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In the present study, a model based on Bayesian Logistic Regression (BLR) was 
developed to predict the probability of bacterial survival/death treated with high-
hydrostatic pressure under different conditions. Previously published data for 
Listeria monocytogenes in phosphate-buffered saline and Cronobacter sakazakii in 
trypticase soy broth and infant formula were used where the process variables were 
pressure, temperature, medium pH, initial inoculum and processing time. Along 
with the using possibility of BLR, effects of introduced sampling size by changing 
data split ratio and case prevalence were assessed. The BLR model predictions were 
consistent with both experimental data and the frequentist logistic regression 
models. Although some overfitting problems arise as the sampling size decrease, 
BLR can produce reliable probability models with a smaller number of experimental 
data (about 50 experimental samples) than the frequentist approach requires. 
Moreover, instead of a point estimate, BLR offers a posterior distribution for 
parameters and predictions. So the present study has indicated that BLR can be a 
useful tool to describe the survival/death of microorganisms after high-pressure 
processes with less experimental data requirement than the frequentist approach 
and also with the ability to handle missing observation and imbalanced dataset. In 
the light of these outcomes, the design of new experiments according to BLR, save 
on time and costs for experimental studies and more detailed safety risk assessment 
may be feasible for the food industry. 

  

DAHA AZ DENEME GERÇEKLEŞTİRMEK MÜMKÜN MÜ: BAYESIAN 
YAKLAŞIMLA YÜKSEK BASINÇ İŞLEMLERİ İÇİN BAKTERİYEL HAYATTA 

KALMA/ÖLÜM OLASILIĞININ TAHMİNİ? 
 

Anahtar Kelimeler Öz 
Yüksek Hidrostatik Basınç, 
Öngörücü Mikrobiyoloji, 
Lojistik Regresyon, 
Listeria Monocytogenes, 
Cronobacter Sakazakii. 
 

Mevcut çalışmada, farklı koşullar altında yüksek hidrostatik basınç işlemine tabi 
tutulan bakterilerin hayatta kalma/ölüm olasılığını tahmin etmek için Bayesian 
Logistic Regression'a (BLR) dayalı bir model geliştirilmiştir. Bu amaçla Listeria 
monocytogenes (fosfatla tamponlanmış tuzlu su çözeltisi içinde) ve Cronobacter 
sakazakii (triptik soya broth ve bebek maması formülasyonu) bakterileri için daha 
önce yayımlanmış verilerden faydalanılmış olup, proses değişkenleri basınç, 
sıcaklık, ortamın pH değeri, ilk aşılama ve işlem süresidir. BLR kullanım olasılığının 
yanı sıra, veri bölme oranları değiştirilerek örneklem büyüklüğünün ve verilerdeki 
vaka sıklığının etkileri değerlendirilmiştir. Sonuç olarak BLR model tahminlerinin 
hem deneysel verilerle hem de frekansçı lojistik regresyon modelleriyle tutarlı 
olduğu gözlenmiştir. Örneklem boyutu küçüldükçe bazı aşırı uyum sorunları ortaya 
çıksa da, BLR, frekansçı yaklaşımının gerektirdiğinden daha az sayıda deneysel 
veriye ile (yaklaşık 50 deneysel örnek) güvenilir olasılık modelleri üretebilmektedir. 
Dahası BLR, nokta tahminleri yerine parametreler ve kestirimler için sonsal 
dağılımlar sunmaktadır. Bu nedenle mevcut çalışmada, BLR'nin frekansçı yaklaşıma 
göre daha az deneysel veri gereksinimiyle mikroorganizmaların uygulanan yüksek 
basınç işlemlerinden sonra hayatta kalma/ölme olasılık kestirimleri için yararlı bir 
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araç olabileceği, eksik gözlemleri ve dengesiz veri setlerini yönetme kabiliyetine 
sahip olduğu gösterilmiştir. Bu sonuçların ışığında, BLR yaklaşımına uygun yeni 
deneme tasarımları ile, deneysel çalışmalarda zamandan ve maliyetten tasarruf 
sağlanması ve gıda endüstrisi için daha ayrıntılı güvenlik riski değerlendirmesi 
mümkün olabilir. 
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1. Introduction  
 
Food safety, especially in terms of microbiological safety, is one of the most important criteria for food producers, 
regulatory organisations and consumers. The microbiological safety of foods is often ensured by heat-induced 
methods such as pasteurisation and sterilisation. However, during heating treatments, food products undergo 
some accelerated biochemical changes resulting in loss of bioactive and beneficial components and/or formation 
of some colour and flavour compounds some of which may be undesirable (Yamamoto, 2017). But as a result of 
ongoing changes in consumer preferences tends to fresh-like foods and non-thermal methods under which limited 
changes occur. Thus, these methods gain increasing popularities. Among the non-thermal methods, high-pressure 
processing (HPP) takes increasing interest since it was first announced in food science and technology by Hite 
(1899) due to its superiority over other methods originating from [1] minimal effects on the sensorial, visual and 
nutritional value of foods; [2] being independent of food geometry and size; [3] utilise ability for packaged or bulk 
foodstuffs; [4] being environmentally friendly and relatively low energy costs (Stoica et al., 2013; Yamamoto, 2017; 
Zhang et al., 2019). Today, HPP is actively used by the food industry in the USA, European countries, Korea, Taiwan, 
Japan etc. (Yamamoto, 2017). It has been studied for several food products such as milk and cheese (Bilbao-Sáinz 
et al., 2009; Hokmollahi and Ehsani, 2017), fruit and vegetables (Butz et al., 2003), meat and meat products 
(Campus, 2010; Khan et al., 2014), fish (Gudbjornsdottir et al., 2010), fruit juice (Ferrari et al., 2010) etc.  
 
Microbial inactivation efficacy of the HPP process strictly depends on process variables such as pH, water activity, 
temperature, applied pressure, process time and initial microbial load (Hajmeer and Basheer, 2002; Koseki et al., 
2009; Koseki and Yamamoto, 2007). The changes caused by these variables should be understood, controlled and 
optimised carefully to ensure the safety of the final product. For that purpose, several statistical learning methods 
such as kinetic models (Buzrul, 2014; Serment-Moreno et al., 2014), neural networks (Hajmeer and Basheer, 
2002), Weibull model (Buzrul et al., 2008), logistic regression (Buzrul, 2019; Koseki et al., 2009; Koseki and 
Yamamoto, 2007; Wang et al., 2017), piecewise models (Buzrul, 2017) have been utilised. Among these modelling 
approaches, logistic regression (LR), has been widely accepted by researchers due to its ability to handle non-
linear kinetics of microbial inactivation and ease of implementation (Koseki et al., 2009). LR can be used as a 
probability estimator of survival or death of microorganisms under given conditions which named as 
survival/death interface model in the related literature (Koseki and Yamamoto, 2007). However, as a frequentist 
and discriminative modelling approach, LR harbours some disadvantages. The frequentist and discriminative 
approaches assume the observed data is sampled from a fixed and known distribution. They do not assign 
probabilities of parameter values. Therefore, frequentist approaches measure model uncertainty relying on the 
null hypothesis and confidence intervals which does indeed not giving the uncertainty of true estimates. Moreover, 
they intend to find point estimates of the parameters for the model from given data from maximum likelihood 
estimation by maximising log-likelihood value for LR. Although they can work with the presence of missing data, 
discriminative models generally require the full set of observations and larger data sets to train the model (O'Brien 
and Dunson, 2004; Xu, 2020a, b). On the other hand, Bayesian approaches can overcome some negativities of the 
frequentist approach. For instance, for Bayesian Logistic Regression (BLR), the Bayesian version of LR, the prior 
distribution for parameters and data according to the researcher’s knowledge is used. So as an output, not a matrix 
of point estimates but posterior distributions of model parameters and predictions are produced. This will lead to 
an understanding of credible interval (or probability/plausibility/likelihood) of the data which help to reach the 
true uncertainty of the model. On the other side, for frequentists, population parameters are assumed to be fixed 
which requires many experiments to find sampling distribution (Lu, 2019). However, BLR requires a comparably 
smaller number of experimental data and can handle missing observations (O'Brien and Dunson, 2004). However, 
it is computationally more intensive (Xu, 2020a, b). To the best of our knowledge, there is no study on the use of 
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BLR for bacterial survival/death after HPP treatments and searching the possibility of developing a probabilistic 
model conducting less number of experiments.  
 
