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Abstract
In this article, a novel scalarization methodology, called the modified objective-constraint
technique, is proposed for determining efficient solutions a given multiobjective program-
ming problem. The suggested scalarized problem extends some existing problems. It is
shown that how adding slack variables to the constraints, can help us to find easily checked
conditions concerning (weak, proper) Pareto optimality. By applying the suggested prob-
lem, we generate an almost even approximation of the efficient front. The performance
and capability of the developed approach are demonstrated in test problems containing
disconnected or nonconvex fronts and feasible points. In particular, we apply the sug-
gested approach in an engineering design problem with two objective functions.
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1. Introduction
In the majority of real-world optimization problems, several competing criterion func-

tions are minimized, simultaneously. In many cases, it is impractical to earn a single
point minimizing all the criteria together, and hence other optimality concepts are dis-
cussed. Many optimality notions in the literature were introduced. Among them, the
so-called (weakly and properly) Pareto minimality concepts are the most popular.The
multiobjective optimization problems (MOPs) have important applications in many real-
world problems including medical treatment, game theory, Internet, economics, manage-
ment, machine learning, engineering design, control, and transportation. We refer to
[1, 4, 11,13,14,17,19,25,27,29,34].

Researchers have discussed MOPs from various perspectives, and therefore there exist
several solution philosophies for solving them. The main goal in these procedures is to
construct a set of Pareto minimal points (see [3, 5, 9, 10, 23, 24, 31, 33]). A common tech-
nique to gain a collection of Pareto minimal solutions of a given MOP is reformulating it
to an optimization problem with one objective function, including some added parameters,
and solving it for different parameters. This technique is called scalarization. Therefore,
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by this approach, the MOP is converted into a single-objective programming problem,
named a scalarization model. The optimal solutions of the scalarized single-objective pro-
gramming problem may then be attained by applying suitable existing approaches and
appropriate softwares.

Several scalarization techniques that are widely studied by various other researchers are
the weighted sum approach [20], the ϵ-constraint technique [8] and the Pascoletti-Serafini
procedure and its generalizations [2, 16, 18, 22, 30]. Some other scalarization methods can
be found in [12, 15, 17, 19, 26]. The most interesting scalarization techniques are those
that by changing their parameters or weights, an acceptable approximation of the real
Pareto front can be constructed. As typical cases, the weighted-constraint approach [6],
the feasible-value-constraint technique [7] and the objective-constraint approach [32] are
in this class. In the objective-constraint scalarizing technique [32], we devote a weight to
each of the objectives and then one of the weighted objectives (kth) is optimized, while
all the rest weighted objectives are added to the constraints.

It is worth mentioning that in references [7] and [6] necessary and/or sufficient results for
(weakly) Pareto solutions were obtained, that are valid under some conditions. However,
these scalarization techniques have no result on proper efficiency. As we know, sometimes
the trade-offs among the objectives is unbounded. Pareto optimal solutions that have
bounded trade-offs are named properly Pareto optimal [12,16,21,28]. Rizvi [32], provided
a condition for Karush-Kuhn-Tucker properly Pareto optimal points [28] of an MOP,
utilizing the optimal solutions of the objective-constraint approach [32]. However, that
result is valid under some conditions like differentiability of the functions and constraints
and regularity conditions.

In this paper, we modify the introduced method in [32] by adding slack variables in the
constraints. Here, we will investigate how adding slack variables in the constraints can
help to identify conditions for (weak, proper) efficiency. We establish an MOP by means
of creating a scalar-valued optimization problem. Furthermore, we find several necessary
and sufficient conditions for different types of Pareto optimal solutions of an MOP. On
the basis of the suggested scalarization technique and by varying the parameters, a set
of optimal points is generated. We show the performance of the suggested technique on
numerical test problems and an application in design engineering. The test problems
display that the introduced method produces Pareto points located in the convex and
nonconvex parts of the front. We show that even if the feasible regions and/or Pareto
front are disconnected, our proposed technique can generate the Pareto points.

The rest of this article unfolds as follows. Some preliminaries on multiobjective pro-
gramming are reviewed in Section 2. The new scalarization approach and its useful proved
properties are contained in Section 3. In Section 4, the fruitfulness of the proposed ap-
proach on some examples is illustrated. In Section 5, the proposed approach is applied on
an application problem and finally Section 6 is devoted to the conclusions.

2. Preliminary definitions
This section contains some basic preliminaries and fundamental notions which are uti-

lized in the later sections of the paper. Let y1, y2 ∈ Rn. In this text, the following
conventions and notations are used for the special orders in Rn.

y1 ≦ y2 ⇐⇒ y1
j ⩽ y2

j , ∀j ∈ {1, . . . , n},

y1 ≤ y2 ⇐⇒ y1 ≦ y2 and y1 ̸= y2,

y1 < y2 ⇐⇒ y1
j < y2

j , ∀j ∈ {1, . . . , n}.
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With the above-mentioned orders, we describe the nonnegative orthant as Rn
≧ = {y ∈

Rn : y ≧ 0}. Let X ⊆ Rm be a nonempty set and fj : X −→ R, j = 1, 2, . . . , n be real-
valued functions defined over X. We investigate the following multiobjective optimization
problem (MOP):

MOP minx∈X F (x) = (f1(x), f2(x), · · · , fn(x)), (2.1)

The image set of the feasible set X, is illustrated by Y = f(X) = {f(x) : x ∈ X}. The
boundedness of all the objective functions is assumed over the X.

