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Abstract 

Automated capacity planning for mobile networks requires long-term forecasting of traffic demand by using historical patterns.  

To decide the correct time of investment and correct capacity expansion size or to improve the accuracy of forecasting algorithms with 

exogenous features, both seasonal decomposition, and seasonal period identification improves decision accuracy. We design a hybrid 

algorithm to calculate these features on live network data with improved accuracy which uses piecewise Seasonality Trend 

Decomposition with Loess (STL) decomposition and Prophet library’s regression with Laplace prior under the hood. Combining both 

methods with the awareness of their weak and strong parts and leveraging overall output with changepoint and similarity analysis help 

us to improve our accuracy around 18.6% comparing the average of single usage of these methods. We also provide and present some 

special cases that increase problem complexity and decrease decomposition accuracy.  

 

Keywords: Mobile Network Seasonality Detection, Changepoint Awareness, Network Capacity Planning, Piece-wise Regression, Time 

Series Decomposition   

Mobil Ağ Baz İstasyonlarının Değişim Noktalarının Uzun Dönem 

Sezonsallık Tespiti için Hibrid Bir Algoritma 

Öz 

Mobil ağlar için otomatik kapasite planlaması, geçmiş kalıpları kullanarak trafik talebinin uzun vadeli tahminini gerektirir.  

Doğru yatırım zamanına, doğru kapasite genişletme boyutuna karar vermede veya dışsal etkilere sahip tahmin algoritmalarının 

doğruluğunu iyileştirmede hem mevsimsel ayrıştırma hem de mevsimsel dönem tanımlama işlemleri karar doğruluğunu artırır.  

Bu çalışmada bu işlemleri, altyapısında parçalı Loess ile Mevsimsel Trend Ayrışımı (Seasonality Trend Decomposition with Loess – 

STL) ayrıştırması ve Prophet Kütüphanesi’nin Laplace önsele sahip regresyon yaklaşımını kullanan ve canlı ağ örnekleri üzerinde daha 

yüksek doğrulukla gerçekleştiren hibrid bir algoritma tasarlanmıştır. Her iki yöntemi de zayıf ve güçlü parçalarının farkındalığıyla 

birleştirmek ve değişim noktalarının benzerlik analizi ile tespit edilmesi üzerine geliştirilen çözüm, bu yöntemlerin tek başlarına elde 

ettiği ortalama başarımı yaklaşık %18,6 oranında artırmaktadır. Ayrıca çalışma kapsamında, problemin karmaşıklığını artıran ve 

ayrıştırma doğruluğunu azaltan bazı özel durumlar da sunulmuştur. 

 

 

Anahtar Kelimeler: Mobil Ağ Sezonsallık Tespiti, Değişim Noktası Farkındalığı, Mobil Ağ Kapasite Planlama, Parçalı Regresyon 

Analizi, Zaman Serisi Bileşenlerine Ayırma 
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1. Introduction 

Many industries are turned into digitalized processes so the 

number of mobile internet users is rapidly growing in recent years. 

This is followed by the growing demand for Machine-to-Machine 

(M2M) communication and Internet of Things (IoT) 

transformation for businesses and individuals. Global Covid-19 

pandemic effect is another acceleration source for the growing 

demand for digitalized businesses and relevant mobile application 

usage. Every single day new internet services and applications are 

deployed, so the load to be managed by Mobile Network 

Operators (MNO) is increasing. Regarding GSM Association 

(GSMA) Intelligence Mobile Economy Research Report, by the 

year 2025, there will be 1.2 billion new subscribers being served 

by mobile networks (GSMA, 2020). The ratio of mobile 

subscribers over the regional population is depicted in Figure 1. 

 

Figure 1. Mobile internet subscriber’s percentage of population 

by 2025 (GSMA Intelligence, 2020) 

The variety of services corresponds to a different amount of 

traffic generation on the network, and each has different customer 

experience requirements. Throughput-sensitive applications such 

as video streaming or latency-centric applications such as online 

gaming which are served through the same mobile base stations 

exist. Variance on multiple services and their customer 

expectation increases the complexity of the mobile network 

capacity planning process which is aimed to make correct 

investments at the correct time to manage the balance between 

Capital Expenditure (CAPEX) and Return-on-Investment (ROI). 

As depicted in Figure 2, the second-highest response of MNOs for 

infrastructure renewal and network transformation decisions is 

improving customer experience (GSMA, 2020). One another key 

point of this research worth mentioning is also declining CAPEX 

as much as possible to keep MNOs profitable. 

All these increasing demands, smart ROI management 

pressure, improving customer experience requirements to 

decrease churn threat push MNOs to digitalize their internal 

services and make data-centric intelligent decisions. In MNO 

organizations, there are regional and central network investment 

planning teams who are in charge of capacity investment 

decisions by considering all the above dimensions. A generalized 

regular process of network capacity planning lifecycle is shown 

in Figure 3. The number of consumed data sources is increasing 

over time in the process. To digitalize decision process with more 

data-centric approach, all process is being softwarized to rely on 

data analysis and demand forecasting. Similar to all data-oriented 

solutions, the process starts with data collection operations which  

 

consume data from multiple data sources.  

The most commonly utilized data source is Element Management 

Systems (EMS) logs which provide performance counters to 

calculate Key Performance Indicators (KPI) about resource 

utilization statistics. For instance, the number of users connected 

to Base Station (BS), carried amount of traffic in Megabytes, 

Physical Resource Block (PRB) utilization for LTE cells,  

and so on. All these statistics are labeled with timestamps that 

indicate certain time intervals (i.e., every 5, 15, 30, or 60 minutes). 

Besides network KPIs, there are some other data sources to utilize 

for improved investment accuracy such as geolocated customer 

complaints from Customer Relationship Management (CRM) 

systems, crowd-sourced quality samples collected from 

subscriber User Equipment (UE), signal propagation modeling 

tool exports (binned coverage signal levels), transport layer 

statistics and so on. It is common to use EMS-generated KPIs to 

use for traffic forecasting. High-quality forecasting for traffic and 

demand requires some preprocessing operations such as data 

cleaning, missing data imputation, anomaly healing, and daily or 

weekly aggregation of data for long-term regressions.  

 

 

Figure 2. The primary goal driving MNOs’ network 

transformation strategy (GSMA Intelligence, 2020) 

Multiple key factors affect the overall forecasting and 

inherently investment decision accuracy. These factors are listed 

as the quality of data, having enough data to cover targeted 

seasonality search, being aware of change points when identifying 

seasonal factors, impacts of special days, and so on. In concise,  

it is significant to understand features of time series data and 

decompose it correctly. MNO policies and business rules are 

applied on forecasted traffic and other utilization KPIs and it is 

followed with investment suggestions. At the last phase of the 

lifecycle, all suggestions are evaluated regarding to pre-defined 

constraints and orchestrated. Conflicting suggestions which may 

be impacting each other in low distances are resolved concerning 

MNO policies and priorities. The distilled suggestion list is 

applied at investment periods sorted by ROI.  

Detecting the seasonality impact of base stations regardless 

of changepoints in their history improves the accuracy of 

investment suggestion decisions. Especially, identifying the 

locations which can be compensated with temporary mobile cells, 

baseband units, and accumulators in small buses makes more 

saving than perpetual investment.
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Figure 3. Mobile network capacity planning lifecycle 

Finding the correct time of investment on high seasonal base 

stations for some sectoral capacity expansion is also another  

cost-saving factor for MNOs. Hence, they make expansions to 

correct base stations at the correct time to preserve customer 

experience. Unnecessary investment causes another cumbersome 

cost on the environment as well due to carbon footprint increment. 

Managing the capacity of a location with the correct number of 

stations decreases MNO's carbon footprint and saves energy. 

Centralized energy saving algorithms are also required to be 

aware of high season start-end dates for their predictive accuracy.  