So, the objective of the current study is to [1] investigate the possibility of the use of BLR as a survival/death 
interface model for Listeria monocytogenes and Cronobacter sakazakii which were processed with HPP under 
varying temperature, pH, inoculum, pressure and time combinations; [2] assess the prediction performance of BLR 
models against the use of reduced numbers and imbalanced case prevalence of experimental data and [3] discuss 
cons and pros of BLR from the perspective of food safety risks.  
 
2. Material and Method 
 
2.1. Data Sets 
 
The datasets used in the present study were taken from previously published papers by Koseki and Yamamoto 
(2007) and Koseki et al. (2009) with their permission. Brief information about the used dataset including the 
microorganisms of interest, process conditions and levels, number of observations were given in Table 1. The goal 
of the given data set is to create a binary classification model which predicts whether the given microorganisms 
will survive after HPP treatments under known conditions and its probability. The target responses were coded 
with the value of 1 and 0 for survival and death, respectively. The absence or presence of viable bacteria was 
determined by plating the samples taken after HPP onto nonselective agar (tryptic soy agar [TSA]). Plates were 
then incubated at 37°C for 48 h and inspected for either colony formation (survival) or no colony formation 
(death). For the details of the after HPP procedure, please see Koseki and Yamamoto (2007) and Koseki et al. 
(2009). 
 

Table 1. Summary of data used for Bayesian Logistic Regression 
 Reference 
Parameters [1]* [2]* 
Microorganism L. monocytogenes ATCC 19117 C. sakazakii ATCC 29544 
Medium  0.01 M phosphate-buffered saline - Trypticase soy broth (TSB) 

- Infant formula (IF) 
Pressure (MPa) 200, 300, 400, 500 400, 450, 500, 550, 600 
Temperature (°C) 22 25 or 40 
pH 3, 4, 5, 6, 7 7.2 for TSB 
Inoculum (log10CFU/ml) 3, 5, 7 3,5,7 
Time (min) 1, 3, 5, 10, 20, 30 1, 3, 5, 10, 20 
Number of observations 360 combinations · 3 replicates = 1080 300 combinations · 3 replicates = 900 
* [1] Koseki and Yamamoto (2007), [2] Koseki et al. (2009). 

 
2.2. Bayesian regression and model development platform 
 
Since the present study aims to investigate and propound the possibility of the use of the Bayesian approach for 
probabilistic modelling of bacterial survival/death expectation, the given models’ structures were directly taken 
from the initial models given in the reference papers (Koseki et al., 2009; Koseki and Yamamoto, 2007). Therefore, 
the models were formed as given below for the data from Koseki and Yamamoto (2007) (Eqs. (1)-(2)) and the data 
from Koseki et al. (2009) (Eqs. (3)-(5)); 
 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑙𝑜𝑔10(𝑡) + 𝑎3𝑝𝐻 + 𝑎4𝐼𝐶 (1) 
 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑡 + 𝑎3𝑝𝐻 + 𝑎4𝐼𝐶 + 𝑎5𝑃 ∙ 𝑡 + 𝑎6𝑃 ∙ 𝑝𝐻 + 𝑎7𝑃 ∙ 𝐼𝐶 + 𝑎8𝑡 ∙ 𝑝𝐻 + 𝑎9𝑡
∙ 𝐼𝐶 + 𝑎10𝑝𝐻 ∙ 𝐼𝐶 + 𝑎11𝑃2 + 𝑎12𝑡2 + 𝑎13𝑝𝐻2 + 𝑎14𝐼𝐶2 

(2) 

 
𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑙𝑛(𝑡) + 𝑎3𝑇 + 𝑎4𝐼𝐶 + 𝑎5𝑀 (3) 

 
𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑙𝑛(𝑡) + 𝑎3𝑇 + 𝑎4𝐼𝐶 + 𝑎5𝑀 + 𝑎6𝑃 ∙ 𝑇 (4) 

 
𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑎0 + 𝑎1𝑃 + 𝑎2𝑡 + 𝑎3𝑇 + 𝑎4𝐼𝐶 + 𝑎5𝑀 + 𝑎6𝑃 ∙ 𝑡 + 𝑎7𝑃 ∙ 𝑇 + 𝑎8𝑃 ∙ 𝐼𝐶 + 𝑎9𝑃 ∙ 𝑀

+ 𝑎10𝑡 ∙ 𝑇 + 𝑎11𝑡 ∙ 𝐼𝐶 + 𝑎12𝑡 ∙ 𝑀 + 𝑎13𝑇 ∙ 𝐼𝐶 + 𝑎14𝑇 ∙ 𝑀 + 𝑎15𝐼𝐶 ∙ 𝑀 + 𝑎16𝑃2

+ 𝑎17𝑡2 + 𝑎18𝑇2 + 𝑎19𝐼𝐶2 

(5) 

 
where 𝑙𝑜𝑔𝑖𝑡(𝑝) is the abbreviation for 𝑙𝑛[𝑝/(1 − 𝑝)] , 𝑙𝑛 is the natural algorithm, 𝑝 is the probability of survival 
(in the range from 0 to 1), 𝑎𝑖 values are model coefficients, 𝑃 is the applied pressure (MPa), 𝑡 is the pressure holding 
time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest in the 
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test medium (log10CFU/ml) and 𝑀 is the type of medium for Eqs. (3)-(5) (TSB and IF coded as dummy variables of 
0 and 1, respectively). The logarithm was applied for 𝑡 in Eq. (1), (3) and (4) since the relationship between holding 
and microbial inactivation is not linear (Buzrul and Alpas, 2004; Buzrul et al., 2005; Koseki et al., 2009; Koseki and 
Yamamoto, 2007).  
 
BLR models were developed using PyMC3 library which is for probabilistic programming in Python (Salvatier et 
al., 2016) over Google Colab and the practice given at the PyMC3 package documentation web page 
(https://docs.pymc.io/notebooks/GLM-logistic.html) for logistic regression was followed. To conduct BLR, the 
first step is to specify a prior distribution to draw samples from the posterior. Especially, when the number of the 
experimental sampling is very low, prior distribution estimation may have an impact on the outcome (van Boekel, 
2020). However, one of the best advantages of the PyMC3 library is its self-tuning strategies for adaptively setting 
the tunable parameters of MCMC (Markov Chain Monte Carlo) over NUTS (No-U-Turn Sampler). Moreover, PyMC3 
provides a very simple, succinct and flexible probabilistic programming platform for quantitative researchers to 
implement statistical models. Its large library of statistical distributions and pre-defined fitting algorithms help 
researchers to focus on the scientific problem rather than the implementation details of Bayesian modelling 
(Salvatier et al., 2016). So, the model settings were left as default in the present study to utilise PyMC3’s 
advantages. As being default, zero-mean normal distribution as a prior with a variance of 10 was applied for 
parameters, which corresponds to non-informative priors. For the logistics regression model, the error 
distribution was specified as binomial. Being different from default settings, 2000 tuning samplings were used 
before the MCMC sampler with 4 chains and “target_accept” parameter was increased to 0.90 to obtain a better 
convergence with the use of smaller step size. 
 
