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Abstract. The Cauchy problem for the Kawahara equation with data in

analytic Gevrey spaces on the circle is considered and its local well-posedness
in these spaces is proved. Using Bourgain-Gevrey type analytic spaces and

appropriate bilinear estimates, it is shown that local in time wellposedness
holds when the initial data belong to an analytic Gevrey spaces of order σ.

Moreover, the solution is not necessarily Gσ in time. However, it belongs to

G5σ near zero for every x on the circle.

1. Introduction, related results and position problem

The shallow water equations describes the flow below a pressure surface in a fluid.
They are PDEs of hyperbolic type (or parabolic if we consider viscous shear). For
x ∈ T, t ∈ R, we denote by u = u(x, t). When we write (1.1), we mean the equation
number i from the problem (1.1) subjected with the initial data u(x, 0) = u0(x).
We consider {

∂tu+ α∂5xu+ β∂3xu+ γ∂xu+ µ∂x(u2) = 0,
u(x, 0) = u0(x)

(1.1)

here the parameters α 6= 0, β and γ are real numbers and µ is a complex number .
To outline our contributions, we will extend the results in [2] and [23] , where the
solution was obtained in Xs,b to the analytic Gevrey-Bourgain spaces Xσ,δ,s,b with
also regularity in time.

So, from the mathematical point of view, it is important to study the well-
posedness and time regularity for the shallow water equations which happens in
the water waves with surface tension, in which the Bond number takes on the crit-
ical value (See [3], [5], [6], [8]).
Recently, Y. Jia and Z. Huo [2] considered a Cauchy problems (1.1), the authors
obtained local well-posedness for data in Hs(R) with s > −7/4 for ∂xu

2 .
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Motivated by all the above papers, we investigate the well-posedness of (1.1) in
Analytic Gevry spaces to extend results in [23]. The second novelty located in the
study of Gevrey’s temporal regularity for the unique solution, inspired and moti-
vated by [3] and [5] on the temporal regularity of solutions to KdV-type equations
with analytical data of Gevrey.

We begin by presenting some ideas to get the well-posedness, we are working
mainly on the integral equivalent formulation of (1.1) as

u = S(t)u0 −
∫ t

0

S(t− t′)∂xu2(t′)dt′, (1.2)

where the unit operator related to the corresponding linear equation is

S(t) = F−1x e−it(αξ
5−βξ3+γξ)Fx. (1.3)

Let us define the phase function as follows

φ(ξ) = αξ5 − βξ3 + γξ, (1.4)

We define the needed spaces beginning by the spaces of analytic Gevrey functions
that contain our initial data. For s ∈ R, δ > 0 and σ ≥ 1, let

Gσ,δ,s(T) =

{
f ∈ L2(T); ‖f‖2Gσ,δ,s(T) =

∑
k∈Z

e2δ|k|
1/σ

〈k〉2s |f̂(k)|2 <∞

}
, (1.5)

where 〈·〉 = (1 + | · |2)1/2.
For δ = 0, the space Gσ,δ,s(T) coincides with the standard Sobolev space Hs(T).
We then define the analytic Gevrey -Bourgain spaces related to Kawahara equa-

tion. The completion of the Schwartz class S(T × R) is given by Xσ,δ,s,b(T ×
R)(resp.Yσ,δ,s,b), for s, b ∈ R, δ > 0 and σ ≥ 1, subjected to the norm

‖u‖Xσ,δ,s,b(T×R) =

(∑
k∈Z

∫
e2δ|k|

1/σ

〈k〉2s 〈τ + φ(k)〉2b | û(k, τ) |2 dτ

) 1
2

. (1.6)

‖u‖Yσ,δ,s,b(T×R) =

(∑
k∈Z

(∫
eδ|k|

1/σ

〈k〉s 〈τ + φ(k)〉b | û(k, τ) | dτ
)2
) 1

2

. (1.7)

In addition, let

Zσ,δ,s,b = Xσ,δ,s,b ∩ Yσ,δ,s,b−1/2
be the Banach space endowed with the norm

‖u‖Zσ,δ,s,b(T×R) = ‖u‖Xσ,δ,s,b(T×R) + ‖u‖Yσ,δ,s,b−1/2(T×R). (1.8)

For δ = 0, the space Zσ,δ,s,b = Xσ,δ,s,b ∩ Yσ,δ,s,b−1/2 coincides with the standard
Bourgain type space Zs,b = Xs,b ∩ Ys,b−1/2.