In this study, we process real network daily traffic data and 

develop a new hybrid solution to identify long-term seasonality 

impact over base stations. After this process, we design an 

algorithm for seasonality detection and decomposition of mobile 

network base station traffic data to extract seasonality impact on 

base stations by considering changepoint existence due to level 

shift or exponential trend increase.The algorithm consists of  

built-in changepoint search, change ratio analysis, and similarity 

controls mechanisms inside. It can calculate multiplicative 

seasonal factors by using two-years historical traffic data. 

Labeling base stations with decomposed seasonality impact helps 

to forecast algorithms as new features when predicting next year’s 

traffic demand. We compare our results with 100 base stations 

with two years of historical data taken from a European Tier-1 

operator. The dataset consists of 4119 base stations’ data; 150 of 

them are labeled by three Subject Matter Experts (SMEs) from 

central planning teams, 100 of them are used as the test set to 

benchmark the proposed solution with pure Prophet library-based 

decomposition and STL solution. We introduce our dataset, 

distribution of base station characteristics and share our algorithm 

results with benchmarking. It is critical for the mobile network 

capacity planning lifecycle to have both these capabilities (being 

aware of changepoints and identifying seasonality impact on a 

base station) unified as one solution to be able to develop a 

software-oriented planning approach. So, the solution would be 

able to work as an unsupervised solution with offline analysis and 

learning capabilities on historical data.The outputs of algorithms 

(seasonal labeling of base stations and percentage-based amount 

of seasonal impact) can be supplied into forecasting algorithms 

including Neural Networks (NN) or Machine Learning (ML) 

based solutions or to rule-based network management policy 

applications. To the best of our knowledge, there are no other 

studies focused on long-term changepoint aware seasonality 

labeling of mobile base stations and tested with real network data 

under the supervision of SMEs. 

The rest of the study is as folows. In Section 2, related works 

about the subject of the study are given. In Section 3, materials 

and methods used in this study are presented. In Section 4, 

experimental results are analyzed and discussed and finally the 

study is concluded in Section 5. 

2. Related Works 

Time series is a sequence of observations labeled with a 

timestamp as data points in successive order. Each time series has 

some characteristic features as dependent on the nature of the 

stochastic process that generates its observations. Time series may 

contain multiple seasonal cycles for different periods.  

For example, the hourly utility demand data exhibits both daily 

and weekly cycles (Gould et al., 2008). In the characteristics of 

base station traffic time series, it is common to see multiple 

seasonal components such as weekly, monthly, and yearly 

seasonality which means non-stationarity as it is analyzed in the 

“rationalization section” the study by Yu et al. (2010).  

Same patterns exist in our dataset as well, but for capacity 

planning, we focus on long-term, low-frequency seasonal 

components which are yearly seasonality. Mobile network traffic 

can be decomposed into multiple components in additive or 

multiplicative form as classical decomposition methods.  

It is formulated by Lakshmanan & Das (2017) such that time 

series 𝑌 to be modeled or forecast is viewed as (1) depending on 

additive or multiplicative model, where 𝑇 represents the trend or 

the long-term direction, 𝑆 represents the seasonality or a pattern 

which repeats periodicity and  𝜖 represents the random error and 

i.i.d (independent and identically distributed) 

𝑌 =  𝑇 +  𝑆 +  𝜖    or    

 𝑌 =  𝑇  .  𝑆  .   𝜖 
(1) 
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It can also be represented as low frequency and higher frequency 

elements as given by (2), where the trend component is  

low-frequency changes and seasonality is addressed as higher 

frequency changes. 

𝑌 =  𝑌𝑙𝑜𝑤  +  𝑆ℎ𝑖𝑔ℎ  +  𝜖    or 

𝑌 = 𝑌𝑙𝑜𝑤   𝑥  𝑆ℎ𝑖𝑔ℎ   𝑥   𝜖 
(2) 

Anomalies such as outliers and level shifts are quite common 

in time-series data. The presence of outliers and level shifts 

(changepoints) poses problems for the identification and 

estimation of Autoregressive Integrated Moving Average 

(ARIMA) models (Balke, 1993). In this study, we define our 

algorithm based on multiplicative decomposition as in (1).  

We complete many empirical analyses for two years of historical 

data and observed multiplicative seasonality characteristics in the 

traffic data. Since the mobile network traffic is highly  

non-stationary due seasonal characteristics besides changepoints, 

an algorithm to reveal seasonal impact in mobile traffic is required 

to consider both changepoints and seasonal movements together. 

At the inner sections of our algorithm, we apply  

log-transformation to turn our multiplicative characteristics into 

additive ones for easier calculations and evaluation for 

changepoints existence controls. 

In this section, we analyze some previous studies about 

changepoints detection as a subset of anomaly detection and 

seasonality decomposition algorithms. The unique output of our 

algorithm is to find a satisfactory algorithm, working on live 

mobile network historical data as an offline and batch solution. 

The algorithm should be successful at detecting seasonal impact 

on base station traffic even if it includes changepoint in its history. 

There are studies about changepoints detection and seasonality 

detection separately on other domains and have not combined 

together for investigating mobile network traffic.  

It is beneficial for healthy forecasting of mobile traffic demand 

and accuracy of capacity investment decisions because many base 

stations have changepoints due dynamism of mobile networks. 

For instance, a newly deployed base station is open to steal traffic 

from existing neighbor base stations or Covid-19 pandemic 

quarantine alerts may cause unexpected level shifts in specific 

regions like business areas or leisure locations. We observe 

similar behavior in our dataset and implement an algorithm that 

combines piece-wise Bayesian regression-based change points 

distribution analysis, similarity search, and flexible STL 

decomposition.  

2.1. Changepoints Detection 

Changepoints are statistical changes of the probability 

distribution on the output of stochastic processes.  

Let 𝑋 = {𝑋𝑡 , 𝑡 = 1,… , 𝑇} be the series of observed traffic 

volume samples, then if we say null hypothesis given by (3) is no 

change in the traffic, the alternative hypothesis given by (4) would 

be a change points existence at point k (Chen & Zhang, 2015). 

𝐻0: 𝑃𝑋1 = 𝑃𝑋2 =  . . .  =  𝑃𝑋𝑛 (3) 

where  {1, … , 𝑛} are intervals of 𝑋𝑡 series and 𝑃𝑋𝑛 is the 

probabilistic density function of interval 𝑛. 

𝐻1: ∃ 1 ≤  k <  n, {
𝑃𝑋𝑘 , 1 ≤  k 

𝑃𝑋𝑛 ,         𝑘 <  𝑛
   𝑃𝑋𝑘 ≠ 𝑃𝑋𝑛 (4) 

Multiple studies address changepoint detection or anomaly 

detection algorithms on time series data to identify unexpected 

changes in series. Some of them are listed in the study of 

Aminikhanghahi & Cook, (2017). Changepoint detection 

algorithms are categorized into several categories mainly as 

online and offline algorithms. Online algorithms run concurrently 

with the process they are monitoring, processing each data point 

as it becomes available, and as a real-time solution, processing 

should be completed before the next data point arrives.  

On the other hand, offline algorithms analyze the entire data set at 

once, and there is no real-time decision during the run-time period 

(Downey, 2008). There are also other categories of changepoint 

detection algorithms such as univariate, multivariate,  

model-based, non-parametric as listed by Burg & Williams 

(2020). One of the initial approaches is the Cumulative Sum 

Control (CUSUM) chart method which is widely used and 

proposed by Page (1954). It is to detect a change in the mean of 

the distribution as a weighted sum of last 𝑘 observations.  

It considers the change of cumulative sum to be over a threshold. 

There are multiple derivatives of the CUSUM algorithm where 

one of them is an intuitive approach which has the typical 

behavior of the log-likelihood ratio 𝑆𝑘 given by (5) and 𝑠𝑖 given 

by (6) showing a negative drift before changepoint, and a positive 

drift after changepoint. It is visualized in Figure 4.  

Let   null hypothesis  𝐻0: 𝜃 =  𝜃0   and alternative hypothesis   

𝐻1: 𝜃 =  𝜃1, then 

𝑆𝑗
𝑘  =  ∑ 𝑠𝑖

𝑘

𝑖 = 𝑗

 (5) 

𝑠𝑖  =  ln
𝑃𝜃1(𝑦𝑖)

𝑃𝜃0(𝑦𝑖)
 (6) 

be the log-likelihood ratio for the observations from 𝑦𝑗 to 𝑦𝑘 .  