3. Results and Discussion 
 
3.1. Model Development 
 
Two different data sets consisting of 900 and 1080 observations respectively from Koseki et al. (2009) and Koseki 
and Yamamoto (2007) were used in the present study. In brief, these data sets contain the observations for 
survival/death of L. monocytogenes and C. sakazakii after HPP treatments with varying levels of applied pressure 
(MPa) for different pH values where temperature (°C) and pressure medium were also changed in Koseki et al. 
(2009) and Koseki and Yamamoto (2007), respectively. Moreover, initial microbial inoculum (log10CFU/ml) and 
process time (min) were also other important factors of experiments. Five different models (Eqs. (1)-(2) for the 
data from Koseki and Yamamoto (2007) and Eqs. (3)-(5) for the data from Koseki et al. (2009)) were developed 
using the PyMC3 library. Note that although it is not a common practice to separate data as training and test sets 
for survival/death prediction modelling of bacteria using LR (Buzrul, 2019; Koseki et al., 2009; Koseki and 
Yamamoto, 2007), it has been performed in our study. The purpose of this effort was to figure out whether the 
models developed by using MCMC BLR with smaller number of experiments produce satisfying results as it was 
previously mentioned as one of the main advantages of Bayesian regression. So, the data sets were randomly 
separated as training and testing groups using split ratios of 0.10, 0.40, 0.70, 0.90, 0.95 and 0.99 (keeping the ratio 
of 0/1 (death/survival) which was 55.56 and 33.11% for data from Koseki and Yamamoto (2007) and Koseki et 
al. (2009), respectively). This means that the given ratio of the entire data was left to a test set for the developed 
model whereas the rest of the data was used to train it. This was done to observe/compare the prediction 
performance of the models developed using MCMC BLR. The goodness of the models’ fit was assessed using simple 
and classical statistics which are the percentage of model accuracy, sensitivity and specificity with confidence 
matrix. These statistics were calculated as given by Baratloo et al. (2015) as follows (Eqs. (6)-(8)); 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (6) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (7) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (8) 

 
where 𝑇𝑃 is the number of true-positives (observations correctly identified as death (0)); 𝑇𝑁 is the number of 
true-negatives (observations correctly identified as survival (1)); 𝐹𝑃 is the number of false-positives (observations 
incorrectly identified as death (0)); 𝐹𝑁 is the number of false-negatives (observations incorrectly identified as 
survival (1)). Here, the accuracy of the model indicates its ability to estimate both the survival and death results 
correctly. Sensitivity is the ability to differentiate the death cases correctly and specificity is the ability to 
determine the survival cases correctly (Baratloo et al., 2015). 𝐹𝑃 or fail-safe represents a model that telling the 
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bacteria survives under the conditions which it should be inactivated. This means that according to the extreme 
fail-safe model, consumption of the mentioned food is unsafe so it should be discarded (Ratkowsky, 2004). On the 
other hand, 𝐹𝑁 or fail-dangerous is also undesired especially for manufacturers. Because in such a case a new 
treatment with a higher/denser process conditions like higher temperature, longer times would be applied to 
inactivate the “already inactivated” microorganism which is, of course, waste of time and energy (Buzrul, 2019). 
Therefore, along with accuracy, sensitivity and specificity, 𝐹𝑁 and 𝐹𝑃 are also important to assess the preferability 
of a model. The model parameters (mean of posterior distributions as points estimates) with their uncertainty (2.5 
and 97.5% percentiles of posterior distributions) and goodness of fit statistics were given in Tables 2-6 for Eqs. 
(1)-(5). 
 
3.2. Model Test and Prediction 
 
As known, the Bayesian approach does not give only one best fitting line or point estimates but it provides an 
approximation for whole posterior distribution for model parameters (Salvatier et al., 2016). For that purpose, 
PyMC3 uses Markov Chain Monte Carlo to draw samples from the priors to approximate the posteriors. Monte 
Carlo is a popular technique of drawing random samples from a distribution, and Markov Chain refers to that the 
next sample will be drawn according to only previous sample value. The combination of these two methods reveals 
Markov Chain Monte Carlo (MCMC). As more samples are drawn, the approximation of the posterior will converge 
on the true posterior distribution for the model parameters at the end (Koehrsen, 2018). To assess the goodness 
of convergence, trace plots are commonly utilised. In Fig. 1, the trace plot for Eq. (1) was given (for clarity the trace 
plots for other models were not presented). This plot visualises all the samples (except the discarded tuning 
samples) drawn for all the variables as divided into two columns. On the left-hand side of Fig. 1, the final 
approximate posterior distribution for model parameters (in fact they are our model) and on the right-hand side 
the individual sample values at each step of samplings during MCMC were given. The four different colours in the 
figures represent the four different sampling chains. It is seen that the model parameters were not point estimates. 
They were given as posterior distributions displaying how we were uncertain about the true values. From the 
right-hand side of Fig. 1, the sampling chains for the individual parameters seem well converged and stationary 
(there are no large drifts or other odd patterns). So, we can use the mean values of distributions as most likely 
estimates which are given also in Table 2 for Eq. (1) and in Tables 5-6 for other models (PyMC3, 2018). Note that, 
since MCMC BLR is an iterative method producing a distribution, it is possible to face very small and ignorable 
differences in most likely estimates of model parameters if one reruns the code using even the same data. 
Moreover, MCMC BLR approximated a similar conclusion by almost figuring out a normal distribution for model 
parameters and found almost identical parameter’ estimates (mean of posterior distribution) compared to the 
parameters’ point estimates given in Koseki and Yamamoto (2007) for the same model structure. However, if a 
model is still really unsure about the parameters since they distribute in a wide interval (Koehrsen, 2018), it may 
be narrowed further by changing model hyperparameters.  
 
The information about the posterior distributions for all models was given in Table 2-6. Regarding Eq. (1), all the 
accuracy, sensitivity and specificity statistics both for training and test data were found greater than 96% at the 
split ratio of 0.10. It shows that irrespective of the experimental results (being 0 or 1), the model developed using 
MCMC BLR correctly classified the cases with more than 96% accuracy. Moreover, very close goodness of fit values 
among test and train samples indicated that there was not either an over or under-fitting problem. When the test 
split ratio was increased from 0.1 to 0.4, any apparent change in the goodness of statistics did not come through. 
This behaviour went on up to the test split ratio of 0.90. Even though there were very indistinct variations among 
changing test split ratios, models’ prediction performances were almost identical between 0.10-0.90 level for Eq. 
(1). However, when the split ratio went beyond 0.90, the goodness of fit statistics started to indicate an increasing 
overfitting problem. This was previously noted in the literature that a not proper prior distribution estimation and 
a low number of sampling (high number of unknowns) may be the cause of overfitting issues in Bayesian-based 
regression methods (Pacifico, 2021; van Boekel, 2020). Parallel with decreasing prediction certainty, parameters 
uncertainties given with 95% credible interval (2.5 and 97.5% percentiles of highest density interval) of posterior 
distributions were getting wider as the sample size decreased. Although the philosophy behind them is very 
different, credible interval gives an idea about how confidence interval gives in frequentists approach. Therefore, 
as it is valid for confidence interval when the sample size is small, the posterior distributions of the parameters 
(also credible interval) and the predictions become wider. If there is a wider posterior for parameters, it means 
that one has a less certain conclusion/estimate from the model (du Prel et al., 2009). Thus, in brief, as the test split 
ratio increased, we got more brittle models from MCMC BRL. Despite all these negativities, it can be concluded that 
MCMC BLR correctly classified more than 86% of the 𝑇𝑃 and 𝐹𝑃 values of testing set using a non-informative prior 
distribution and only 10 training data that randomly picked among 1080 observation.  
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Figure 1. Trace plot and posterior distribution of parameters for Eq. (1) (The final approximate of the posterior distributions 

for model parameters are on the left-hand side and the individual sample values at each step of samplings are on the right-
hand side for the data from Koseki and Yamamoto (2007)) 

