \sum_{r=3}^{n} 2t_r' + \sum_{r=i}^{n} 2t_r' + 34 + 4n - 2j \right] \\ \phi(u_{2,j}') &= \sum_{r=2}^{n-1} t_r + \sum_{r=3}^{n} t_r' + n + 8 + \frac{j}{2}, \text{ for } 1 \leq j \leq 4, even \\ \phi(u_{1,j}') &= \sum_{r=2}^{n-1} t_r + \sum_{r=3}^{n} t_r' + n + 13 - \frac{j+1}{2}, \text{ for } 1 \leq j \leq 3, odd \\ \phi(u_{1,j}) &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^{n} 2t_r' + 3n + 28 \right] + i - 1, i = j = 1, 2 \\ \phi(u_{2,3}') &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^{n} 2t_r' + 3n + 16 \right] \\ \phi(u_{1,2}') &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^{n} 2t_r' + 3n + 20 \right] \\ \phi(u_{2,1}') &= \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^{n} 2t_r' + 3n + 24 \right] \end{split}$$

$$S = \left\{ \frac{1}{4} \left[ \sum_{r=2}^{n-1} 2t_r + \sum_{r=3}^n 2t'_r + 3n + 32 \right] + i; \ 1 \le i \le \frac{2n^2 + 7n + 4}{2} \right\}$$

Clearly  $|S| = \frac{2n^2 + 7n + 4}{2}$ . Therefore by using Lemma 2.1,  $\phi$  can be extended to a super edge-magic total labeling. So, the graph *G* admits a super edge magictotal labeling.

#### Conclusion:

In this paper, it has been shown the super edge-magicness of certain types of generalized comb as well as disjoint union of generalized combs and star. Additionally, we prove the super edge-magicness of

 $G \cong Cb_n(2,3,4,\ldots,n,n+1) \cup Cb_n(3,4,5;6,6,8,8,\ldots,n-2,n-2,n,n;n+2)$ 

for *n*, even only. However, much more effort is to be done in order to get a comprehensive understanding the super edge-magicness of generalized comb. We encourage researchers to try to determine the super edge magic total labeling of other graphs for further research. Therefor, we raise an open question.

**Open problem**: For  $n \ge 5$ , odd and  $G \cong Cb_n(2,3,4,\ldots,n,n+1) \cup Cb_n(3,4,5;6,6,8,8,\ldots,n-2,n-2,n,n;n+2)$ , Find the super edge magictotal labeling of *G*.

## **Article Information**

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

**Copyright Statement:** Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

**Ethical Approval and Participant Consent:** It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

### References

- A. Ahmad, A. Q. Baig and M. Imran, On super edge-magicness of graphs, Utilitas Math., 2012, 89, 373-380.
- M. Baca, Y. Lin, and F.A. Muntaner-Batle, Super edge-antimagiclabeling of path like trees, Utilitas Math, 2010, 81, 31-40.
- [3] M. Bača, M. Numan, A. Semaničová- Feňovčíková, Super d-antimagic labelings of generalized prism, Utilitas Math. 2016, 99, 101-119.
- [4] M. Bača, Y. Bashir, M. F. Nadeem, A. Shabbir, On super edge-antimagic total labeling of Toeplitz graphs, Springer Proceedings in Mathematics and Statistics, 2015, 98, 1–11.
- [5] M. Bača, Y. Bashir, M. F. Nadeem, A. Shabbir, On super edge-antimagicness of circulant graphs, Graphs and Combinatorics, 2015, DOI 10.1007/s00373-014-1505-2.

- [6] A. Q. Baig, A. Ahmad, E. T. Baskoro and R. Simanjuntak, On the super edge-magicgraphs, *Utilitas Math.*, 2011, 86, 147-159.
  [7] H. Enomoto, A. S. Llado. T. Nakamigawa, and G.R ingle, Super edge-magicgraphs, *SUT J.Math.*, 1980, 34, 105-109.
  [8] R. M. Figueroa, R. Ichishima and F. A. Muntaner-Batle, The place of super edge-magic labeling among other classes of labeling, *Discrete Math.* 2001, 31, 153-168.
- [9] Zhang, X., Wu, X., Akhter, S., Jamil, M. K., Liu, J. B., & Farahani, M. R. (2018). Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs. Symmetry, 10(12), 751–786. [10] Zhang, X., Awais, H. M., Javaid, M., & Siddiqui, M. K. (2019). Multiplicative Zagreb indices of molecular graphs. Journal of Chemistry, 2019, 1-19.
- [11] Xiujun Zhang, Abdul Rauf, Muhammad Ishtiaq, Muhammad Kamran Siddiqui & Mehwish Hussain Muhammad (2020) On Degree Based Topological Properties of Two Carbon Nanotubes, Polycyclic Aromatic Compounds, 10, 22-35.
   [12] Zhang, X., Jiang, H., Liu, J. B., & Shao, Z. (2018). The cartesian product and join graphs on edge-version atom-bond connectivity and geometric Interactional distribution of the cartesian product and join graphs on edge-version atom-bond connectivity and geometric
- arithmetic indices. Molecules, 23(7), 1-17.
- [13] Zhang, X., Naeem, M., Baig, A. Q., & Zahid, M. A. (2021). Study of Hardness of Superhard Crystals by Topological Indices. Journal of Chemistry, 10,
- [15] Zhang, X., Yaceni, M., Bag, A. Q., & Zano, M. H. (2017). The second seco

- [17] M. Hussain, E. T. Baskoro, Slamin, On super edge-magictotal labeling of banana trees, Utilitas Math., 2009, 79, 243-251.
- [18] M. Javed, M. Hussain, K. Ali, K. H. Dar, On super edge-magictotal labeling of w-trees, Utilitas Math., 2011, 86, 183-191.
- [19] S.R. Kim and J. Y. Park, On super edge-magicgraphs, Ars Combin., 2006, 81, 113-127.
- [20] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull., 1970, 13(4), 451-461.
- [21] J. Y. Park, J. H. Choi and J-H. Bae, On super edge-magiclabeling of some graphs, *Bull. Korean Math. Soc.*, 2008, 45, 11-21.
  [22] W. D. Wallis, Magic Graphs, Birkhäuser, Boston, 2001.
  [23] W. D. Wallis, E. T. Baskoro, M. Miller, and Slamin, Edge-magictotal labelings, *Australas. J. Combin.*, 2000, 22, 177–190.