There are some other approaches which are constructed over 

likelihood ratio with binary segmentation. Scott and Knott (1974) 

studied the consequences of using a well-known method of cluster 

analysis to partition the sample treatment means in a balanced 

design. They showed how a corresponding likelihood ratio test 

gives a method of judging the significance of the differences 

among groups obtained. 

Probabilistic methods are used for changepoint detection as 

well by segmenting time series and generating probability outputs 

of each segment for changepoint existence. Downey proposed an 

algorithm with Bayesian approach in which the kernel of the 

algorithm is a system of equations that computes, for each index 

𝑖, the probability that the last (most recent) changepoint occurred 

at 𝑖. He evaluates this algorithm by applying it to the changepoint 

detection problem and compares it to the Generalized Likelihood 

Ratio (GLR) algorithm (Downey, 2008). It is also mentioned in 

the Downey’s research that a special type of changepoint problem 

which is tracking. The goal of the tracking problem is to partition 

a time series into stationary intervals and estimate the parameters 
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of the process in each interval. A simple approach is to use 

hypothesis testing to detect a changepoint, estimate the location 

of the change(s), and then use conventional techniques to estimate 

the parameters of the process in each interval. 

 

Figure 4. CUSUM log-likelihood ratio behavior to a change in 

the mean of a Gaussian sequence with constant variance 

(Basseville & Nikiforov, 1993) 

Our goal in this study is not to define yet another changepoint 

detection algorithm, we used a Bayesian-based approach 

constructed on Prophet library’s Bayesian approach where they 

specify a large number of changepoints and use a sparse prior as 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜏). The parameter  𝜏 directly controls the flexibility 

of the model in altering its rate (Taylor & Letham, 2018). But we 

enhanced their automatic changepoint detection outputs by 

comparing the distribution of significant change ratios among 

years. Hence, we separated it from multiplicative seasonality 

changes, and this helps to distinguish real changepoints.  

The impact of the changepoint on-trend is identified and 

decomposed successfully. Normally this approach marks all 

multiplicative seasonal changes as a high chance of changepoints 

with a significant rate of changes and repeats real changepoints in 

future forecasting since it is not designed as dedicated to 

changepoint detection algorithm.  

In parallel to the growing number of time series and 

streaming data, there is a growing demand to be able to estimate 

the location of multiple changepoints efficiently and accurately 

(Killick & Eckley, 2014). For multiple changepoints detection 

problems, Bayesian rules are also used. Let the series 𝑇 is 

generated with a probability distribution of parameter 𝜃. In this 

case, Bayes rule is  

P(𝜃|𝑇)  =  
P(T|𝜃) 𝑃(𝜃)

𝑃(𝑇)
 (7) 

where P(𝜃|𝑇) is posterior distribution, P(T|𝜃) is the likelihood 

and 𝑃(𝜃) is prior. So, a Bayesian Model to detect a single 

changepoint at 𝐶 (as a discrete parameter,

𝐶 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (1, 𝑇)) is targeted to find a posterior probability 

given by (7) which is validating hypothesis given by (4) at 

point 𝐶. 

2.2. Seasonality Detection 

Business time series often have multi-period seasonality as a 

result of the human behavior (Taylor & Letham, 2018).  

For automatic forecasting of traffic series for capacity planning of 

radio access networks, it is valuable to decompose the series into 

the level, growth, and seasonal components (Hyndman & 

Khandakar, 2008). It is not different for short-term and  

long-term time series generated by mobile networks traffic 

behavior (Nikravesh, et al., 2016; Cortez, et al., 2006; Tikunov & 

Nishimura, 2007; Sciancalepore, et al. 2017). There are different 

ways of modeling the seasonality component of the series. One of 

them is modeling the periodic effects as standard Fourier series 

given by (8) (Harvey & Shephard, 1993). It is similar for 

Trigonometric Exponential Smoothing State-Space model with 

Box-Cox transformation, Autoregressive Moving Average 

(ARMA) errors, Trend and Seasonal Components (TBATS) 

modeling (Livera, et al., 2011). 

𝑠(𝑡) =  ∑ (𝑎𝑛 𝑐𝑜𝑠(
2𝜋𝑛𝑡

𝑃
)  + 𝑏𝑛 𝑠𝑖𝑛(

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛 = 1

 (8) 

where 𝑃 is the period length. For instance, 𝑃 =  12 for 

monthly aggregated yearly data or 𝑃 =  24 for half-month 

aggregation of yearly data. 

 There are filtering-based decomposition techniques with 

partial regression line fitting. Seasonal Moving Averages is one of 

them including weighted averaging as an alternative. Also, there 

are methods for seasonal decomposition of longer series which 

work over monthly or quarterly aggregated data such as the X-11 

method, Seasonal Extraction in ARIMA Time Series (SEATS) 

method (Dagum & Bianconcini, 2016),  or hybrid version of them 

as X-13ARIMA-SEATS. X-11 and SEATS methods are aware of 

unexpected sudden falls in the trend component if long enough 

data is provided to clearly distinguish strong seasonality patterns 

from the trend. But when the monthly aggregated data points are 

not so many similar to two years historical data in our dataset,  

it is not easy to model multiplicative yearly seasonality by using 

only X-11 or SEATS methods. As an alternative to these methods, 

there is  STL for nonlinear relationships and flexible controlling 

of trend and seasonal components regardless of aggregation 

granularity of data unlike X-11 and SEATS methods. STL is a 

filtering procedure for decomposing time series into trend, 

seasonal and remainder components, respectively. STL has a 

simple design that consists of a sequence of loess smoother 

applications. The simplicity allows analysis of the properties of 

the procedure and allows fast computation, even for very long 

time series and large amounts of trend and seasonal smoothing. 

Other features of STL are the specification of amounts of seasonal 

and trend smoothing that range, in a nearly continuous way, from 

a very small amount of smoothing to a very large amount, robust 

estimates of the trend and seasonal components (Cleveland, et al., 

1990). STL can only model components additively. To be able to 

model multiplicative seasonality log-transformation is required to 

be applied which frequently exists in our data set series for mobile 

networks. A Loess smoother is applied locally weighted 

polynomial regressions at each point in the dataset, with the 

explanatory variables being the values close to the point whose 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  375 

response is estimated. The parameters for the STL procedure are 

obtained from the eigenvalue and frequency response analysis of 

a given time series. The iterated cycle is composed of two 

recursive procedures, the inner and the outer loop. If 𝑌 to be our 

traffic volume data and 𝑇 represents the trend component or the 

long-term direction, 𝑆 represents the seasonal component or a 

pattern which repeats periodically and  𝜖 represents the random 

error. In this case, the inner loop performs six basic steps 

(Theodosiou, 2011):  

1- Detrending: Let 𝑘 means the value of our components at 

𝑘𝑡ℎpass of the algorithm. At the first iteration, the trend is 

assumed to be zero. At iteration 𝑘 + 1, our traffic data is 

detrended with the components of the previous pass is given by 

(9) as 

𝑌𝑡  −  𝑇𝑡
(𝑘)

 (9) 

2- Seasonal smoothing: Loess smoothing applied to the remainder 

of the first step to retrieve preliminary seasonal component, 

𝑆𝑡
(𝑘+1)̃

. 

3- Filtering of smoothed seasonality: By applying a moving 

average to the preliminary seasonal component and then another 

Loess smoother, 𝑇𝑡
(𝑘+1)̃

 is retrieved as the remaining preliminary 

trend component. 

4- Detrending of smoothed seasonality: The additive seasonal 

component becomes the difference between these two preliminary 

components is given by (10) as 

𝑆𝑡
(𝑘+1)

 =  𝑆𝑡
(𝑘+1)̃

 − 𝑇𝑡
(𝑘+1)̃

 (10) 

5- Deseasonalizing: To retrieve non-smoothed trend component 

for iteration k+1, seasonal component subtracted from original 

series is given by (11) as 

𝑌𝑡  −  𝑆𝑡
(𝑘+1)

 (11) 

6- Trend smoothing: At the final step, the seasonally adjusted 

remainder series is smoothed with Loess to give an estimate of the 

trend component 𝑇𝑡
(𝑘+1)

 

Hence, each pass of the inner loop applies seasonal smoothing that 

updates the seasonal component, followed by trend smoothing 

that updates the trend component. 