 
Table 2. Posterior summaries of parameter estimates and model agreement statistics for Eq. (1) 

Parameters of 
 Eq. (1) 

Test Split Ratio 

0.10 0.40 0.70 0.90 0.95 0.99 

Intercept (𝑎0) 13.33 13.94 16.64 24.99 3501.54 11797.12 
[10.14|16.75] [10.07 | 18.11] [9.36 | 24.94] [6.59 | 46.39] [1416.53 | 5538.06] [-3885.00 | 31847.39] 

𝑃 (𝑎1) -0.08 -0.08 -0.12 -0.20 -22.57 -62.28 
[-0.10 | -0.06] [-0.10 | -0.06] [-0.16 | -0.08] [-0.34 | -0.08] [-35.78 | -8.96] [-143.84 | -12.50] 

𝑙𝑜𝑔10(𝑡) (𝑎2) -9.45 -9.64 -12.2 -20.42 -2216.81 -1143.81 
[-11.45 | -7.41] [-12.17 | -7.30] [-17.26 | -7.59] [-36.46 | -8.05] [-3485.78 | -884.41] [-2352.38 | -85.49] 

𝑝𝐻 (𝑎3) 2.37 2.48 3.53 6.16 552.40 622.50 
[1.82 | 2.90] [1.84 | 3.14] [2.21 | 5.04] [2.30 | 10.79] [218.29 | 906.46] [12.23 | 1639.54] 

𝐼𝐶 (𝑎4) 1.70 1.82 2.7 4.91 541.41 933.69 
[1.32 | 2.10] [1.34 | 2.33] [1.71 | 3.92] [1.62 | 8.44] [237.20 | 876.25] [-134.12 | 2010.31] 

  S D S D S D S D S D S D 
CM of training 

sets 
S 524 16 346 14 177 3 58 2 30 0 6 0 
D 17 415 13 275 7 137 2 46 0 24 0 4 

CM of test sets 
S 58 2 232 8 396 24 524 16 558 12 558 36 
D 1 47 9 183 14 322 31 401 42 414 111 365 

For training 
sets 

Ac 96.61 95.83 96.91 96.3 100 100 
Se 97.04 96.11 98.33 96.67 100 100 
Sp  96.07 95.49 95.14 95.73 100 100 

For test sets 
Ac 97.22 96.06 94.97 95.16 94.74 86.26 
Se 96.67 96.67 94.29 97.04 97.89 93.94 
Sp  97.92 95.31 95.83 92.82 90.79 76.68 

- 𝑎𝑖  values are model coefficients (results are given as most likely estimates [95% credible interval]), 𝑃 is the applied pressure (MPa), 𝑡 is 
the pressure holding time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest (log10CFU/ml) 
- S:Survival, D:Death, Ac: Accuracy,  Se: Sensitivity, Sp: Specificity, CM: Confusion matrix. 

- The given colours indicate  levels as percentage. 
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Regarding Eq. (2), the model developed using the same data with Eq. (1), showed slightly better agreement with 
training and testing sets for 0.1 and 0.4 test split ratios. Accuracy, sensitivity and specificity statistics of these 
models were almost within the range of 97-98%. For the 0.70 test split ratio, the goodness of fit statistics for the 
training data set maintained close to 98% where a 3% reduction was observed for agreement between model 
predictions and the test set. However, since the difference between model agreement statistics of training and 
testing data was so small and ignorable, it is worth saying that using only 30% of the experimental data set (324 
observation instead of 1080) can give a good estimate of the posterior probability of bacterial survival/death after 
HPP treatment. However, for greater split ratios, the models started to overestimate the results and reached 
remarkably wider posterior distributions faster (at higher sampling sizes) than Eq. (1) did. As the test split ratio 
increased, specificity and accuracy percentages decreased, as well. Not only for Eq. (2) but also for Eq. (1), the most 
affected goodness of fit criteria from the decrement of the number observation introduced to the model were 
specificity and accuracy in the decreasing order. On the other hand, sensitivity somehow was not affected by the 
change of sample size. It means that the models, developed using a very limited number of samples, were highly 
capable of foreseeing if HPP treatment is sufficient and the bacterial death takes place. However, they have a higher 
tendency to label survival cases as death (or fail-safe) for high split ratios. These may lead to food safety problems 
as it may cause the acceptance of unsafe foods as if they were safe. But overall, even the 0.90 split ratios led to 
acceptable prediction accuracy from the point of tests’ prediction perspective. On the other hand, parameter 
removal can improve the performance of Eq. (2) and it may also be beneficial to solve the overfitting problem at 
high test split ratios. As it is well-known, model complexity is the main source of overestimating problems (James 
et al., 2013).  

 
Table 3. Posterior summaries of parameter estimates and model agreement statistics for Eq. (2) 

Parameters of 
Eq. (2) 

Test Split Ratio 
0.10 0.40 0.70 0.90 0.95 0.99 

Intercept (𝑎0) 50.99 40.84 106.64 9551.77 14589.76 20567.35 
[ 28.99 | 71.19] [17.25 | 66.66] [39.69 | 182.99] [3742.87 | 14664.53] [572.90 | 117.97] [-31738.04 | 123821.62] 

𝑃 (𝑎1) 
-0.27 -0.1 -0.39 -52.02 1.78 -93.59 

[-0.40 | -0.14] [-0.37 | -0.06] [-0.82 | 0.02] [-93.28 | 0.002] [-105.23 | 2115.42] [-275.17 | 21.94] 

𝑡 (𝑎2) 
-1.61 -1.14 -1.78 711.50 265.40 130.54 

[-2.74 | -0.81] [-2.14 | -0.10] [-4.94 | 1.73] [-64.56 | 1614.56] [-540.40 | 2115.42] [-767.91 | 1223.20] 

𝑝𝐻 (𝑎3) -1.90 -3.43 -12.35 685.11 328.14 -2.39 
[-5.83 | 1.46] [-8.13 | 1.26] [-23.87 | -1.96] [-1459.07 | 2322.94] [-1190.71 | 1577.80] [-1588.52 | 2084.44] 

𝐼𝐶 (𝑎4) 
4.77 4.86 4.33 -413.88 -40.06 436.39 

[1.54 | 8.14] [0.64 | 8.99] [-7.80 | 16.85] [-1978.28 | 1184.28] [-965.90 | 783.25] [-1497.10 | 2474.87] 

𝑃 ∙ 𝑡 (𝑎5) 
0.00 -0.001 -0.01 -6.54 -8.05 -10.39 

[-0.002 | 0.003] [-0.01 | 0.002] [-0.02 | 0.004] [-11.16 | -2.44] [-13.5 | -2.51] [-32.94 | -1.19] 

𝑃 ∙ 𝑝𝐻 (𝑎6) 
-0.01 -0.00 0.01 0.23 3.43 1.13 

[-0.02 | 0.01] [-0.02 | 0.02] [-0.04 | 0.05] [-2.71 | 5.25] [-5.86 | 13.52] [-7.49 | 15.22] 

𝑃 ∙ 𝐼𝐶 (𝑎7) 
-0.02 -0.02 0.00 4.45 -0.47 16.79 

[-0.03 | -0.004] [-0.03 | -0.003] [-0.05 | 0.05] [0.44 | 8.53] [-5.17 | 5.88] [3.10 | 39.52] 