Definition 2.1. Investigate MOP (2.1) and a feasible solution x∗ ∈ X.
(i) x∗ ∈ X is named Pareto optimal (or efficient), if there is no x ∈ X with F (x) ≤

F (x∗).
(ii) x∗ is named weak Pareto optimal (or weak efficient), if there is no x ∈ X with

fj(x) < fj(x∗), ∀j ∈ {1, 2, . . . , n}.

Definition 2.2. A feasible solution x∗ is named properly Pareto optimal solution of MOP
(2.1) if it is Pareto optimal and if there is some number M > 0 such that, for any x ∈ X
if fl(x) < fl(x∗) for some l ∈ {1, 2, . . . , n}, we have (fl(x∗) − fl(x))/(ft(x) − ft(x∗)) ⩽ M,
for some t ∈ {1, 2, . . . , n} such that ft(x∗) < ft(x).

Notation: We denote by WP (MOP ), P (MOP ) and PP (MOP ) the set of weakly
Pareto, Pareto and properly Pareto solutions of MOP (2.1), respectively.

In general, MOPs have a set of optimal points instead of only one. Therefore, it is an
interesting issue to develop efficient approaches for finding these optimal points. Some
approaches developed for determining efficient solutions are stochastic techniques [33],
interactive approaches [9, 10] or evolutionary algorithms [5, 10]. Scalarization is the most
popular approach for solving MOPs. Scalarization means transforming the MOP into a
suitable real-valued optimization problem, perhaps including some additional constraints
and/or parameters. By solving the single objective optimization problems for different
parameters, a variety of efficient solutions can be obtained. There exist many scalarization
methods in the literature. Now, we recall two of the recent scalarization approaches that
are related to our proposed method.

The weighted-constraint approach. This approach developed by Burachik et al. [6] for
transforming the MOP into a scalarized problem by optimizing the kth weighted objective
function and incorporating the other weighted functions as constraints. The associated
scalarized problem is stated as:

min wkfk(x)
s.t. wifi(x) ⩽ wkfk(x), ∀i ∈ {1, 2, . . . , n}, i ̸= k

x ∈ X,
(2.2)

where k, is fixed, wi > 0 ∀i and
n∑

i=1
wi = 1.

If x̂ ∈ X solves the scalarized problem (2.2), ∀k with w ∈ Rn
>, then x̂ ∈ WP (MOP ).

However, if a point is optimal of this problem for all k, then it is not necessarily efficient
(for more details refer to [6]).

The objective-constraint approach. This scalarized optimization problem described in
[32] and for some fixed x̄ ∈ X and k ∈ {1, 2, ..., n} is stated as

min wkfk(x)
s.t. wifi(x) ⩽ wkfk(x̄), ∀i ∈ {1, 2, . . . , n}, i ̸= k

x ∈ X,
(2.3)
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where

wi = 1/fi(x̄)∑n
t=1 1/ft(x̄)

. (2.4)

If x̂ ∈ X solves the scalarized problem (2.3), for all k and with w defined in (2.4), then
x̂ ∈ P (MOP ) (refer to [32]).

3. The modified objective-constraint approach
In this section, we suggest a new scalarization technique, named the modified objective-

constraint approach. Let x̄ be an arbitrarily selected feasible solution for MOP (2.1). For
fixed k ∈ {1, 2, . . . , n}, we introduce the associated scalar problem as follows:

(SOP k
x̄ ) : min wkfk(x) −

∑
i ̸=k

λiti

s.t. wifi(x) + ti ⩽ wkfk(x̄), i ̸= k,
ti ⩾ 0, i ̸= k,
x ∈ X,

(3.1)

where wi, i ∈ {1, 2, . . . , n} and λi, i ̸= k are nonnegative weights.
This approach modifies the objective-constraint scalarized problem by adding nonnegative
slack variables to the constraints. The kth-objective function equipped with the weight
wk and the negative summation of the weighted slacks, form the objective function of this
scalarized problem. It is obvious that, by choosing appropriate values for the available
parameters in (3.1), one can get scalarized problems (2.2) and (2.3). Let X̄k ⊆ X be the
feasible set of (SOP k

x̄ ). We define Solkx̄ = {(x̃, t̃) ∈ X̄k|(x̃, t̃) solves (SOP k
x̄ )}. Before we

present our investigations, we state the next lemma.

Lemma 3.1. Let λ ≧ 0 and Solkx̄ ̸= ∅. Then, there exists an optimal solution (x̃, t̃) for
(SOP k

x̄ ) such that wifi(x̃) + t̃i = wkfk(x̄) for each i ̸= k. If λ > 0, then wifi(x̃) + t̃i =
wkfk(x̄) for all i ̸= k is satisfied for every optimal solution of (SOP k

x̄ ).