We organize this paper as follows. In Section 2, our main results regarding the
well-posedness (Theorem 2.1) and regularity (Theorem 2.2) in the analytic Gevrey-
Bourgain spaces for (1.1) are stated. In Section 3, all Theorems by deriving the
bilinear estimates are proved in details.
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2. Main results

Theorem 2.1. Let s > 0, σ > 1, δ > 0 and u0 ∈ Gσ,δ,s(T). Then for some
real number b > 1

2 , which is near enough to 1
2 , and a constant T > 0, such that

(1.1) admits a unique local solution u ∈ C
(
[0, T ], Gσ,δ,s(T)

)
∩ Zσ,δ,s, 12 . Moreover,

given t ∈ (0, T ), the map u0 → u(t) is Lipschitz continuous from Gσ,δ,s(T) to
C
(
[0, T ], Gσ,δ,s(T)

)
.

Our next goal is to study Gevrey’s temporal regularity of the unique solution
obtained in Theorem 2.1. A periodic function f(x) is the Gevrey class of order σ,
if there exists a constant C > 0 such that

sup
x∈T
| ∂lxf(x) |≤ Cl+1(l!)σ l = 0, 1, 2, . . . .

Theorem 2.2. Let s > 0, σ > 1, δ > 0 and β = γ = µ = α = 1. If u0 ∈ Gσ,δ,s(T),
then the solution u ∈ C

(
[0, T ], Gσ,δ,s(T)

)
given by Theorem 2.1 belongs to the

Gevrey class G5σ in time variable.

3. Proof of main Theorems

We are going to prepare the prove of our main theorems, let us beginning by the
embedded result in the next lemma, which is useful for Theorem 2.1.

Lemma 3.1. Let s ∈ R, σ > 1 and δ > 0, we have

Zσ,δ,s, 12 (T× R) ↪→ C
(
[0, T ], Gσ,δ,s(T)

)
.

3.1. Existence of solution. Taking the Fourier transform with respect to x of
the Cauchy problems (1.1), after an ordinary calculation, we get

u = S(t)u0 −
∫ t

0

S(t− t′)∂xu2(t′)dt′,

we localize it t by using a cut-off function, satisfying ψ ∈ C∞0 (R), with ψ = 1 in
[− 1

2 ,
1
2 ] and suppψ ⊂ [−1, 1]. We consider the operator Φu given by

Φ(u) = ψ(t)S(t)u0 − ψ(t)

∫ t

0

S(t− t′)∂xu2(t′)dt′, (3.1)

We now estimate the fist part in the right hand side of (3.1).

Lemma 3.2. Let s ∈ R, δ > 0 and σ > 1, for some constant C > 0, we have

‖ψ(t)S(t)u0‖Zσ,δ,s,b(T×R) ≤ C ‖u0‖Gσ,δ,s(T), (3.2)

for all u0 ∈ Gσ,δ,s(T).

Proof. Define the operator A defined by

Âu
x
(k, t) = eδ|k|

1/σ

ûx(k, t), (3.3)

for δ = 0 can be found in Lemma 2.1 of [23] . These inequalities clearly remain
valid for δ > 0, as one merely has to replace u0 by Au0 in these results. �

We estimate the second part in right hand side of (3.1).
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Lemma 3.3. Let s ∈ R, δ > 0 and σ > 1, then for some constant C > 0, we have

‖ψ(t)

∫ t

0

S(t− t′)F (x, t′)dt′‖Z
σ,δ,s, 1

2
(T×R) ≤ C‖F‖Z

σ,δ,s,− 1
2
(T×R). (3.4)

Proof. Define U = ψT (t)
∫ t
0
S(t− t′)F (x, t′)dt′ and using the operator A.

ÂU
x
(k, t) = ψ(t)

∫ t

0

(
e−i(t−t

′)φ(k)
)
eδ|k|

1/σ

F̂ x(k, t′)dt′,

= ψ(t)

∫ t

0

̂[S(t− t′)(AF )]
x
(k, t′)dt′.

Thus,

‖ U ‖Z
σ,δ,s, 1

2
(T×R)=‖ AU ‖Z

s, 1
2
(T×R)= ‖ψ(t)

∫ t

0

S(t− t′)AF (x, t′)dt′‖Z
s, 1

2
(T×R).

Using Lemma 2.1. in [23], we have

‖ψ(t)

∫ t

0

S(t−t′)AF (x, t′)dt′‖Z
s, 1

2
(T×R) ≤ C‖AF‖Z

s,− 1
2
(T×R) = C‖F‖Z

σ,δ,s,− 1
2
(T×R).