There are hybrid solutions like Seasonal Hybrid Extreme 

Studentized Deviate (S-H-ESD) that is built on the ESD algorithm 

(Rosner, 1975) to address anomalies rather than changepoints in 

respect to seasonal patterns in series. In this study, we addressed 

a similar problem for changepoint aware seasonal impact 

extraction in mobile radio network traffic series. Our solution is 

built as a hybrid solution by using changepoint detections with the 

Bayesian approach of Prophet library, changepoint distribution 

similarities analysis for changepoint smoothing, and followed by 

STL decomposition. Hence, we successfully segregate the 

changepoint effect from actual multiplicative seasonal effects as 

an automated decomposition solution. 

 

 

3. Material and Method 

In this section, we explain the dataset utilized to develop our 

solution, validate its accuracy and its estimate parameters and the 

completed preprocessing operations required to feed the data into 

the algorithm and finally the workflow of the proposed algorithm.  

3.1. Dataset 

It is not so easy to work and analyze long-term historical 

patterns of mobile network data due to the lack of recorded 

historical data allowed for external access. There are some public 

datasets from mobile operators like Telekom Italia or China 

Mobile shared for hackathons and academic purposes, but they do 

not include long enough historical data like two years and more. 

Many MNOs just in recent years started to build their data 

warehouses or data lakes for long-term strategic analytical 

purposes. To analyze and develop our algorithm, we work on a 

proprietary dataset of a Tier-1 European MNO. Collected data 

includes two years historical Long-Term Evaluation (LTE) traffic 

volume data in Megabytes, base station ids, cell ids, sector ids, 

city, region, band and vendor information. Dataset statistics are 

given in Table 1. 

Table 1. Dataset statistics 

Dataset Breakdown Total Count 

Number of regions 3 regions 

Number of cities 4 cities 

Number of cells 20680 LTE cells 

Number of sites 4119 sites 

Number of freq. layers 4 bands 

Number of vendors 3 vendors 

Time Interval 2018-Aug-1 / 2020-Aug-1 

We selected 150 base stations from overall dataset which 

have different characteristics in terms of seasonality, changepoint 

existence. Characteristic of each base station is labeled by three 

SMEs. Total of 50 of them used for exploratory analysis and 

parameters tuning for supervision. Remained 100 base stations are 

used for model accuracy testing and not used for any analysis or 

parameter tunning purposes. 

 

Figure 5. Distribution of labeled test base stations 
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 Distributed number of categorized sites with SME labeling 

is shown in Figure 5. SMEs define 30% seasonal impact as a 

threshold to label a site as seasonal. So, let {1, … , 𝑛} be intervals 

of 𝑋𝑛
(𝑘)

 traffic values serie of the base station 𝑘. If we denote 

seasonal component for a specific time (𝑛) as 𝑆𝑛
(𝑘)

 and trend 

component as 𝑇𝑛
(𝑘)

, SMEs define a ratio threshold based on 

investment policies which are denoted with 𝜆 and defined as 0.30 

in our study. To label a base station as seasonal (𝐼𝑠_𝑆𝑒𝑎(𝑘)  =  1) 

or not seasonal (𝐼𝑠_𝑆𝑒𝑎(𝑘)  =  0), we use the formula given by 

(12). 

𝐼𝑠_𝑆𝑒𝑎(k) =

{
 
 

 
 1, ∃ n ∋  

𝑆𝑛
(𝑘)

𝑇𝑛
(𝑘)
 ≥  𝜆 

0,         ∀ n ∋  
𝑆𝑛
(𝑘)

𝑇𝑛
(𝑘)
 <  𝜆

 (12) 

If the ratio of seasonal and trend components of a base station go 

over 30% for any time interval, that base station is labeled as 

seasonal, otherwise it is labeled as non-seasonal even if it shows 

seasonal periodicity with lower levels. Non-seasonal base stations 

are not critical incapacity planning decisions when considering 

high season start-end dates. As displayed in Fig. 5, there are 53 

base stations marked as seasonal and 47 as non-seasonal.  

17 of the seasonal base stations have changepoints due to some 

reasons which may differ such as Covid-19 pandemic quarantines 

or traffic stealing of another near field cell investment. 

Changepoints can be in form of level shifts or trend increase or 

decrease. 

3.2. Preprocessing 

Some preprocessing operations are applied to make raw data 

more suitable for long-term seasonality and changepoint analysis. 

Collected data consists of cell level daily traffic volume and 

relevant cell planning data. Long-term seasonal periodicity and 

trend shifts are clearer when statistics are aggregated to get rid of 

misleading outliers. To expand the related base stations with new 

sectorial cell expansions or mobile base stations assignment at the 

correct time, the aggregation of daily data should not be too wide 

unnecessarily. Also, yearly seasonal characteristics are required to 

be preserved. So, the following steps are applied beforehand to 

submit data into the algorithm: 

1- Data cleaning: There are some abnormal values due to some 

problems with EMS servers i.e., negative valued traffic 

volume data or missing cell id information, and so on.  

2- Missing data interpolation: It is common to see missing daily 

traffic data due to some EMS server outages. Those values 

are interpolated with window-based (3 weeks before and 3 

weeks after values) averaging of same days of weeks. 

3- Anomaly healing: There are traffic values unexpectedly high 

or low due to incorrect reading of counters by Extract, 

Transform, and Load (ETL) platforms or EMS problems. 

These outlier days are detected with seasonal scaled Median 

Absolute Deviation (MAD), removed, and interpolated with 

correct values like in step 2. Weakly seasonality is considered 

in this step. 

4- Base Station level aggregation: To decrease the processing 

time and discarding cell-level changes to focus more on 

location, cell-level data is aggregated into base station level 

daily data with summation of cell-based daily traffic volume 

under the same base station. 

5- Removal of new base stations: Young base stations with less 

than 2 years of history are excluded from the dataset for 

yearly seasonality analysis. 

6- Storing processed data: For future analysis, processed 

outputs are stored in the database. 

Preprocessing operations are done automatically at once with 

some custom Python and SQL scripts and stored into PostgreSQL 

relational database. Batch analysis algorithm is consumed data 

stored in the database. 

3.3. Algorithm 

Preprocessed data are submitted into our hybrid solution for 

seasonal impact analysis. Hybrid solutions are aimed to utilize 

stronger functionalities of other solutions to yield much better 

outputs on specific problems. In this section, we provide the 

workflow of our hybrid algorithm that combines three steps under 

the hood which are using the flexibility of piece-wise Bayesian 

regression with a Laplacian (double exponential) sparse prior, rate 

of change-based energy distribution comparison for changepoint 

and seasonality search, and lastly decomposition of series 

components with STL’s Loess smoother, respectively. To develop 

and test our hybrid solution, we utilized two external libraries 

coded in Python which are widely used in academia and industry. 

Initial Bayesian regression with sparse prior is built on top of 

Facebook’s Prophet library (Taylor & Letham, 2018) which 

provides the ratio of changes distribution over time by using 

probabilistic Stan framework (Stan Development Team, 2020)  

at the backend. It is also explained by Erp et al. (2019). The other 

library is the statsmodels library (Seabold, et al., 2010)  which we 

used for the STL algorithm in the last decomposition step.    

The algorithm starts with aggregating daily base station 

traffic volume data into bi-weekly and monthly series to get rid of 

daily fluctuations and focusing more on yearly seasonal 

characteristics which are more critical for long-term investment 

decisions. Both aggregated series are log-transformed due to 

multiplicative seasonal characteristics of mobile radio networks. 

So, the seasonal impact over the base stations is a function of trend 

and showing multiplicative impact as a result of our explanatory 

analysis. A sample is shown in Figure 8. 