Proof. Let (x̃, t̃) ∈ Solkx̄. Assume that there is an index j ∈ {1, 2, . . . , n}\{k} with
wjfj(x̃)+t̃j < wkfk(x̄). Therefore, there exists t̄j > 0 such that wjfj(x̃)+t̃j +t̄j = wkfk(x̄).
We consider

ti =
{

t̃i, i ∈ {1, 2, . . . , n}\{j, k},
t̃i + t̄i, i = j.

The point (x̃, t) is feasible for (SOP k
x̄ ). Since tj > t̃j , it yields

wkfk(x̃) −
∑
i ̸=k

λiti ⩽ wkfk(x̃) −
∑
i ̸=k

λit̃i.

This result means that if λj > 0 then (x̃, t) implies a better objective value for (SOP k
x̄ )

than (x̃, t̃) and it is the same as (x̃, t̃), if λj = 0. □

Before providing theoretical results, we present a geometric interpretation of the pre-
sented approach. Investigate the particular case of n = 2, Lemma 3.1 helps us to visualize
the implementations in the objective space. Consider the feasible set of (SOP 2

x̄ ), namely
X̄2. First we set w2f2(x̄) = b. Consider a feasible solution (x∗, t∗

1) and assume that the
objective function value of (SOP 2

x̄ ) is d∗ = w2f2(x∗) − λ1t∗
1. We can interpret the level

set of v = d/w2 = f2(x) − (λ1/w2)t1 as a line in the t1 − f2− space that passes through
(t∗

1, f2(x∗)) and has the slope −λ1/w2.

Suppose that (x̂, t̂) ∈ R2 × R is an optimal solution of (SOP 2
x̄ ). Suppose that d̂ =

w2f2(x̂) − λ1t̂1 shows the optimal value of (SOP 2
x̄ ). Note that due to Lemma 3.1, the

added constraints are active at optimality, therefore t̂1/w1 = b/w1 − f1(x̂). If t̂1 = 0, we
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have w1f1(x̂) = b and w2f2(x̂) = d̂. Suppose that t̂1 ̸= 0. If we substitute t̂1 into the
objective function of (SOP 2

x̄ ), we attain
−λ1w1

w2
= v̂ − f2(x̂)

(b/w1) − f1(x̂)
.

The negative slope of the line passing through (f1(x̂), f2(x̂)) and (b/w1, v̂) equals The
scalar (λ1w1)/w2. To visualize this observation see Figure 1. The additional constraint
f1(x) ⩽ b

w1
, reduces the feasible set of the main MOP. Thus, a line with slope m =

−(λ1w1)/w2 is transformed in parallel toward the origin till it supports the restricted
nondominated set. Hence, the point of support is the nondominated solution f(x̂).

Figure 1. A bicriteria example

In the following subsection we show that the including slack variables to the constraints
help us to provide results for proper efficiency. Hence, this modification can resolve the
drawback of the weighted-constraint and the objective-constraint approaches. The re-
sults presented in the next subsection, demonstrate the main advantages of the suggested
scalarized problem, theoretically.

3.1. Theoretical results for (SOP k
x̄ )

In this subsection, we present some theoretical results for characterizing (weak, proper)
efficient solutions of MOP (2.1) in terms of optimal solutions of the scalarized problem
(SOP k

x̄ ). These results establish some necessary and sufficient conditions for optimal
solutions of the modified problem to be (weakly, properly) Pareto optimal solutions of
MOP (2.1).

In [32], Rizvi provided a sufficient condition for weakly Pareto optimal solution by the
hypothesis wi = 1/fi(x̄)/

∑n
j=1 1/fj(x̄). The next theorem generalizes the result of [32] and

provides a characterization for weakly Pareto optimal points, only under positive weights
assumption. In the following theorem, we claim that optimal solutions of (SOP k

x̄ ) for some
k ∈ {1, 2, . . . , n} are weakly Pareto optimal.

Theorem 3.2. Let (x̃, t̃) ∈ Solkx̄, for some k ∈ {1, 2, . . . , n}. Then, the next assertions
hold.

(1) If λ ≥ 0 and w > 0, then x̃ ∈ WP (MOP ).
(2) If λ > 0 and w ≥ 0, then x̃ ∈ WP (MOP ).

Proof. (1) Let λ ≥ 0 and w > 0. Suppose that x̃ /∈ WP (MOP ). Then, there exists
some x ∈ X with fi(x) < fi(x̃), ∀i ∈ {1, 2, . . . , n}. Since w > 0, this implies
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wifi(x) < wifi(x̃), ∀i ∈ {1, . . . , n}. Therefore, wifi(x̃) = wifi(x) + di with di > 0.
Then

wkfk(x̄) ⩾ wifi(x̃) + t̃i = wifi(x) + di + t̃i = wifi(x) + ti, i ̸= k,

where di + t̃i = ti. Thus (x, t) is a feasible solution for (SOP k
x̄ ). Also, since

wkfk(x) < wkfk(x̃) we have,

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) −
∑
i ̸=k

λit̃i.

This contradicts optimality of (x̃, t̃) for (SOP k
x̄ ).

(2) Assume that λ > 0 and w ≥ 0. If x̃ /∈ WP (MOP ), then there exists some x ∈ X
with fi(x) < fi(x̃), ∀i ∈ {1, . . . , n}. Thus, wifi(x) ⩽ wifi(x̃). Hence, there exists
di ⩾ 0 such that

wifi(x̃) = wifi(x) + di, ∀i ∈ {1, 2, . . . , n}.