𝑡 ∙ 𝑝𝐻 (𝑎8) 
0.13 0.14 0.58 40.00 36.22 333.07 

[0.02 | 0.25] [-0.003 | 0.31] [0.05 | 1.13] [-77.35 | 136.98] [-181.20 | 233.94] [-380.41 | 1711.29] 

𝑡 ∙ 𝐼𝐶 (𝑎9) 
-0.09 -0.10 0.103 23.53 -12.59 -271.10 

[-0.16 | -0.02] [-0.21 | -0.002] [-0.25 | 0.44] [-33.34 | 92.76] [339.00 | 465.95] [-1118.02 | 720.22] 

𝑝𝐻 ∙ 𝐼𝐶 (𝑎10) 
0.09 0.22 -0.23 119.57 120.92 605.82 

[-0.38 | 0.49] [-0.39 | 0.86] [-1.75 | 1.22] [-146.31 | 476.125] [-562.26 | 542.77] [-216.03 | 2516.81] 

𝑃2 (𝑎11) 
0.00 0.00 0.00 -0.05 -0.25 -0.25 

[0.00 | 0.001] [-0.00 | 0.001] [-0.00 | 0.001] [-0.11 | 0.04] [-0.43 | -0.01] [-0.54 | -0.03] 

𝑡2 (𝑎12) 
0.02 0.01 -0.01 17.42 25.84 -103.95 

[0.01 | 0.03] [-0.002 | 0.03] [-0.07 | 0.05] [4.07 | 28.71] [-20.87 | 60.58] [-605.40 | 274.51] 

𝑝𝐻2 (𝑎13) 
0.57 0.49 1.42 200.05 123.41 442.05 

[0.15 | 1.01] [-0.07 | 1.04] [0.21 | 2.81] [46.06 | 4995.45] [-81.13 | 385.90] [-338.22 | 1332.83] 

𝐼𝐶2 (𝑎14) 
0.35 0.42 0.27 58.61 435.68 -67.18 

[0.04 | 0.69] [-0.04 | 0.87] [-0.86 | 1.44] [-66.65 | 182.98] [172.72 | 983.18] [-899.08 | 985.58] 

  S D S D S D S D S D S D 

CM of training 
sets 

S 529 11 554 6 176 4 60 0 30 0 6 0 
D 14 418 10 278 3 141 0 48 0 24 0 4 

CM of test sets 
S 59 1 236 4 400 20 513 27 555 15 579 15 
D 1 47 5 187 15 321 33 399 48 408 159 317 

For training 
sets 

Ac 97.43 98.11 97.84 100 100 100 
Se 97.96 98.93 97.78 100 100 100 
Sp  96.76 96.53 97.92 100 100 100 

For test sets 
Ac 98.15 97.92 95.37 93.83 93.86 83.74 
Se 98.33 98.33 95.24 95 97.37 97.47 
Sp  97.92 97.4 95.54 92.36 89.47 66.6 

- 𝑎𝑖  values are model coefficients (results are given as “most likely estimates [95% credible interval]”), 𝑃 is the applied pressure (MPa), 𝑡 is 
the pressure holding time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest (log10CFU/ml) 
- S:Survival, D:Death, Ac: Accuracy,  Se: Sensitivity, Sp: Specificity, CM: Confusion matrix. 

- The given colours indicate  levels as percentage. 
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Eqs. (4)-(6) were developed for the data taken from Koseki et al. (2009). The reason for applying the same 
modelling procedure for similar datasets was the difference between the distribution balance of them. As 
previously noted, the ratio of 0/1 (death/survival) is 55.56% for the data from Koseki and Yamamoto (2007) 
which is well balanced whereas it is only 33.11% for the data from Koseki et al. (2009). As known, an imbalanced 
dataset may lead to biased parameter estimates and classification performance of a logistic regression model 
(Rahman et al., 2020). So in the present study, the performance of Bayesian-based logistic regression was also 
conducted once more to observe whether it is capable of handling moderately imbalanced bacterial survival data 
at various sampling sizes. At this point, it should also be noted that the performance of a model is not only 
dependent on the methods but also affected by various factors which of one is the data itself. But in our case, since 
the models in the original papers predicted quite well for both data, it was thought that performing a comparison 
using different data sets with changing case prevalence was appropriate.  
 

Table 4. Posterior summaries of parameter estimates and model agreement statistics for Eq. (3) 
Parameters of 

Eq. (3) 
Test Split Ratio 

0.10 0.40 0.70 0.90 0.95 0.99 

Intercept (𝑎0) 19.14 16.68 20.18 2675.88 3725.6 -7325.47 
[14.99 | 23.72] [12.13 | 21.62] [12.10 | 28.27] [528.57 | 4324.96] [665.98 | 7608.41] [-15996.09 | 1915.64] 

𝑃 (𝑎1) -0.05 -0.4 -0.05 -6.33 -12.96 5.46 
[-0.05 | -0.04] [-0.05 | -0.03] [-0.07 | -0.03] [-10.55 | -1.47] [-23.71 | -3.52] [-11.51 | 26.43] 

𝑙𝑛(𝑡) (𝑎2) -3.53 -3.45 -3.75 -499.42 -1068.63 -1493.99 
 [-4.21 | -2.87] [-4.25 | -2.59] [-4.92 | -2.60] [-864.84 | -154.08] [-1890.85 | -389.22] [ -2445.49| -421.73] 

𝑇 (𝑎3) -0.28 -0.26 -0.27 -32.49 -29.67 48.71 
[-0.34 | -0.21] [-0.34 | -0.19] [-0.38 | -0.15] [-54.87 | -7.75] [-92.13 | 21.58] [-242.68 | 266.66] 

𝐼𝐶 (𝑎4) 2.03 1.91 2.10 243.68 647.07 657.36 
[1.61 | 2.42] [1.48 | 2.39] [1.44 | 2.87] [57.84 | 410.62] [206.43 | 1213.23] [-442.08 | 1794.71] 

𝑀 (𝑎5) 8.29 7.69 -9.97 1021.38 2091.38 1335.80 
[6.80 | 9.80] [5.99 | 9.47] [6.90 | 13.12] [371.79 | 2064.88] [842.96 | 3281.05] [138.40 | 2784.19] 

  S D S D S D S D S D S D 
CM of training 

sets 
S 513 29 337 24 175 6 60 0 30 0 6 0 
D 29 239 18 161 10 79 2 28 0 15 0 3 

CM of test sets 
S 58 2 226 15 405 16 525 17 544 28 516 80 
D 1 29 5 114 29 180 40 228 53 230 150 145 

For training 
sets 

Ac 92.84 92.22 94.07 97.78 100 100 
Se 94.65 93.35 96.69 100 100 100 
Sp  89.18 89.94 88.76 93.33 100 100 

For test sets 
Ac 96.67 94.44 92.86 92.96 90.53 74.19 
Se 96.67 93.78 96.2 96.86 95.1 86.58 
Sp  96.67 95.8 86.12 85.07 81.27 49.15 

- 𝑎𝑖  values are model coefficients (results are given as “most likely estimates [95% credible interval]”), 𝑃 is the applied pressure (MPa), 𝑡 is 
the pressure holding time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest (log10CFU/ml) 
- S: Survival, D:Death, Ac: Accuracy,  Se: Sensitivity, Sp: Specificity, CM: Confusion matrix. 

- The given colours indicate  levels as percentage. 