We fit highly flexible Bayesian Lasso regression by using the 

Prophet library model on log-transformed traffic series to retrieve 

potential abnormal behavior on change ratio distribution.  

With the help of disabled seasonality, the ratio of change is 

explained inside the trend curve, hence seasonal changes are also 

retrieved in terms of change ratios. For every single month of two 

years, a potential changepoint is placed when the curve is fitted 

for further investigation of changepoints distribution and Laplace 

distribution swallows the weak changes. Both bi-weekly and 

monthly series are also decomposed with STL to check for  

trend-seasonal components changes. Both these indicators are 

used to decide if traffic series include changepoints and still show 

a seasonal characteristic or not. If history includes changepoint 

regarding the first indicator and also the second indicator, 

seasonal characteristic indicator, is positive, then a flexible trend 

curve is fitted to cover changepoint inside and subtracted from the 

main trend component for changepoint smoothing before STL 

decomposition. This helps changepoint impact to be segregated 

from seasonal movements and explained inside trend component. 

Prophet library tends to label high multiplicative seasonal rises as 

potential changepoints and STL library also tends to explain 

changepoints in the seasonal component. Also, Prophet library 
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explains seasonal component with Fourier series, and this creates 

a tendency for fitting seasonal impact as a multiplier of the 

previous year which has a lower trend component. This causes 

wrong fitting the level of seasonal rise for next year.  

 

Figure 6. The main workflow of the algorithm 

In our study, we yield five outputs, which are, 

- strength of positive seasonal impacts in terms of Seasonal 

Power Index (SPI) values calculated with the formula given 

by (13),  

- length of this seasonal periods in days,  

- the overall SPI value of the base station in respect to formula 

given by (14), 

- existence of changepoints in its history, 

- label of the base station as “seasonal” or “not seasonal” by 

comparing its max SPI period with the 30% threshold 

definition of SMEs.  

All 100 base stations in our testbed are benchmarked in these 

dimensions with previously done SME decisions and results are 

shared in section 4. 

𝑆𝑃𝐼𝑀  =  
𝐹𝑆(𝑀)

𝐹𝑇(𝑀)
      (13) 

𝑑𝑗(𝐴, 𝐵) =  1 −  𝐽(𝐴, 𝐵)  =  
|𝐴 ∪  𝐵|  − |𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
 

     (14) 

3.1.1. Changepoint and Similarity Controls 

The most common and widely used time series 

decomposition algorithms like seasonal moving averaging, STL, 

or Prophet library suffer from changepoints if they are not 

identified correctly. This situation causes some incorrect 

decomposition such as mapping the dramatic changepoint change 

into seasonal component rather than trend component, fitting 

trend component incorrectly by smoothing seasonal 

characteristics unnecessarily, or mixing the real changepoints 

with highly multiplicative seasonal changes. These types of 

problems are pretty common when we look at mobile radio 

networks due to their non-stationary structure under the impact of 

changing customer behaviors or ongoing investment-based 

expansions of networks. So, to be able to design automated 

capacity planning solutions, it is a must to cover changing story 

of every single base station. It is straightforward to decompose 

seasonal and trend components for all common decomposition 

methods if the base station has clear seasonality with additive or 

lower scaled multiplicative seasonality with no changepoints. But 

when the series is shorter similar to two years history in our 

dataset and characteristic variance is high on many base stations, 

common methods are required to be aware of these situations and 

improve with some additional controls and adjustments.  

To identify potential changepoints' existence and seasonal 

periodicity in the log, controls in Algorithm 1 are applied. 

 

Algorithm 1 change ratio controls 

procedure exec_change_ratio_controls (bw_series, sig_thr, rat_thr) 

    set c_prio_sc  1.5, c_rng 1.0, cp_in_y1  false, cp_in_y2  false 

    set model  init Prophet with no_sea, c_prio_sc, c_rng 

    call model. fit with bw_series 

    set rc_y1[ ], rc_y2[ ]  split model.rate_changes[ ] yearly 

    set max_y1  Max(Abs(rc_y1)), max_y2  Max(Abs(rc_y2)) 

    set num_sig_y1  0.1, num_sig_y2  0.1 

    for each change ratio c1, c2 in rc_y1[ ], rc_y2[ ] 

        if Abs(c1) > sig_thr then 

            increment num_sig_y1 

        end if 

        if Abs(c2) > sig_thr then 

            increment num_sig_y2 

        end if 

    end for 

    if num_sig_y1 / num_sig_y2 > rat_thr or max_y1 / max_y2 > rat_thr 

then 

        set cp_in_y1  true 

    elif num_sig_y2 / num_sig_y1 > rat_thr or max_y2 / max_y1 > rat_thr 

then 

        set cp_in_y2  true 

    return cp_in_y1, cp_in_y2 

end procedure 
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We fit highly flexible Bayesian Lasso regression by using the 

Prophet library model on log-transformed traffic series to retrieve 

potential abnormal behavior of change ratios. Prophet library 

itself has two types of growth models which are non-linear, 

saturating growth, and linear trend with changepoints, 

respectively. We used the latter one with flexible changepoint 

prior scale as a generalized additive model. The default 

components of Prophet library models are formulated in (12). 

Here 𝑔(𝑡) is the trend function which models non-periodic 

changes, 𝑠(𝑡) represents periodic changes (e.g., weekly, monthly 

or yearly seasonality), and ℎ(𝑡) represents the effects of holidays 

which occur on potentially irregular schedules over one or more 

days and 𝜖𝑡 is for normally distributed error terms (Taylor & 

Letham, 2018). But since we focus on the comparison of change 

ratios between two years, if they are similar or not including 

seasonal changes, we do not fit seasonal characteristics At this 

step we only fit a growth model with flexible changepoint prior 

scale given by (15) and (16). The growth function consists of 𝑘 as 

the growth rate, δ as the rate adjustments, m as the offset 

parameter. If we suppose there are 𝑆  changepoints at times 𝑠𝑗, 𝑗 =

 1, … , 𝑆 then, the vector of rate adjustments as δ and δ𝑗 is the 

change rate at the time 𝑠𝑗. Once the growth model is fitted with a 

flexible changepoint prior scale (default Prophet library value is 

0.05), the model puts a sparse prior on δ as we do at this stage to 

get the clear ratio of changes. It is called sparse prior since the 

prior has double exponential (aka Laplace) distribution as given 

by (17). The parameter 𝜏 directly controls the flexibility of the 

model, due Laplace form. So, increasing this prior value makes 

the trend fitting more flexible. Hence, based on our empirical 

analysis over seasonal labeled base stations, we set it as 𝜏 =  1.5, 
and by setting the changepoint range as 1.0, we look for 100% of 

the historical log-transformed traffic series. A change ratio over 

0.8 is defined as significant change which also covers strong 

multiplicative seasonal upward and downward movements of 

traffic volume. The ratio of changes for the first and second year 

are compared by the number of significant ratios and maximum 

absolute values of ratios. In case of dissimilarity over a ratio 

distribution in both of these indicators are resulted as a potential 

changepoint indicator. There are some visualized samples in 

Section 4 for this scenario. We made an empirical analysis for 

changepoint including multiplicative seasonal base stations which 

are out of our test dataset and define this threshold as 3 times. 

Graph of a base station with multiplicative seasonal 

characteristics and ratio of changes of its log-transformed bi-

weekly traffic is shown in Figures 8 and 12.  

𝑦(𝑡)  =  𝑔(𝑡)  +  𝑠(𝑡)  +  ℎ(𝑡)  +  𝜖𝑡,      (15) 

𝑦(𝑡)  =  𝑔(𝑡)  +  𝜖𝑡,      (16) 

g(t)  =  (k +  a(t)𝜏δ)t +  (m +  a(t)𝜏𝛾),      (17) 

δ𝑗 ~ Laplace(0, 𝜏)      (18) 

Let P is seasonal period and 𝑋 =  {𝑋𝑆1 , 𝑋𝑆2 , . . . , 𝑋𝑆𝑁 | 𝑁 ≤
 𝑃} is the seasonal component index and 𝐹𝑆(𝑋), 𝐹𝑇(𝑋) are the 

decomposed functions of seasonality and trend components, 

respectively, then we calculate the strength of the seasonal 

impact of a month as SPI given by (18). When X = M where M 

means a certain month, the monthly SPI of that month is 

calculated as (13). 