Thus
wkfk(x̄) ⩾ wifi(x̃) + t̃i = wifi(x) + di + t̃i, i ̸= k.

By assuming ti = di + t̃i for each i ̸= k, we obtain wkfk(x̄) ⩾ wifi(x)+ti. Therefore
(x, t) is a feasible solution of (SOP k

x̄ ).
Now we distinguish two cases wk = 0 and wk ̸= 0. If wk = 0, then there is some
index i ̸= k such that ti > t̃i. If wk ̸= 0, then wkfk(x) < wkfk(x̃). In both cases it
follows that

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) −
∑
i ̸=k

λit̃i,

contradicting the assumption.
□

The following theorem shows that, unlike some other approaches [7, 12, 32], to ensure
a solution generated by (SOP k

x̄ ) is Pareto optimal, it is not necessary to solve k different
problems. In [32], utilizing the objective-constraint problem (2.3) for all k, a sufficient
condition was attained for Pareto optimal solutions of MOP (2.1). Now, we apply the
scalarized problem (3.1) for some k and obtain a sufficient condition for Pareto optimal
solutions. This result actually shows that incorporating slack variables to the scalarized
problem (2.3) can cause to obtain stronger results.

Theorem 3.3. Let (x̃, t̃) ∈ Solkx̄, for some k ∈ {1, 2, . . . , n} with λ > 0 and w > 0. Then
x̃ ∈ P (MOP ).

Proof. By contradiction, suppose that x̃ /∈ P (MOP ). Hence, there is some x ∈ X with
fi(x) ⩽ fi(x̃), ∀i ∈ {1, 2, . . . , n} and strict inequality for at least one index j. So, wifi(x) ⩽
wifi(x̃) for all i ̸= k and

wkfk(x̄) ⩾ wifi(x̃) + t̃i = wifi(x) + di + t̃i = wifi(x) + ti, i ̸= k,

where di + t̃i = ti and di ⩾ 0.
Let us now consider two cases j = k and j ̸= k. The first statement obviously causes a
contradiction. The second statement confirms that t̃j < tj for some index j ≠ k, which
implies

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) −
∑
i ̸=k

λit̃i.

These contradictions yield the result. □

Note that optimal solutions of (SOP k
x̄ ) with λ ≥ 0 and w > 0 are not necessarily Pareto

optimal for MOP (2.1), as the following example demonstrates.
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Example 3.4. Assume that the feasible set of a bi-objective programming problem is as

X = {(x1, x2) ∈ R2|x2
1 + x2

2 − 2x1 − 2x2 + 2 ⩽ 0.8, (x1 − 0.5)(x2 − 0.5) ⩽ 0}

and the objective functions are (f1, f2) = (x1, x2). Set x̄ = (0.5, 0.4), λ = (1, 0) and
w = (0.4, 0.5). Problem (SOP 1

x̄ ) can be written as:

min 0.4x1
s.t. 0.5x2 + t2 ⩽ 0.2,

x ∈ X.

Here, (x̃, t̃) with t̃2 = 0 and x̃ = (0.5, 0.4) is an optimal point of (SOP 1
x̄ ). However, x̃ is

not a Pareto optimal solution.

Theorem 3.5. If (x̃, t̃) ∈ Solkx̄, for all k ∈ {1, . . . , n} with λ ≥ 0 and w > 0, then
x̃ ∈ P (MOP ).

Proof. Assume that x̃ /∈ P (MOP ). Then, there is a feasible solution x ∈ X with fi(x) ⩽
fi(x̃) for all i ∈ {1, 2, . . . , n} and fk(x) < fk(x̃) for some index k ∈ {1, 2, . . . , n}. Therefore,
by a procedure analogous to that of Theorem 3.3, we conclude that

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) −
∑
i ̸=k

λit̃i.

This concludes that x̃ /∈ Solkx̄, which is a contradiction. □

By a method similar to that of Theorem 3.5, we can also see that an optimal solution of
(SOP k

x̄ ) for all k ∈ {1, 2, . . . , n} with λ > 0 and w ≥ 0, implies a Pareto optimal solution
of MOP (2.1).

Corollary 3.6. If (x̃, t̃) ∈ Solkx̄, for all k ∈ {1, . . . , n} with λ > 0 and w ≥ 0, then
x̃ ∈ P (MOP ).

To certify that a solution generated by the objective-constraint problem (2.3) is Pareto
optimal, it is necessary to solve k different optimization problems or we must attain a
unique optimal solution of the scalarized problem for some k. Generally, uniqueness is not
simple to check. Optimal points of the objective-constraint problem (2.3) are not Pareto
optimal, in general. However, Theorems 3.3 and 3.5 and Corollary 3.6 clarify that optimal
solutions of the scalarized problem (3.1) with weights greater than zero, are always Pareto
optimal.

Since the objective functions are bounded below on the feasible set X, w.l.o.g., we can
suppose that fi(x) > 0 ∀i ∈ {1, . . . , n} and all x ∈ X. By considering this fact, in the next
result we obtain a sufficient condition for Pareto optimal solutions of MOP (2.1).