 
Table 5. Posterior summaries of parameter estimates and model agreement statistics for Eq. (4) 

Parameters of 
 Eq. (4) 

Test Split Ratio 
0.10 0.40 0.70 0.90 0.95 0.99 

Intercept (𝑎0) 12.30  10.32 20.58 -806.19 6276.49 -9516.54 
[1.92 | 23.49] [-2.433 | 23.94] [-1.80 | 42.24] [-969.87 | 2577.42] [-2120.08 | 13597.42] [-25288.56 | 6433.26] 

𝑃 (𝑎1) -0.03 -0.03 -0.05 -0.86 -17.36 15.18 
[-0.05 | -0.01] [-0.05 | -0.00] [-0.10 | -0.01] [-7.51 | 4.38] [-31.58 | -0.09] [-20.32 | 54.00] 

𝑙𝑛(𝑡) (𝑎2) -3.55  -3.50 -3.80 -735.51 -1004.82 -1434.74 
[-4.29 | -2.91] [-4.32 | -2.72] [-5.11 | -2.63] [-971.41 | -433.91] [-1559.24 | -520.316] [-2511.71 | -307.97] 

𝑇 (𝑎3) -0.05 -0.05 -0.27 92.17 -114.38 139.47 
[-0.38 | 0.29] [-0.46 | 0.35] [-0.94 | 0.35] [-15.29 | 192.82] [-334.26 | 111.26] [-224.77 | 713.98] 

𝐼𝐶 (𝑎4) 2.04  1.94 2.13 375.07 622.27 519.30 
[1.61 | 2.43] [1.47 | 2.42] [1.36 | 2.89] [227.27 | 502.84] [260.53 | 951.71] [-506.30 | 2053.55] 

𝑀 (𝑎5) 8.31  7.77 10.12 1625.54 2057.71 1253.74 
[6.78 | 9.99] [6.00 | 9.58] [6.80 | 13.60] [1001.57 | 2220.34] [1071.13 | 3100.93] [93.89 | 2766.49] 

𝑃 ∙ 𝑇 (𝑎7) -0.00  -0.00 0.00 -0.25 0.15 -0.27 
[-0.001 | 0.00] [-0.001 | 0.00] [-0.001 | 0.001] [-0.44 | -0.06] [-0.26 | 0.59] [-1.41 | 0.58] 

  S D S D S D S D S D S D 
CM of training 

sets 
S 516 26 338 23 175 6 59 1 30 0 6 0 
D 25 243 19 160 9 80 2 28 0 15 0 3 

CM of test sets 
S 56 4 230 11 405 16 522 20 546 26 488 108 
D 1 29 10 109 32 177 49 219 42 241 115 180 

For training 
sets 

Ac 93.7 92.22 94.44 96.67 100 100 
Se 95.2 93.63 96.69 98.33 100 100 
Sp  90.67 89.29 89.89 93.33 100 100 

For test sets 
Ac 94.44 94.17 92.38 91.48 92.05 74.97 
Se 93.33 95.44 96.2 96.31 95.45 81.88 
Sp  96.67 91.6 84.69 81.72 85.16 61.02 

- 𝑎𝑖  values are model coefficients (results are given as “most likely estimates [95% credible interval]”), 𝑃 is the applied pressure (MPa), 𝑡 is 
the pressure holding time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest (log10CFU/ml) 
- S: Survival, D:Death, Ac: Accuracy,  Se: Sensitivity, Sp: Specificity, CM: Confusion matrix. 

- The given colours indicate  levels as percentage. 
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Table 6. Posterior summaries of model parameter estimates and model agreement statistics for Eq. (5) 
Parameters of 

Eq. (5) 
Test Split Ratio 

0.10 0.40 0.70 0.90 0.95 0.99 

Intercept (𝑎0) 
19.04 516.46 -1204.25 1546.76 3260.69 124904.24 

[-1701.74 | 1842.36] [-1358.73 | 231667] [-3460.17 | 567.69] [-1468.81 | 9007.78] 
[-4571.08 | 
10062.48] 

[-514247.5 | 2297439.9] 

𝑃 (𝑎1) 0.00 0.06 -0.24 2.09 14.29 -127.80 
[-0.13 | 0.11] [-0.04 | 0.15] [-0.53 | 0.01] [-4.88 | 11.75] [-47.51 | 61.14] [-1768.90 | 1506.74] 

𝑡 (𝑎2) -0.39 0.69 -1.26 -629.61 211.38 -5.45 
[-1.97 | 1.65] [-0.29 | 1.53] [-4.60 | 1.57] [-1031.17 | -287.73] [1659.27 | 2171.30] [-1405.36 | 830.20] 

𝑇 (𝑎3) -1.63 -34.67 82.47 157.20 166.01 -89.92 
[-119.60 | 110.12] [-151.52 | 86.89] [-27.96 | 236.60] [-46.56 | 474.95] [-68.75 | 820.31] [-1658.70 | 1377.97] 

𝐼𝐶 (𝑎4) 4.16 2.44 0.39 725.35 377.11 -500.44 
[-1.21 | 10.02] [-0.13 | 7.89] [-9.39 | 11.61] [-201.82 | 1672.02] [-550.76 | 1451.28] [-2793.53 | 1361.02] 

𝑀 (𝑎5) 19.19 9.95 39.21 87.18 683.99 6.94 
[-5.61 | 37.50] [-5.18 | 23.02] [0.81 | 72.89] [-1149.62 | 1309.29] [-195.29 | 2444.31] [-1480.20 | 1784.24] 

𝑃 ∙ 𝑡 (𝑎6) -0.002 -0.004 -0.01 -0.53 -12.81 -776.88 
[-0.01 | 0.001] [-0.01 | -0.003] [-0.01 | 0.001] [-1.47 | 0.08] [-20.38 | -7.49] [-2566.53 | 5.83] 

𝑃 ∙ 𝑇 (𝑎7) 0.00 -0.00 0.002 -0.65 -1.03 86.87 
[-0.001 | 0.002] [-0.002 | 0.001] [-0.001 | 0.01] [-1.04 | -0.35] [-3.23 | 0.88] [-95.14 | 396.96] 

𝑃 ∙ 𝐼𝐶 (𝑎8) -0.01 -0.001 0.01 -0.85 9.41 -81.64 
[-0.02 | 0.01] [-0.01 | 0.01] [-0.01 | 0.02] [-3.40 | 1.23] [0.48 | 27.73] [-1288.78 | 263.91] 

𝑃 ∙ 𝑀 (𝑎9) -001 0.005 -0.01 1.51 11.65 660.90 
[-0.04 | 0.04] [-0.03 | 0.03] [-0.08 | 0.06] [-3.15 | 7.13] [-30.08 | 48.99] [-65.92 | 2062.86] 

𝑡 ∙ 𝑇 (𝑎10) 0.00 -0.01 -0.2 -6.87 -1.83 -529.77 
[-0.02 | 0.02] [-0.03 | +0.01] [-0.01 | 0.05] [-19.55 | 6.63] [-17.22 | 5.75] [-2677.45 | 556.56] 

𝑡 ∙ 𝐼𝐶 (𝑎11) -0.36 0.01 0.15 42.49 341.69 -210.41 
[-0.14 | 0.09] [-0.11 | 0.12] [-0.05 | 0.37] [-10.72 | 111.82] [-74.98 | 1320.75] [-1593.44 | 1212.26] 

𝑡 ∙ 𝑀 (𝑎12) 0.17 0.36 0.85 134.17 238.14 -215.62 
[-0.24 | 0.77] [-0.03 | 0.88] [-0.19 | 1.93] [-85.67 | 398.57] [-919.56 | 15995.39] [-2062.35 | 1207.76] 

𝑇 ∙ 𝐼𝐶 (𝑎13) -0.05 -0.05 0.02 -4.08 -8.07 57.74 
[-0.11 | 0.01] [-0.12 | 0.002] [-0.10 | 0.12] [-16.87 | 15.37] [-117.59 | 62.42] [-1525.81 | 2164.48] 