We checked for the existence of another indicator that helps us to 

distinguish base stations with seasonal similarities in terms of 

monthly SPI changes by using Jaccard distance as the 

complementary of Jaccard similarity score in (14) (Jaccard, 

1912). 

In our dataset there are base stations at high seasonal locations but 

also have level shifts in their history. Despite changepoints, they 

preserve seasonal characteristics, so the algorithm check for their 

characteristic similarity in terms of SPIs with the algorithm in 

Algorithm 2. To calculate monthly SPIs of two years, firstly we 

decompose log-transformed traffic series with STL 

decomposition algorithm, hence we have trend and seasonal 

components even if the existence of changepoint ruins seasonal 

component. SPI changes are binarized regarding their upward and 

downward direction and both binary direction vectors  

(as A and B) and SPI change powers are compared among two 

years. Jaccard distance is obtained for directional comparison if 

the same months of two years are moving in similar directions. 

Moreover, as another indicator, the change of monthly SPIs for 

two years is similar to each other with a delta threshold, then the 

base station also labeled as having seasonal characteristics.  

Algorithm 2 seasonal characteristics controls 

procedure exec_sea_char_control (m_series, delta_thr, spi_sim_thr,  

jacc_thr) 

    set num_similars  0, num_match_dir  0, num_match_pos  0  

    set has_sea_pattern  false 

    set model  init STL with yearly_sea 

    set trend_m, sea_m  call model.fit with m_series get decompose_res 

    set spi_m[len(m_series)]  null  

    for each component tre_of_month, sea_of_month in trend_m, sea_m 

        add spi_m  sea_of_month / tre_of_month  

    end for 

    set spi_y1[ ], spi_y2[ ]  split spi_m [ ] yearly 

    for each index ix in spi_y1, spi_y2 

        set spi_m_y1  spi_y1[ix], spi_m_y2  spi_y2[ix] 

        set spi_m_y1_prev  spi_y1[ix - 1], spi_m_y2_prev  spi_y2[ix - 1] 

        if  Abs(spi_m_y1 - spi_m_y2) <= delta_thr then 

            increment num_similars 

        end if 

        if  (spi_m_y1_prev - spi_m_y1) * (spi_m_y2_prev - spi_m_y2) > 0 

then 

            increment num_match_dir 

        end if 

        if  spi_m_y1 * spi_m_y2 > 0 then 

            increment num_match_pos 

        end if 

    end for 

    set jacc_sc_dir  num_match_dir / 12, jacc_sc_pos  num_match_pos 

/ 12 

    if num_similars >= spi_sim_thr and jacc_sc_dir >= jacc_thr  

    and jacc_sc_pos >= jacc_thr then 

        has_sea_pattern  true 

    return has_sea_pattern 

end procedure 
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Monthly changes are compared among years and their 

similarity is calculated in terms of SPI change direction (upward, 

downward) and position (below trend or above trend).  

Both matches are compared with Jaccard distance. If the monthly 

decomposed pattern of a base station shows similarity above 25% 

(𝑠𝑝𝑖_𝑠𝑖𝑚_𝑡ℎ𝑟 =  0.25) and less than 50% (𝑗𝑎𝑐𝑐_𝑡ℎ𝑟 =  0.5) 

Jaccard distance, then it is accepted in our study a potential 

seasonal pattern regardless from changepoint.  

If the changepoint indicator is also positive, then a flexible trend 

covering the changepoint inside is calculated and subtracted from 

the main trend before STL decomposition. Hence, the impact of 

trend shift is not added to the seasonal component. 

3.1.2. Decomposition and Seasonal Impact Calculations 

As aforementioned above, decomposition of monthly and  

bi-weekly series are done with STL decomposition. The seasonal 

power index is calculated per month with the formula given by 

(18). But to calculate a common seasonal impact score another 

formula is used given by (14). This formula consists of seasonal 

maximum and minimum values over corresponding trend values 

at the same moments. It is also shown in Figure 7.  

 

Figure 7. Base station seasonality power index parameters 

Again, Let 𝑃 is seasonal period and  

𝑋 =  {𝑋𝑆1 , 𝑋𝑆2 , . . . , 𝑋𝑆𝑁 | 𝑁 ≤  𝑃} is the seasonal component 

index and 𝐹𝑆(𝑋), 𝐹𝑇(𝑋) are the decomposed functions of 

seasonality and trend components, respectively, then we 

calculate the total strength of seasonal impact for a base station 

SPI given by (19).  

Sea_Max_Ix = ArgMax(𝐹𝑆(𝑋)), 
Sea_Min_Ix = ArgMin(𝐹𝑆(𝑋)), 

Tre_Comp_Max_Ix = 𝐹𝑇(Sea_Max_Ix)), 
Tre_Comp_Min_Ix = 𝐹𝑇(Sea_Min_Ix)), 
Sea_Comp_Max_Ix = 𝐹𝑆(Sea_Max_Ix)), 
Sea_Comp_Min_Ix = 𝐹𝑆(Sea_Min_Ix)), 

 
𝑆𝑃𝐼 

=  
𝑆𝑒𝑎_𝐶𝑜𝑚𝑝_𝑀𝑎𝑥_𝐼𝑥 + |𝑆𝑒𝑎_𝐶𝑜𝑚𝑝_𝑀𝑖𝑛_𝐼𝑥|

𝑇𝑟𝑒_𝐶𝑜𝑚𝑝_𝑀𝑎𝑥_𝐼𝑥 +  𝑇𝑟𝑒_𝐶𝑜𝑚𝑝_𝑀𝑖𝑛_𝐼𝑥
 

     

(19) 

4. Experimental Results and Discussion  

In this section, we analyze specific use-cases for different 

characteristics of base station traffic data and hard to handle 

situations where our hybrid algorithm takes over shortcomings of 

pure Prophet library and STL-based approaches. In the end,  

we provide the accuracy results of the algorithm for the test set 

prepare by SMEs and retrieve outputs for the whole network.  

 

4.1. Specific Cases to Handle 

We can simply categorize base stations into two main 

categories as seasonal and non-seasonal stations in respect to the 

long-term seasonality component of traffic volume. But there are 

sub-categorized cases when it comes to extracting seasonal 

components in an automated fashion. For automated 

decomposition scenarios, it is not feasible to make an explanatory 

analysis for each base station with empirical methodologies since 

a typical Tier-1 network has more than a hundred thousand base 

stations. So, we explain some of these cases in this section over 

real network data and visualize the shortcomings of existing 

approaches of the two libraries underneath.  

4.1.1. Aggressive Multiplicative Seasonality 

The very first and common case to see is the aggressive 

multiplicative level for some base stations. Seasonal impact value 

changes as a function of the trend for this type of base station as 

seen in Figure 8. The main trend is in red just to supply an idea 

about linear trend growth. Mainly, the base station traffic trend 

needs to be saturated based on SME evaluations, so the final 

decomposition of trend is set to logistic growth by our algorithm 

taken from STL decomposition rather than Prophet library’s 

logistics growth. In this sample base station traffic makes peaks 

around April, May, June periods each year, and the aggressiveness 

of the seasonality increases as a function of a trend which is also 

increasing as a function of time to a saturating point due to 

available resource blocks of the base station.  

 

Figure 8. Base station sample with multiplicative seasonality 

To be able to detect changepoints, a Laplace prior with higher 

flexibility causes this aggressive multiplicative seasonal boosting 

to be considered as strong changepoints. The distribution of 

change ratios by time for 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1.5) can be seen in Figure 9 

and Figure 10 for the multiplicative yearly seasonality model 

constructed on the Prophet library. 