Theorem 3.7. If x̃ ∈ P (MOP ), then there exist w > 0, λ ≧ 0 and t̃ such that (x̃, t̃) ∈
Solkx̄.

Proof. Let us consider t̃ = 0 and λ = 0. Assume that there is a feasible point (x, t) that
is an optimal solution of (SOP k

x̄ ) for some k ∈ {1, 2, . . . , n}. We define

wr =


1

fr(x̃) , ∀ r ̸= k,

1
fr(x̄) , for r = k.

Since (x, t) is a feasible solution and wk = 1/fk(x̄), we conclude

wifi(x) ⩽ wifi(x) + ti ⩽ wkfk(x̄) = 1 = wifi(x̃), ∀i ̸= k.

Therefore,
fi(x) ⩽ fi(x̃), ∀i ̸= k. (3.2)
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From optimality of (x, t) we derive

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) =⇒ fk(x) < fk(x̃). (3.3)

From (3.2) and (3.3), it follows that x̃ /∈ P (MOP ). Thus, the result follows. □

In the next result, in terms of optimal points of the scalarized problem (3.1), we present
a necessary and sufficient condition for Pareto optimal solutions.

Theorem 3.8. x̃ ∈ P (MOP ) if and only if there are w > 0, λ ≧ 0 and t̃ such that
(x̃, t̃) ∈ Solkx̄, for all k ∈ {1, 2, . . . , n}.

Proof. By Theorems 3.5 and 3.7, the result can be derived. □

We apply Lemma 3.1 to get a condition for characterizing properly Pareto optimal points
among the optimal solutions of (SOP k

x̄ ). For this aim, we will now provide a connection
between properly Pareto optimal solutions of MOP with two feasible sets. Assume that

Xk
x̄ = {x ∈ X|wifi(x) ⩽ wkfk(x̄), i ̸= k}

Lemma 3.9. If x̃ ∈ PP (MOP ) with the feasible set Xk
x̄ and wifi(x̃) < wkfk(x̄) for each

i ̸= k and 0 < wi < ∞ for all i ∈ {1, 2, . . . , n}, then x̃ ∈ PP (MOP ) with the feasible set
X.

Proof. Assume that x̃ is not a properly Pareto optimal solution for MOP (2.1) with
feasible set X. Hence, there is x ∈ X and an index i ∈ {1, 2, . . . , n} with fi(x̃) > fi(x) and

fi(x̃) − fi(x) > M
(
fj(x) − fj(x̃)

)
for every M > 0 and for all j with fj(x̃) < fj(x). Assume that Mβ > 0 is an unbounded
sequence of positive real scalars. We suppose that for every real sequence Mβ, there exists
xβ ∈ X and an index i ∈ {1, . . . , n} such that fi(x̃) > fi(xβ) and

fi(x̃) − fi(xβ)
fj(xβ) − fj(x̃)

> Mβ, (3.4)

for all j ̸= i with fj(x̃) < fj(xβ). With no loss of generality, one may suppose that there
exists a fixed index i for every β such that the above relation is satisfied. Selecting a
subsequent, we assume that D = {j : fj(x̃) < fj(xβ)} is constant for every β.
We distinguish the following statements.
The first statement is fi(x̃) − fi(xβ) → ∞ for β → ∞. This yields a contradiction to
boundedness of f(X).
The second statement is fj(xβ) − fj(x̃) → 0 for β → ∞. We define

D̄ = {j : fj(xβ) → fj(x̃) for β → ∞ and fj(x̃) < fj(xβ)}.

If j ∈ D̄, then wjfj(xβ) < wkfk(x̄) for all j ∈ D̄ \ {k}. Since we have

lim
β→∞

wjfj(xβ) = wjfj(x̃) < wkfk(x̄), ∀j ∈ D̄ \ {k}.

Therefore, there is β̃ > 0 such that

wjfj(xβ) < wkfk(x̄), ∀j ∈ D̄ \ {k}, ∀β > β̃.

Now, suppose that there exists some index j /∈ D̄ and wjfj(xβ) > wkfk(x̄) for infinitely
many β. According to relation (3.4), we have wjfj(xβ) > wkfk(x̄) for only finitely many
β. Hence, there exists some β̄ such that wjfj(xβ) ⩽ wkfk(x̄) for all j ∈ {1, . . . , n}\D̄∪{k}
and for every β > β̄. Therefore, we have

wjfj(xβ) ⩽ wkfk(x̄), ∀β > max{β̃, β̄}, ∀j ∈ {1, 2, . . . , n} \ {k}. (3.5)
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Thus relations (3.4) and (3.5) yield a contradiction to x̃ being a properly Pareto optimal
solution of MOP (2.1) with the feasible set Xk

x̄ . Hence, x̃ is a properly Pareto optimal
point of MOP (2.1) with the feasible set X. □

Next we state two theorems which establish the connection between optimal points of
(SOP k

x̄ ) and properly Pareto optimal solutions of MOP (2.1). As pointed in [21], the
main motivation of defining properly efficient solutions is to remove those Pareto optimal
solutions from investigation, that a small improvement in one objective function can cause
an unbounded deterioration of at least one other criterion. A related economic inter-
pretation, is that properly Pareto optimal solutions must prohibit unbounded trade-offs.
The provided sufficient and necessary conditions for proper efficiency are established for
general MOPs without any additional assumption, like differentiability or convexity. In
[32], Rizvi provided a necessary condition for Karush-Kuhn-Tucker properly Pareto op-
timal solutions [28] of a multicriteria programming problem, using the optimal solutions
of the objective-constraint approach [32]. However, that result is valid under some con-
ditions like differentiability of the functions and constraints and regularity conditions. In
addition, conditions for clarifying properly Pareto optimal points among the solutions of
the scalarized problems are not mentioned in [7] and [6]. In the next result, we state a
sufficient condition for proper efficiency.