�

In order to treat the different nonlinear terms, we will see several lemmas. Here
the bilinear estimate is given in the next lemma.

Lemma 3.4. If s > 0, let σ > 1, δ > 0. Then

‖ ∂x(u1u2) ‖Z
σ,δ,s,− 1

2
(T×R)6 C ‖ u1 ‖Z

σ,δ,s, 1
2
(T×R)‖ u2 ‖Z

σ,δ,s, 1
2
(T×R) . (3.5)

Proof. We observe, by considering the operator A in (3.3), that

eδ|k|
1/σ

û1u2 = (2π)−2eδ|k|
1/σ

û1 ∗ û2

6 (2π)−2
∫
R2

eδ|k−η|
1/σ

û1(k − η, τ − ρ)eδ|η|
1/σ

û2(η, ρ)dηdρ

= Âu1Au2,

(3.6)

since δ | k |1/σ6 δ | k − η |1/σ +δ | η |1/σ, ∀σ > 1. Then

‖ ∂x(u1u2) ‖Z
σ,δ,s,− 1

2
(T×R) =‖ ∂x(A(u1u2)) ‖Z

s,− 1
2
(T×R)

≤‖ ∂x(Au1Au2) ‖Z
s,− 1

2
(T×R) .

Now, by using Lemma 2.3. of [23], there exists C > 0 such that

‖ ∂x(Au1Au2) ‖Z
s,− 1

2
(T×R) 6 C ‖ Au1 ‖Z

s, 1
2
(T×R)‖ Au2 ‖Z

s, 1
2
(T×R)

= C ‖ u1 ‖Z
σ,δ,s, 1

2
(T×R)‖ u2 ‖Z

σ,δ,s, 1
2
(T×R) .

�

We are now ready to estimate all the terms in (3.1) by using the bilinear estimates
in the above lemmas.
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Lemma 3.5. Let s > 0, and σ ≥ 1, δ > 0. Then, for all u0 ∈ Gσ,δ,s(T), with some
constant C > 0, we have

‖ Φ(u) ‖Z
σ,δ,s, 1

2
(T×R)≤ C

(
‖ u0 ‖Gσ,δ,s(T) + ‖ u ‖2Z

σ,δ,s, 1
2
(T×R)

)
, (3.7)

and

‖ Φ(u)− Φ(v) ‖Z
σ,δ,s, 1

2
(T×R)≤ C ‖ u− v ‖Z

σ,δ,s, 1
2
(T×R)‖ u+ v ‖Z

σ,δ,s, 1
2
(T×R), (3.8)

for all u, v ∈ Zσ,δ,s, 12 (T× R)

Proof. To prove estimate (3.7), we follow

‖ Φ(u) ‖Z
σ,δ,s, 1

2
(T×R) ≤ ‖ψT (t)S(t)u0‖Z

σ,δ,s, 1
2
(T×R)

+‖ψT (t)

∫ t

0

S(t− t′)∂xu2(t′)dt′‖Z
σ,δ,s, 1

2
(T×R)

≤ C ‖ u0 ‖Gσ,δ,s(T) +C ‖ ∂xu2 ‖Z
σ,δ,s,− 1

2
(T×R)

≤ C ‖ u0 ‖Gσ,δ,s(T) +C ‖ u ‖2Z
σ,δ,s, 1

2
(T×R) .

For the estimate (3.8), we observe that

Φ(u)− Φ(v) = ψT (t)

∫ t

0

S(t− t′)
(
∂xu

2 − ∂xv2
)

(x, t′)dt′,

where ω = ∂xu
2 − ∂xv2 is now given by

ω = ∂x(u2 − v2) = ∂x[(u+ v)(u− v)],

Thus, from the previous results, we obtain (3.8). �

We will show that the map Φ is a contraction on the ball B(0, r) to B(0, r). where
u0 satisfies the smallness condition ‖u0‖Gσ,δ,s(T) ≤ 1

18C2 and r = 1
6C

Lemma 3.6. Let s > 0 and σ ≥ 1. Then, for all u0 ∈ Gσ,δ,s(T), such that the map
Φ : B(0, r)→ B(0, r) is a contraction, where B(0, r) is given by

B(0, r) = {u ∈ Zσ,δ,s, 12 (T× R); ‖u‖Z
σ,δ,s, 1

2
(T×R) ≤ r}.

Proof. To prove Lemma3.6 we need to use Lemma3.5.
�

This completes the prove of existence Theorem2.1.