Keeping changepoint prior too flexible unnecessarily to grab 

any potential changepoints causes seasonal movements to be 

marked as potential changepoints and this results from 

unexpected trend changes to keep yearly multiplicative 

seasonality fitting. Here the seasonal component is an output of 

Fourier series fitting.  Specific to this sample, for a better Prophet 

library fit for the multiplicative yearly seasonality model, a less 

flexible prior is required like the default value 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 0.05).  
Its decomposed components are visualized in Figure 11.  

So, adjustment of changepoint priors plays a critical role in the 

correct mapping of traffic amount between trend and seasonal 

components. A single changepoint in Figure 11 is located in a 

close location to the middle of the overall series and indicates the 
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slope change on-trend fits better when looked into decomposed 

components. But keeping lower or default priors tends to discard 

trend changes and makes the model less robust against real 

changepoints as analyzed in Section 4.1.2. An automated solution 

should be capable to distinguish multiplicative seasonality 

movements including aggressive ones from the level shifts caused 

by some other reasons automatically. 

 

Figure 9. Ratio change distribution of flexible prior setup on 

multiplicative seasonal behavior 

 

Figure 10. Changepoint locations of flexible prior setup on 

multiplicative seasonal behavior 

 

Figure 11. Components of less flexible prior setup on 

multiplicative seasonal behavior 

Log-transformation of the original series decreases the 

distance between two years in terms of Jaccard distance for 

multiplicative seasonality base stations. This makes it 

straightforward to compare movement similarities among two 

years. As explained in Section 3.3, once log-transformation is 

applied to series and it is fitted with flexible before retrieving all 

possible change ratios, we get the distribution of ratios, visualized 

in Figure 12. The distribution of change ratios between two years 

is more similar in terms of amount and positions. It means lower 

Jaccard distances. 

 

Figure 12. Components of less flexible prior setup on  

log-transformed traffic data of multiplicative seasonality 

  Algorithm 1 for changepoint controls explained in Section 

3.1.1 returns false for this multiplicative seasonality base station 

since there is no significant difference between ratio changes of 

subsequent years. Both years have five significant ratio changes 

at similar amounts which are 2.7 and 2.3, respectively. Also, the 

similarity scores for monthly calculated SPI values are high. 

Jaccard distances which are explained with Algorithm 2 in 

Section 3.1.2 are calculated as 38%, 12%, and 38% for SPI change 

direction, change position, and amount for monthly SPI among 

two years. Hence, the subsequent controls for changepoints 

existence and change similarities based on Jaccard distance tell 

us, there exists seasonality but no changepoint for the specified 

base station. If changepoints exist, the algorithm would try to set 

a flexible trend curve to cover a level shift and subtracts it from 

the original series for correct seasonal decomposition.  

The specified base station is decomposed to saturating trend and 

seasonal components as the output of the STL decomposition part 

of the hybrid algorithm in Figure 14. The very recent values of 

components are considered which is 2020 in our case.   

 

Figure 13. Components of our algorithm for multiplicative 

seasonality with saturating trend component 
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4.1.2. Level Shift Changepoints in History 

Mobile networks are growing too fast, especially for the 

hotspot areas. So, newly deployed base stations or turned-off ones 

can cause dramatic trend shifts in neighbor base stations as 

expected by SMEs. There may be some other reasons like 

configuration changes of cells such as uptilt or downtilt actions 

for coverage optimization. So, when designing automated 

seasonal impact analysis, those types of level shifts should be 

considered and detected autonomously and distinguished from 

seasonal movements of traffic volume. A sample base station with 

the shifted level in terms of trend is visualized in Figure 14.  

Piece-wise Bayesian curve fitting with low changepoint prior  

(i.e., 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 0.05)) could not be adequate to catch this 

changepoint as visualized in Figure 15. History of the specified 

base station includes strong level shift after July 2019. But since 

changepoint prior is set to a lower value, which means less 

flexible prior setup, piece-wise mapping of curve catches only a 

few changepoints. So changepoints are placed incorrectly around 

May and this caused to map traffic change into the seasonal 

component.  

 

Figure 14. Base station with changepoint due to level shift 

 

Figure 15. Changepoint locations of less flexible prior setup on 

multiplicative seasonal behavior 

Similar decomposition output is also observed for STL based 

decomposition of series even if the series is  

log-transformed. As seen in Figure 16, when two years history is 

decomposed with STL (seasonal degree = 1, trend degree = 0), an 

abnormal change in traffic has explained with the incorrect 

seasonal component. It is not just STL that explains this change 

with the seasonal component so that in case of incorrect 

changepoint prior selection, Prophet library’s seasonality 

component is also affected highly. So, it is not straightforward to 

have the correct changepoint prior when compared with Section 

4.1.1 where a less flexible prior worked fine unlike in this case. 

Same prior failed as seen in Figure 15. For this special case, higher 

flexibility (i.e., 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1.5)) to identify changepoint location 

performs much better and maps traffic into trend component 

relatively more reasonable format as shown in Figure 17. 

 

 

Figure 16. Misleading of STL decomposition with mapping of 

trend shift into seasonal component 

 

Figure 17. Changepoint locations of higher flexible prior setup 

on changepoint behavior 

Our hybrid solution checks for the potential location of the 

changepoint and considers the correct section of history for 

decomposition. So, it takes the behavior of the latest year after 

changepoint as seen in Figure 18. Relatively smoother trend 

component with the levels of the year 2020 and seasonal 

component over it isis distilled successfully. Sure, the related base 

station has some repetitive ‘up’s and ‘down’s both in the years 

2019 and 2020 but it is but the relative amount of these seasonal 

movements are weak next to the trend component, so base station 

labeled as non-seasonal characteristics. Because we label base 

stations as ‘seasonal’ if they have any seasonal period over trend 

component by 30% difference as explained in Section 3. 

 

Figure 18. Components of our algorithm for changepoint due 

level shift 
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4.1.3. Trend Increase Changepoints in History 

For some base stations, there is growing demand due to 

population increase, customer behavior changes, or some other 

reasons. The algorithm is required to catch these trend changes 

and adjust seasonal impact factors concerning these trend 

changes. As discussed in section 2, changepoints are not just 

because of level shifts. Non-stationary behavior of trend 

component with increasing or decreasing trend is also addressed 

as changepoints in literature. A sample trend change as 

exponential growth is visualized in Figure 19 where the trend is 

increasing with the new year. 

 

 

Figure 19. Base station with changepoint due to level shift 

The algorithm detects a changepoint and tries to fit a  

piece-wise curve with a flexible changepoint prior. This curve is 

subtracted from the original traffic as shown in Figure 20.  

The remainder series is decomposed with STL to retrieve the final 

components of the algorithm in Figure 21. The seasonal impact 

for May, June, and July periods is higher and the month of July is 

the peak period for monthly data. So, any investment before 

month May is proposed for capacity planning suggestions.  

 

Figure 20. Changepoint locations of higher flexible prior with 

piece-wise fitting 

 

Figure 21. Components of our algorithm for a base station with 

changepoint due to the increasing trend 

4.1.4. Weak Seasonality or Non-Seasonality 

Each base station doesn’t need to show strong seasonal 

characteristics. Some base stations do not have  

non-stationary behavior due to seasonality, so no seasonal pattern 

exists. Our algorithm is required to be aware of the seasonality 

over trend ratio for labeling the base station. Some base stations 

have a seasonal component that is similar to random walk or some 

others do not have strong peaks at seasons. We label those base 

stations as non-seasonal and do not consider their seasonal periods 

when evaluating future investment to overcome seasonal peak 

issues. For those regions, SMEs just consider changes in on-trend 

components. A sample non-seasonal, strong trend base station can 

be viewed in Figure 22. 

 

Figure 22. Base station with non-seasonal characteristics 

The traffic characteristics in this category of base stations are 

defined with their trend and some residuals which cannot be 

explained with some seasonal patterns. If there exist some 

seasonal patterns, their impact over trend strength is found weak. 