Theorem 3.10. Let (x̃, t̃) ∈ Solkx̄ with t̃i > 0, λi > 0 for all i ̸= k and 0 < wi < ∞, ∀i ∈
{1, 2, . . . , n}. Then, x̃ ∈ PP (MOP ).

Proof. Assume that (x̃, t̃) ∈ Solkx̄. According to Lemma 3.1, at optimality we have t̃i =
wkfk(x̄) − wifi(x̃) for each i ̸= k. Therefore, the objective function can be rewritten as
follows:

wkfk(x̃) −
∑
i ̸=k

λit̃i = wkfk(x̃) +
∑
i ̸=k

λiwifi(x̃) −
∑
i ̸=k

λiwkfk(x̄). (3.6)

If we define
w̃i =

{
wiλi, i ∈ {1, 2, . . . , n}\{k},
wi, i = k,

then, from relation (3.6) we have:

wkfk(x̃) −
∑
i ̸=k

λit̃i =
n∑

i=1
w̃ifi(x̃) − wkfk(x̄)

∑
i ̸=k

λi.

(
∑

i ̸=k λi)wkfk(x̄) is constant, therefore we conclude that x̃ is an optimal point of the
weighted sum problem with positive weights and feasible set Xk

x̄ . From Theorem 1 in [21],
it follows that x̃ is a properly Pareto optimal point of MOP (2.1) with feasible set Xk

x̄ .
From Lemma 3.9 we see that if t̃i > 0 ∀i ̸= k, then x̃ is a properly Pareto optimal solution
of MOP (2.1) with feasible set X. □

Our next theorem shows a necessary condition for properly Pareto optimal points of
MOP (2.1). We may w.l.o.g. assume that fr(x) > 0 for all r ∈ {1, . . . , n} and all x ∈ X.

Theorem 3.11. If x̃ ∈ PP (MOP ), then there are t̃, λ > 0 and w > 0 such that (x̃, t̃) ∈
Solkx̄, for all k ∈ {1, 2, . . . , n}.

Proof. Suppose that x̃ ∈ PP (MOP ). We distinguish the following statements.
At first statement, assume that ∄ x ∈ X and i ∈ {1, 2, . . . , n} such that fi(x) < fi(x̃), i.e.
fi(x̃) ⩽ fi(x) ∀x ∈ X and i ∈ {1, 2, . . . , n}. In this statement, we assume that t̃ = 1. We
define

wi =


1

maxx∈X fi(x) , ∀i ̸= k,

1
fi(x̄) , for i = k.

(3.7)
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We presume that (x, t) is an arbitrary feasible vector of (SOP k
x̄ ). By relation (3.7) it follows

that wifi(x) + ti ⩽ 1 = wkfk(x̄) for each i ̸= k. Therefore, wifi(x) ⩽ 1 and ti ⩽ 1. Hence,
we get wkfk(x̃) ⩽ wkfk(x) and wkfk(x̃) −

∑
i ̸=k λit̃i ⩽ wkfk(x) −

∑
i ̸=k λiti for each λ > 0.

So (x, t) does not imply a better objective function value than (x̃, t̃) for (SOP k
x̄ ).

At the second statement, we assume that there are x ∈ X and i ∈ {1, 2, . . . , n} with fi(x) <
fi(x̃). Since x̃ is properly Pareto optimal solution, for all x ∈ X and i ∈ {1, 2, . . . , n} with
fi(x) < fi(x̃), there exists a scalar M > 0 and an index j ∈ {1, 2, . . . , n} such that
fj(x̃) < fj(x) and

fi(x̃) − fi(x)
fj(x) − fj(x̃)

⩽ M. (3.8)

The following appropriate weights are defined for (SOP k
x̄ ) that are positive and finite:

wr =


1

fr(x̃) , r ̸= k,

1
fr(x̄) , r = k.

(3.9)

Suppose that (x̃, t̃) /∈ Solkx̄, for some k ∈ {1, 2, . . . , n}. Then, there exists some feasible
point (x, t) of (SOP k

x̄ ) with

wkfk(x) −
∑
i ̸=k

λiti < wkfk(x̃) −
∑
i ̸=k

λit̃i. (3.10)

Since (x, t) is feasible, from relation (3.9) we attain wifi(x) + ti ⩽ 1 = wkfk(x̄) for each
i ̸= k. Thus wifi(x) ⩽ 1 and ti ⩽ 1 for each i ̸= k. We claim that only for j = k, the
inequality fj(x̃) < fj(x) is strict. By contradiction, assume that j ̸= k, then

fj(x̃) < fj(x) ⇒ 1 <
fj(x)
fj(x̃)

⇒ 1 < wjfj(x).