3.2. Continuous dependence of the initial data. To prove continuous depen-
dence of the initial data in Zσ,δ,s, 12 (T× R) we will prove the following.

Lemma 3.7. Let s > 0 and σ ≥ 1, δ > 0. Then for all u0, v0 ∈ Gσ,δ,s(T), if u and
v are two solutions to (1.1) corresponding to initial data u0 and v0. We have

‖u− v‖C([0,T ],Gσ,δ,s(T)) ≤ 2C0C‖u0 − v0‖Gσ,δ,s(T). (3.9)

Proof. To prove Lemma3.7 we need to use Lemma3.1.
�

This completes the prove of Theorem 2.1.
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3.3. Time regularity.

Lemma 3.8. (Proposition 3.1, [7] ) Let s > 0, and let δ > 0, σ ≥ 1, u ∈
C
(
[0, T ];Gσ,δ,s(T)

)
be the solution of (1.1). Then u ∈ Gσ in x, ∀t ∈ [0, T ], i.e.,

for some C > 0, we have

|∂lxu| 6 Cl+1(l!)σ, l ∈ {0, 1, ...}, ∀x ∈ T, t ∈ [0, T ]. (3.10)

In this section, we shall prove the time regularity of the solution as stated in
Theorem 2.1 on the circle. The proof on the line is analogous.

Let us consider as in [3], for ε > 0, the sequences

mq =
c(q!)σ

(q + 1)2
, (q = 0, 1, 2, ...), (3.11)

and

Mq = ε1−qmq, ε > 0 and (q = 1, 2, 3, ...), (3.12)

where c will be chosen (see [1]) so that the next inequality holds∑
0≤l≤k

(
k

l

)
mlmk−l 6 mk. (3.13)

Removing the endpoints 0 and k in the left hand side of (3.13) and using the
sequence Mq, we obtain ∑

0<l<k

(
k

l

)
MlMk−l ≤Mk,∀ε > 0. (3.14)

Next, one can check that for any ε > 0 the sequence Mq satisfies the following
inequality

Mj 6 εMj+1, for j ≥ 2. (3.15)

Also, one can check that for a given C > 1, there exists ε0 > 0 such that for any
0 < ε 6 ε0 we have

Cj+1j! 6Mj , for j ≥ 2. (3.16)

By the definition of M1 and M2 in (3.12), we have for j = 1, that

M1 = aεM2, where a =
9

4(2!)σ
,

for some C > 0. Also, we define the following constants

M0 =
c

8
and M = max{2, 8C

c
,

4C2

c
}. (3.17)

The next lemma is the main idea for the proof of Theorem 2.2.

Lemma 3.9. Let u be the solution of (1.1) satisfying (3.10), then there exists
ε0 > 0 such that for any 0 < ε 6 ε0 we have

|∂jt ∂lxu| 6M2j+1Ml+5j , j ∈ {0, 1, 2, ...}, l ∈ {0, 1, 2, ...}, (3.18)

for all x ∈ T, t ∈ [0, T ].

Proof. (Of Lemma 3.9)
We will prove (3.18) by induction. Let j = 0, for l = 0, it follows from (3.10) and
the definition of M in (3.17) that

|u| ≤ C ≤MM0, ∀x ∈ T, t ∈ [0, T ].
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Similarly, for l = 1, we have

|∂xu| ≤ C2 6MM1, ∀x ∈ T, t ∈ [0, T ].

By (3.10) and (3.16), for l ≥ 2, there exists ε0 > 0 such that for any 0 < ε 6 ε0, we
have

|∂lxu| ≤ Cl+1(l!)σ ≤Ml ≤MMl, ∀x ∈ T, t ∈ [0, T ].

This completes the proof of (3.18) for j = 0 and l ∈ {0, 1, ...}.
Next, we will assume that (3.18) is true for 0 ≤ q ≤ j and l ∈ {0, 1, ...} and we will
prove it for q = j + 1 and l ∈ {0, 1, ...}.
We begin by noting that

|∂j+1
t ∂lxu| = |∂

j
t ∂

l
x(∂tu)| 6 |∂jt ∂l+5

x u|+ |∂jt ∂l+3
x u|+ |∂jt ∂l+1

x u|+ |∂jt ∂lx(∂xu
2)|.