𝑇 ∙ 𝑀 (𝑎14) 0.06 0.04 -0.02 105.57 512.82 238.67 
[-0.15 | 0.31] [-0.18 | 0.30] [-0.42 | 0.44] [17.93 | 224.93] [-109.06 | 1316.83] [-1165.81 | 2407.44] 

𝑀 ∙ 𝐼𝐶 (𝑎15) -1.18 -1.15 -3.30 19.39 437.09 112.89 
[-2.91 | 0.39] [-2.68 | 0.64] [-7.22 | 0.94] [-187.82 | 331.72] [-1404.80 | 2912.93] [-1193.40 | 967.14] 

𝑃2 (𝑎16) -0.00 -0.00 0.00 -0.003 -0.09 3.29 
[0.00 | 0.00] [-0.00 | 0.00] [-0.00 | 0.00] [-0.02 | 0.01] [-0.25 | 0.02] [-17.68 | 35.31] 

𝑇2 (𝑎17) 0.03 0.02 0.07 16.38 22.54 -236.37 
[0.01 | 0.06] [0.01 | 0.05] [0.02 | 0.12] [5.02 | 26.51] [-239.30 | 327.03] [-2530.95 | 1994.51] 

𝑡2 (𝑎18) 0.02 0.53 -1.29 0.39 -2.31 -298.12 
[-1.69 | 1.83] [-1.34 | 2.32] [-3.57 | 0.51] [-2.35 | 4.59] [-10.47 | 4.26] [-2304.11 | 994.74] 

𝐼𝐶2 (𝑎19) 0.35 0.28 0.12 60.78 -11.07 324.25 
 [0.05 | 0.54] [0.05 | 0.5] [-0.42 | 0.70] [-2.59 | 210.25] [-69.85 | 3.33] [-1446.21 | 2578.79] 

  S D S D S D S D S D S D 
CM of training 

sets 
S 524 18 346 15 176 5 60 0 30 0 6 0 
D 22 246 12 167 8 81 2 28 0 15 0 3 

CM of test sets 
S 57 3 227 14 401 20 524 18 540 32 371 225 
D 2 28 3 116 28 181 44 224 57 226 97 198 

For training 
sets 

Ac 95.06 95 95.19 97.78 100 100 
Se 96.68 95.84 97.24 100 100 100 
Sp  91.79 93.3 91.01 93.33 100 100 

For test sets 
Ac 94.44 95.28 92.38 92.35 89.59 63.86 
Se 95 94.19 95.25 96.68 94.41 62.25 
Sp  93.33 97.48 86.6 83.58 79.86 67.12 

- 𝑎𝑖  values are model coefficients (results are given as “most likely estimates [95% credible interval]”), 𝑃 is the applied pressure (MPa), 𝑡 is 
the pressure holding time (min), 𝑇 is the process temperature (°C), 𝐼𝐶 is the inoculum concentration of the bacteria of interest (log10CFU/ml) 
- S: Survival, D:Death, Ac: Accuracy,  Se: Sensitivity, Sp: Specificity, CM: Confusion matrix. 

- The given colours indicate  levels as percentage.  

 
The posterior information of the simplest model (Eq. (3)) for this moderately imbalanced data set was given in 
Table 4. When the test split ratio was set as 0.10, the goodness of fit statistics for the test set was calculated as a 
little higher than their training counterparts. This may be attributed to the imbalance of case prevalence of the 
used data set. Because it brings to mind that the test data set might consist of easy to predict (more compatible 
with the model) examples than the training set. For such a case, model parameters can be changed, test and 
training data can be redistributed or other validation methods such as cross-validation might be employed to use 
all possible subsets of the data for both training and testing. Similar to the previous model, as the test splitting 
ratios increased the model started to overestimate the results and the model uncertainty increased gradually. But 
still relatively acceptable prediction accuracy was obtained up to 0.9-0.95 split level. The addition of 𝑃 ∙ 𝑇 
parameter to Eq. (3) gave Eq. (4). When the results were analysed, this change did not result in a big difference in 
the final model accuracy except a slightly better-balanced goodness of fit statistics appearing between training and 
test. However, the mentioned differences were small and the models could still be considered as acceptable. Since 
the 𝑃 ∙ 𝑇 parameter in Eq. (4) had so small values of coefficients for different splitting ratios, it had a very negligible 
contribution to the model prediction comparing to the other model parameters. A similar situation present for Eq. 
(5), as well and some of the model parameters were frivolous. So using model simplification methods such as 
comparison of WAIC (Widely-applicable Information Criterion) values or LOO (Leave-one-out cross-validation) of 
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different models, the best possible parameter subset of the models can be chosen (Vehtari et al., 2017). A similar 
procedure was carried out by Koseki et al. (2009) and some of the parameters were removed from Eq. (5) to obtain 
minimum AIC (Akaike's Information Criterion). However, since the main purpose of the present paper is to assess 
the potential use of MCMC BLR and its reaction against low sampling sizes and changing case prevalence, a 
parameter elimination practice was not followed. Regarding the effect of increased test split ratios, model 
behaviour is almost identical for Eqs. (3)-(5) with Eqs. (1)-(2). 
 
To compare the effects of different model parameters on model output, there are several alternatives. The most 
popular and the easiest one is the comparison of the “Odds Ratio” of the model parameters and their uncertainties. 
The odds ratio is a popular statistic for likelihood approximation and it simply tells us that one unit of increase in 
an explanatory variable changes the expected likelihood results at the level of one odds ratio times. Therefore, if 
the odds ratio of a parameter is equal to one, this means that two outputs (death or survival) are independent of 
that parameter (Bland and Altman, 2000; UCLA, 2016). On the other hand, when the odds ratio is between 0-1, this 
means that there is a negative correlation between the parameter and expected case compared to the reference, 
and vice versa for an odds ratio that is greater than 1 (Szumilas, 2010). For instance, the odds ratio of pressure 
term for Eq. (1) was calculated as 0.96 to expect survival of bacteria after HPP treatment. It means that every unit 
of increase of the pressure is likely to decrease the survival probability of the bacteria 0.96 times.  
 