This contradicts the feasibility of (x, t) for (SOP k
x̄ ).

Hence, we have
fk(x) − fk(x̃) ⩾ 1

M
(fi(x̃) − fi(x)). (3.11)

Set t̃ = 0, E = {r : fr(x̃) = fr(x)} and

λi = wk

(n − 1 − |E|)Mwi
, i ∈ {1, 2, . . . , n} \ E ∪ {k}. (3.12)

From optimality of (x, t) for (SOP k
x̄ ), by Lemma 3.1, we have

wifi(x) + ti = wkfk(x̄) = wifi(x̃) ⇒ ti = wifi(x̃) − wifi(x), i ̸= k. (3.13)
According to relations (3.11) and (3.12), we conclude

λi = wk

(n − 1 − |E|)Mwi
⩽ wk

(n − 1 − |E|)wi
× fk(x) − fk(x̃)

fi(x̃) − fi(x)
, i ∈ {1, 2, . . . , n} \ E ∪ {k}.

This implies that

wiλi(fi(x̃) − fi(x)) ⩽ wk(fk(x) − fk(x̃))
n − 1 − |E|

, i ∈ {1, 2, . . . , n} \ E ∪ {k}

Now by summation over i ∈ {1, 2, . . . , n} \ E ∪ {k}, we obtain∑
i∈{1,2,...,n}\E∪{k}

λi(wifi(x̃) − wifi(x)) ⩽
∑

i∈{1,2,...,n}\E∪{k}

wk(fk(x) − fk(x̃))
n − 1 − |E|

= wk(fk(x) − fk(x̃)).

Based on relation (3.13), we immediately get∑
i∈{1,2,...,n}\E∪{k}

λiti ⩽ wkfk(x) − wkfk(x̃).
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Since ti = wifi(x̃) − wifi(x) = 0 for all i ∈ E, we get∑
i ̸=k

λiti ⩽ wkfk(x) − wkfk(x̃), (3.14)

which is a contradiction with relation (3.10). Hence, we deduce that (x̃, t̃) ∈ Solkx̄. □

4. Numerical examples
In this section, in order to justify the suggested methodology, numerical examples are

solved. We test and compare our method with the proposed algorithms in [7, 32].
We pay special attention to problems with complicated structures including a discon-

nected or nonconvex feasible set or Pareto front. The numerical evaluations show that
the proposed approach are able to address successfully the complexities arising from the
cases when the domain or the Pareto front is nonconvex or even disconnected. The gained
approach is performed to two test problems and a real application in engineering design.
All examples are executed within MATLAB (R2015a). We implemented the problems on
a laptop with a core i5 processor at 4 GB RAM and 2.5 GHz running Windows 7 Home
Basic Operating system.
Example 4.1. Consider the following nonconvex bi-objective programming problem that
is a modified form of a bi-objective problem in [32].

min (x1, x2)
s.t. (1 − x1)2 + (1 − x2)2 ⩽ 1,

1 − x2
2 − 4(x2 − x1)2 ⩽ 0.1,

x1, x2 ⩾ 0.

This problem has a disconnected Pareto front and its feasible region is nonconvex. We
run Algorithm 1 in [32], which implements the objective-constraint problem (2.3), with
N = 22. We also apply this algorithm for our method to obtain Pareto points. Steps
1 − 6 of Algorithm 1 in [32] are used, only in Step 4 our proposed scalarized problem (3.1)
is solved. Furthermore, for the algorithm that implements our scalarized problem (3.1),
we select the nonnegative weights λ1 = w1/50 and λ2 = w2/50. Figure 2 indicates the
generated Pareto solutions with N = 22 and u = (−3, −3).

(a) The approximation pro-
duced by our scalarized problem
(3.1).

(b) The approximation pro-
duced by the scalarized problem
(2.3).

Figure 2. Pareto front approximation of Example 4.1 with N = 22.

Our scalarized problem (3.1) is solved in order to approximate the Pareto front. The
attained Pareto points are evenly distributed in the Pareto front, as shown in Figure 2a.
Moreover, the proposed procedure generates all the end points of the Efficient curve.

In Figure 2b, with N = 22, the Pareto front obtained by the the objective-constraint
problem (2.3) is shown.
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We illustrate the advantages of our method by means of an example with three-objective
functions.

Example 4.2. We distinguish a three-objective optimization problem by an efficient front
with a complicated boundary. Here, the feasible set is the intersection of the complement
of an ellipsoid with a sphere. The Pareto front obtained by our method, is multiply
connected with a hole and bounded. This test problem, from Burachik et al. [7] and
Akbari et al. [2], is expressed as follows:

min (x1, x2, x3)
s.t. (2 − x1)2 + (2 − x2)2 + (2 − x3)2 ⩽ 4,

(1.05)2(x1 + x2 + x3)2 − 4(x2
1 + x2

2 + x2
3) + 7.18 ⩽ 0,

0 ⩽ x1 ⩽ 4,
0 ⩽ x2 ⩽ 4.