Using the induction hypotheses and the condition M > 2, we estimate the second
term ∂jt ∂

l+5
x u, ∂jt ∂

l+3
x u and ∂jt ∂

l+1
x u as follows

|∂jt ∂l+5
x u| 6M2j+1Ml+5+5j = M−2M2(j+1)+1Ml+5(j+1),

6
1

4
M2(j+1)+1Ml+5(j+1),

(3.19)

and
|∂jt ∂l+3

x u| 6M2j+1Ml+3+5j = M−2M2(j+1)+1Ml+5j+3),

6
ε2

4
M2(j+1)+1Ml+5(j+1),

(3.20)

and

|∂jt ∂l+1
x u| 6M2j+1Ml+1+5j 6

ε4

4
M2(j+1)+1Ml+5(j+1). (3.21)

All this estimates are taken for the linear terms. For the nonlinear term (∂xu
2),

using Leibniz’s rule twice and the induction hypothesis, we have a different cases.
We need the next results.

Lemma 3.10. ([3]) Given n, k ∈ {0, 1, 2, ...} we have

n∑
p=0

k∑
q=0

(
n

p

)(
k

q

)
L(n−p)+5(k−q)Lp+5q 6

m∑
r=1

(
m

r

)
LrLm−r, (3.22)

where Lj , j = 0, 1, ...,m positive real numbers with m = n+ 5k

|∂jt ∂l+1
x (u2)| 6

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
|∂j−qt ∂l+1−p

x u||∂qt ∂pxu|,

6
l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
M2(j−q)+1Ml+1−p+5(j−q)M

2q+1Mp+5q,

= M2(j+1)

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
Ml+1−p+5(j−q)Mp+5q.
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Next, using Lemma 3.10, with n = l+ 1, k = j, Lj = Mj ,m = l+ 1 + 5j, we obtain

l+1∑
p=0

j∑
q=0

(
l + 1

p

)(
j

p

)
Ml+1−p+5(j−q)Mp+5q,

6
m∑
r=1

(
m

r

)
LrLm−r ≤ (M0 + ε)Mm,

= (M0 + ε)Ml+5j+1,

then

|∂jt ∂l+1
x (u2)| 6M2(j+1)(M0 + ε)Ml+5j+1,

6M−2M2(j+1)+1ε4(M0 + ε)Ml+5(j+1),

6
ε4(M0 + ε)

4
M2(j+1)+1Ml+5(j+1).

Noting that in the last inequality we have used the fact that l + 5j + 1 ≥ 2, since
we are assuming that either j 6= 0 or l 6= 0.

Now, choosing ε ≤ ε0 =

(
1

(M0 + ε)

) 1
4

< 1 to obtain

ε4(M0 + ε) ≤ ε4(M0 + 1) ≤ (M0 + 1)

(
1

(M0 + 1)

)
= 1.

Hence,

|∂jt ∂l+1
x (u2)| ≤ 1

4
M2(j+1)+1Ml+5(j+1). (3.23)

Which completes the proof. �

Proof. (Of Theorem 2.2) By Lemma 3.9, we have

|∂jt ∂lxu| 6M2j+1Ml+5j , j ∈ {0, 1, 2, ...}, l ∈ {0, 1, 2, ...},

where

Mq = ε1−q
c(q!)σ

(q + 1)2
, q = 1, 2, ....

Applying this inequality for j ∈ {1, 2, ...} and l = 0 gives

|∂jt u| 6M2j+1M5j = MM2jε1−5j
c((5j)!)σ

(5j + 1)2
,

6Mεc

(
M2

ε5

)j
((5j)!)σ,

6 L0L
j((5j)!)σ,

6 L0L
jA5σj((j!)5)σ,

6 Aj+1
0 (j!)5σ,

(3.24)
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where L0 = Mεc, L =
M2

ε5
since (5j)! 6 A5j(j!)5 forA > 0 andA0 = max{L0, LA

5σ}.
We also have from (3.18) for l = j = 0, that

|u| ≤MM0 = M
c

8
, ∀x ∈ T, t ∈ [0, T ]. (3.25)

Setting C = max{M c

8
, A0}, it follows from (3.24) and (3.25) that for j ∈ {0, 1, 2, ...},

we have
|∂jt u| 6 Cj+1(j!)5σ, ∀x ∈ T, t ∈ [0, T ].

Hence, u ∈ G5σ in t.
Which completes the proof of Theorem 2.2. �

Acknowledgments. The authors wish to thank deeply the anonymous referee for
his/here useful remarks and his/here careful reading of the proofs presented in this
paper.

References

[1] S. Alinhac and G. Metivier, Propagation de l’analyticite des solutions des systmes hyper-
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