Rather than odds ratio, posterior predictive regression lines allow us to visually inspect the most likely estimate 
of model predictions and its distribution versus varying levels of models’ explanatory variables (Fig. 2). In these 
figures, 1000 different curves for varying levels of the inspected parameters were given where the mean values of 
the other parameters were used. For example, in Fig. 2(a), pressure values were changed between 200-500 MPa 
but the rest of the model parameters were kept at their means which were 𝑝𝐻 = 5, 𝐼𝐶 = 5 log10CFU/ml and 
𝑙𝑜𝑔10(𝑡) = 0.83 min. Moreover, where it was necessary, some plots were drawn by extrapolating the model to an 
acceptable level out of the experimental range to provide a clearer view of the trend for posterior predictive. In 
those figures, the black dashed lines display the most likely estimate of the prediction which were drawn using 
coefficients of parameters given in Table 2. Since the red curves correspond to 1000 different curves for each level 
of a given parameter from the posterior distribution, they seem blurry and the saturation of the colour gives an 
idea about the frequency and distribution of the predictions. Moreover, 0.1, 0.5 and 0.9 probability (or 10, 50 and 
90% probability) for achieving bacterial inactivation were marked. The region of probability <0.5 can be assigned 
as “likely to achieve the target log reduction” (Buzrul, 2019). From the figures, it can be concluded that there was 
a negative correlation between 𝑃, 𝑙𝑜𝑔10(𝑡) and survival probability of L. monocytogenes. On the other hand,  lower 
values of 𝑝𝐻 and 𝐼𝐶 lead to a higher probability of bacterial log reduction. For the values approximately 𝑃 > 325 
MPa, 𝑙𝑜𝑔10(𝑡) > 0.65 min, 𝑝𝐻 < 0.57 and 𝐼𝐶 < 6 log10CFU/ml, inactivation probability of bacteria was greater 
than 0.5. Moreover, for the values 𝑃 > 360 MPa, 𝑙𝑜𝑔10(𝑡) > 0.85 min, 𝑝𝐻 < 4.75 and 𝐼𝐶 < 4.70 log10CFU/ml, 
achieving desired bacterial log reduction probability was greater than 0.9 for the given levels of the other 
parameters. As an advantage of the probabilistic modelling, given probabilities in Fig. 2, are also valid for the levels 
of the parameters higher/lower than the studied range (Buzrul, 2019). For instance, the effects of 𝑃 > 360 MPa 
were also distinguishable. As an advantage of the BLR, the distribution of the output uncertainty around the most 
likelihood curve was also visible. As it was apparent from the trace plot of parameters (Fig. 1), posterior 
distributions were unimodal and quite symmetric. As a result, the predictive posterior distribution of survival 
probability from Eq. (1) also showed a similar distribution as seen from Fig. 2. However, for the given parameter 
levels, posterior predictive distributions were a little wider for higher values of 𝑝𝐻, 𝐼𝐶 and lower values of 𝑙𝑜𝑔10(𝑡). 
For all the mentioned levels, bacteria was more prone to survive. So, the producers need to pay more attention for 
these more uncertain regions in their processes to avoid from possible food safety problems.  
 
3.3. Perspective 
 
Probabilistic modelling is an emerging technique in statistical learning of bacterial survival/death or growth/no 
growth. Among them, LR is very popular and almost the standard method to analyse binary and ordered 
categorical outcome data. However, the classical frequentist approach (the maximum likelihood estimation) to 
determine point estimates of LR requires large sample arguments and their performance is often problematic for 
small or moderate volume size of data sets (O'Brien and Dunson, 2004). Bayesian modelling, which is an important 
sub-discipline of the probabilistic approach is suitable for such cases. It has several important advantages over 
likelihood-based frequentist methods for analysing multivariate categorical data. Not all but the most important 
advantages of BLR, especially for MCMC algorithm, are: [1] there is no need for large sample data sets, [2] it can 
handle the existence of missing data, [3] it is easy to implement with the use of available libraries like PyMC3 and 
[4] it gathers realistic and not fixed information about the distribution and uncertainty of predictive outputs and 
model parameters (O'Brien and Dunson, 2004; Salvatier et al., 2016; van Boekel, 2020).  
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Fig. 2. Posterior predictive distributions for L. monocytogenes (for the data from Koseki and Yamamoto (2007)) using Eq. (1) 

for varying levels of (a) pressure (𝑃), (b) pH, (c) log10Time (𝑙𝑜𝑔10(𝑡)) and (d) inoculum (𝐼𝐶) (for all plots, the constant 
process variables are 𝑃 = 350 MPa, 𝑝𝐻 = 5, 𝐼𝐶 = 5 log10CFU/ml and 𝑙𝑜𝑔10(𝑡) = 0.83 min except the one given for each 

where survival and death cases were coded as 1 and 0, respectively) 

 
Compared to reference studies (Koseki et al. (2009) and Koseki and Yamamoto (2007)), MCMC BLR can produce 
satisfying results even for test data sets using 90 and 108 number of experimental data (test split ratio of 0.90) 
instead of 900 and 1080, respectively, for Koseki et al. (2009) and Koseki and Yamamoto (2007). Compared to the 
per cent concordance statistics (the equivalent of per cent accuracy calculated in the present study) given in those 
references, MCMC BLR can produce similar model agreements for both training and test comparison (note that the 
given concordance results in the reference studies were calculated using all data set as training and leave one out 
cross-validation was also applied only by Koseki et al. (2009)). Furthermore, the use of 45 and 54 data points (test 
split ratio of 0.95) still provides a fair amount of knowledge to evaluate the processes although the 
misclassification rates slightly increased. When the time and cost savings with the reduction of experimental 
works are considered, a small increase in the misclassification ratios might be acceptable. However, when the data 
size reduced to 9 and 10, an obvious overfitting problem arose which may lead producers to give wrong decisions. 
So, it can be concluded that MCMC BLR can be used with a smaller number of experimental data (about 50 
experimental sample) to produce a relatively reliable probability models. Although it did not conduct in the 
present study, elimination of weakly or not contributing parameters may further improve the models’ prediction 
accuracy. On the other hand, although a good convergence was obtained for given models during MCMC sampling, 
using a more informative prior may improve model performance instead of a non-informative one. If someone 
already has an idea about the parameter distributions, posteriors can take shape and credible interval can narrow 
faster. And the use of a weakly informative prior is always suggested since it prevents Bayesian regressions from 
overfitting (McElreath, 2016), and has a stabilising effect on MCMC simulation (Korner-Nievergelt et al., 2015). A 
detailed guideline about covering the tips about prior selection was given by van Boekel (2020). Being like it was 
done in the current study, for scientists non-experienced in BLR, a non-informative prior may work when the 
number of tuning iterations were increased which is very easy with a cost of more computation time. Using tuning 
samples, a stationary prior is automatically supplied for a speed-up calculation of expectations. In the PyMC3 
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library, the tuning samples were discarded since it would be theoretically shaky to suggest that they came from 
the stationary distribution at all (Carroll, 2019). 
 
Since the uncertainty distribution for posterior predictive is available with BLR, manufacturers can consider and 
pay more attention to the levels of process parameters separately or in combination for which high deviation 
exists. In addition to high uncertainty, the posterior distribution of parameter estimates and the model prediction 
may have a non-symmetric distribution skewing left or right. Having a full perspective about posterior 
distributions of parameters and estimates strengthen manufacturers hands against food safety risks allowing them 
to foresee unusual deviations of the system.  
 
Contrary to its ease of implementation, calculation of expectations by MCMC BLR may take hours especially if the 
dataset is big and the computational sources are limited. However, it can be tolerable when the amount of time 
possibly saved from the experimental workload is considered. Moreover, with the use of more powerful sources 
like Google Colab or high-performance computing services like TRUBA which is provided by TUBITAK ULAKBIM, 
calculation times can be reduced to minutes. No doubt, this makes the use of MCMC BLR more attractive.  
 
4. Conclusion 
 
This study indicates that Bayesian Logistic Regression can be a useful tool to describe the survival/death 
probability of microorganisms after high-pressure processes with lower experimental data requirement (with 
about 50 experimental samples) than the frequentist approach and also with the ability to handle missing 
observation and imbalanced dataset. Although weakly informative priors of parameters are generally required for 
a better and faster convergence, with the help of well developed and documented libraries like PyMC3 for Python, 
both coding and implementation of Markov Chain Monte Carlo Bayesian Logistic Regression is easily applicable 
and can produce satisfactory predictions even with the use of non-informative priors. Since Bayesian Logistic 
Regression produces posterior distributions for parameters and predictions, more realistic information about the 
model uncertainty is possible to obtain instead of the presumed and fixed distributions followed in the frequentist 
approach. Moreover, with the use of free high computational sources, the iterations of the Markov Chain Monte 
Carlo can be completed only in minutes and Bayesian approaches become more attractive. Therefore, not only for 
high-pressure processes but also for other food operations, the design of new studies requiring a smaller number 
of experiments to save time and costs may be possible for researchers. Besides, a more detailed risk assessment 
paying attention to changing and possibly non-symmetric distributions for varying levels of process parameters 
alone or in combination may be feasible for the food industry. 
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