We implement Algorithm 1 in [7], which uses the objective-constraint problem. Also, for
the presented technique, steps 1 − 5 of Algorithm 1 in [7] are applied and our scalarized
problem (3.1) is utilized in Step 4. We distinguish this test problem for two cases of
scalarized problem with N = 50 and u = (0, 0, 0). For the case that our scalarized problem
is solved, the nonnegative weights λi, i = 1, 2, 3 are chosen as λ1 = λ2 = λ3 = 1. The
generated Pareto points are depicted in Figure 3.

(a) The approximation pro-
duced by our scalarized problem
(3.1).

(b) The approximation pro-
duced by the scalarized problem
(2.3).

Figure 3. Pareto front approximation of Example 4.2 with N = 50.

This figure shows the Pareto points generated by our proposed approach applied in the
given algorithm, is extremely successful than Algorithm 1 in [7]. As it can be seen, our
approach does not generate non-Pareto points. The proposed technique produces Pareto
points, that are spaced relatively evenly in the approximation of the Pareto front, and
among these produced points all the end points of the Pareto front, outer and inner ones
are generated, as shown in the figure. The distribution of points obtained by our method
and the proposed approach in [7], is depicted in Figure 3. By comparing the Pareto front
generated by our technique and the technique in [7], it is concluded that the approximation
obtained by the our approach covers the whole Pareto front and this shows the strengths
and advantages of the introduced method.

5. Application to an engineering design problem
We display the usage of the proposed procedure to an engineering design problem. As it

was stated in the introduction, many of the engineering applications have a multicriteria
structure. Nevertheless, these multiple objectives are often treated as a single-objective
programming problem, in practice. We consider an engineering problem that includes
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designing a four-bar plane truss as depicted in Figure 4. This test problem is shown
as a bi-criteria optimization problem. The first criterion (f1) is the volume V of the
truss and the second one (f2) is the displacement ∆ of the joint. Three forces with the
magnitudes F and 2F, cause stress on the truss as seen in Figure 4. The Youngs modulus of
elasticity (denoted by E), the length of each bar (denoted by L) and the stress component
(denoted by σ) are selected as constants in this test problem. The value of the elasticity
is E = 2 × 105 kN/cm2, the acting force is equal to F = 10 kN, the stress component is
equal to σ = 10 kN/cm2 and we set the length as L = 200 cm. The cross-sectional areas
x1, x2, x3 and x4 of the four bars are subject to several physical conditions that define by

X = {(x1, x2, x3, x4) ∈ R4 : F ⩽ σx1, σx4 ⩽ 3F,
√

2F ⩽ σx2, σx3 ⩽ 3F} (5.1)

The objective functions that are going to minimize simultaneously, are
f1(x) = 2L(x1 + 1√

2x2 + 1√
2x3 + 1

2x4) and f2(x) = F L
E ( 2

x1
+ 2

√
2

x2
− 2

√
2

x3
+ 1

x4
).

Figure 4. A four-bar plane truss.

We must solve the next multiobjective programming problem [19].

min (f1(x), f2(x))

s.t. F ⩽ σx1 ⩽ 3F,√
2F ⩽ σx2 ⩽ 3F,√
2F ⩽ σx3 ⩽ 3F,

F ⩽ σx4 ⩽ 3F.

We apply Algorithm 1 in [32], in which the objective-constraint problem (2.3), is solved.
We solve the scalarized problem for getting approximation points of the Pareto front. As
well, for the proposed technique, the steps 1 − 6 of Algorithm 1 in [32] are applied and in
Step 4, the scalarized problem (3.1) is utilized. In both algorithms we take u = (0, 0) and
N = 50. For the algorithm in which our scalarized problem (3.1) is addressed, the nonneg-
ative weights λ1 = λ2 = 1. The performance of the Pareto curve is illustrated in Figure
5. As it can be seen, the algorithm in which the scalarized problem (2.3) is utilized, can
not construct the lower parts of the Pareto front. Furthermore, the Pareto points are not
distributed uniformly by this algorithm. Hence, the Pareto front is approximated poorly
by this algorithm. However, if we use our scalarized problem (3.1) in this algorithm, the
produced Pareto points are evenly distributed in the Pareto front. This figure illustrates
that the interval of the possible truss volumes range is between about 1500 cm3 and 3500
cm3 with the joint displacements less than 0.045 cm.
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(a) The approximation pro-
duced by our scalarized problem
(3.1).

(b) The approximation pro-
duced by the scalarized problem
(2.3).

Figure 5. Pareto front approximation of the engineering design problem with
N = 50.

6. Conclusions
In this article, we proposed a modification of the objective-constraint scalarization ap-

proach for solving multiobjective programming problems. We proved necessary and suf-
ficient conditions for various types of efficiency, in particular for proper efficiency. We
showed that there is no gap between necessary and sufficient conditions for (proper) Pareto
efficiency. The proposed approach was applied to solve problems with convex, noncon-
vex, connected and disconnected Pareto fronts or feasible sets. The performance of this
approach was illustrated by test problems. The results showed that the proposed method
can attain comparable performance with the other algorithms. Future research will focus
on performing the suggested technique in an algorithmic procedure to solve multiobjective
optimization problems.

Acknowledgment. The authors would like to express their gratitude to the handling
editor and anonymous referees for their helpful comments and suggestions that improved
the quality of the paper.
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