Even if the visual output of the final algorithm has a seasonal 

component that is too low comparing to the trend component 

including residuals inside. The peak point is around 15 GB for the 

seasonal component comparing to 150 GB for the trend 

component. It is less than 10%. Also, since Jaccard distance 

measuring similarity and correlated movements are too high, this 

base station is labeled as non-seasonal by our algorithm as 

expected. 
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Figure 23. Components of our algorithm for a base station with 

non-seasonal characteristics 

4.2. Accuracy Results and Discussions 

In our study, we have 150 base stations labeled by SMEs and 

we use 100 of this set for accuracy testing. Another remaining 

batch of 50 base stations is used for exploratory analysis, 

parameters tunning for thresholds, and initial model tests. There 

are four main outputs of the algorithm such as, 

- Seasonal labeling: category of the base station as seasonal or 

non-seasonal, in respect to seasonal pattern and its impact level. 

True if the base station is seasonal.  

- Power of seasonal impact: SPI based relative impact score 

regarding the ratio of seasonal traffic amount to trend traffic 

amount 

- Existence of changepoint: it is a value which is true if historical 

offline data of base station includes changepoints. 

- Duration of the season: time in days during seasonal impact is 

over 30% continuously. 

Our algorithm works on all test base stations and provides 

these four outputs. Two of them, seasonal labeling and the 

existence of changepoint are binary outputs. But the other two, 

power of seasonal impact and duration of the season are regressed 

values. To retrieve an overall accuracy score, we have turned these 

numeric outputs into categorical outputs by defining an 

acceptance criterion with SMEs’ view. If the base station is 

correctly labeled for seasonality and changepoint status, it is then 

checked for seasonal impact amount and duration of the season as 

well in terms of Absolute Percentage Error (APE) as formulated 

given by (20). SPI is calculated above by considering the peak 

month of seasonal impact. There is also an actual value that is 

defined by SMEs per base station. The acceptable APE value for 

these two metrics is below 15%. Hence, it is satisfactory for 

planning engineers at network capacity investment decisions on 

time. In the case of retrieving 15% below the APE score for a base 

station in terms of SPI and duration, then both predictions are 

marked as True.  

𝐴𝑃𝐸 =  
|𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 −  𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
 (20) 

 Each base station in test set is categorized by the algorithm, 

and they are labeled regarding to Table 2 truth table. Since we turn 

the problem into binary categorization, we get an overall accuracy 

metric with F1 score as formulated in Table 3. Not to miss on time 

investment decisions and cause decreased customer experience, 

how many real positives are detected by our algorithm is critical. 

This corresponds to ‘recall’ value. Moreover, not to cause 

unnecessary investment decisions which leads increased CAPEX, 

how many of our positive decisions is really positive is also 

important for us. This one corresponds to ‘precision’ value in 

Table 3. In order to have a balance between these two metrics, we 

evaluate our general success with F1 score which is harmonic 

mean of precision and recall. We give equal weight to both scores, 

so keep beta as 1.0 which is default value for F-measure. 

Table 2. Explanation of truth 

 

TP 

True-Positive means from all four dimensions, the 

result is correct and base station is seasonal with correct 

decomposition. 

TN 
True-Negative means from all four dimensions, the 

result is correct and base station is non-seasonal. 

FN 
False-Negative means labeling an actual seasonal base 

station as non-seasonal. 

FP 
False-Positive means labeling an actual non-seasonal 

base station as seasonal. 

 

Table 3. Metric formulas 

 

Accuracy  (TP + TN) / (TP + FP + FN + TN) 

Recall  TP / (TP + FN) 

Precision  TP / (TP + FP) 

F1 Score  2 x Precision x Recall / (Precision + Recall) 

Distribution of SPI and seasonal period length in our test set 

is visualized in Figures 24 and 25, respectively.  

As aforementioned in Section 3.1, our threshold for seasonal 

labeling is 30% as the initial criterion provided by SMEs. Hence, 

distribution has a higher frequency below 50 percent in SPI 

distribution. Similarly shorter seasonal periods have more 

frequency below 30 days.   

 

Figure 24. Distribution of test set SPI values output 

The total number of labeling results is shown in Table 4 as a 

confusion matrix. Algorithm label 45 (True Positive) actual 

seasonal base stations correctly providing satisfactory period 

length calculation and seasonal impact values decomposition.  

The number of incorrect labeling or not-satisfactory 

decomposition is 8 base stations (False Negative) of them.  
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In these 8 FNs, 5 of them are due to incorrect decomposition of 

trend component slightly, whereas 3 of them are due to shorter 

period length calculations. 

 

Figure 25. Distribution of test set seasonal period length 

Here shorter means calculating period length more than 15% 

error. Our algorithm label 44 (True Negative) base stations 

correctly as non-seasonal. Due to some incorrect reactions to 

changepoints, SPI distribution similarity is not identified 

correctly. So, 3 of actual non-seasonal base stations are labeled as 

seasonal which is the number of false positives. 

Table 4. Confusion matrix 

 True Seasonal True Non-Seasonal 

Predicted Seasonal  45 3 

Predicted Non-Seasonal 8 44 

  Overall accuracy results using precision, recall, and F1-score 

are listed in Table 5. We benchmark our algorithm with its 

underlying decomposition approaches as STL and Prophet library 

itself. We showed the improved accuracy of our algorithm on 

mobile network data comparing to these methods. Even our 

algorithm uses both these frameworks under the hood, by making 

some further auto-analysis over the changepoint possibility and 

their distribution, it understands critical changes in traffic history 

and selects the correct parameters and sections for improved 

decomposition performance. We retrieve 0.80 as an F1-score with 

our algorithm which is outperforming the average F1-score of 

STL and Prophet library approaches by 18.6%.  

As visualized in section 4.1, for historical data with changepoint 

inside, STL tends to explain these changes with a seasonal 

component which causes incorrect trend values for changepoint 

included base stations. Unlike STL, when Prophet library is 

executed with default parameters as automated changepoint 

detection capability it performs well but fails to cover drastic 

trend shifts and does not fit the trend component well enough. 

Prophet library is more successful at explaining multiplicative 

seasonality. Both solutions do not just consider afterward of 

changepoint for the final decision which is also another 

expectation from SMEs. They remain under the impact of series 

characteristics before changepoint time and preserving it as long-

term memory. Base stations with these characteristics as 

explained in Section 4.1 are processed better with our algorithm, 

hence we get improved precision and recall scores in 

benchmarking as seen in Table 5. 

Table 5. Accuracy results and benchmark 

 Our Algorithm STL 
Prophet 

library 

Precision  0.93 0.72 0.77 

Recall 0.84 0.73 0.79 

F1-Score 0.89 0.72 0.78 

 

When we apply the final algorithm to the whole data set to 

categorize base stations we get the distribution in Figure 26. Total 

31% of whole base stations are seasonal and 20% of base stations 

have changepoints in their history regarding our algorithm.  

The distribution of SPI values and seasonal period length is 

depicted in Figure 27 and Figure 28, respectively.  

 
Figure 26. Distribution of labeled base stations of the whole 

dataset 

 

Figure 27. Distribution of whole dataset SPI values output 

 

Figure 28. Distribution of whole dataset seasonal period length  

5. Conclusions  

In this study, an algorithm for seasonality detection and 

decomposition of mobile network base station traffic data is 

presented to extract seasonality impact on base stations by 

considering changepoint existence due to level shift or 

exponential trend increase. Automated capacity planning for 
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mobile networks requires long-term forecasting of traffic demand 

by using historical patterns. To decide the correct time of 

investment and correct capacity expansion size or improving the 

accuracy of forecasting algorithms with exogenous features, both 

seasonal decomposition and seasonal period identification 

improve decision accuracy. We designed a hybrid algorithm to 

calculate these features on live network data with improved 

accuracy which uses piecewise STL decomposition and Prophet 

library’s regression with Laplace prior under the hood. 

Combining both methods with an awareness of their weak and 

strong parts and leveraging overall output with changepoint and 

similarity analysis help us to improve our accuracy around 18.6% 

comparing the average of single usage of these methods. We also 

provided some special cases that increase problem complexity 

and decrease decomposition accuracy. We visualized outputs of 

each method over struggling points on live network data. We 

completed all required preprocessing, data cleansing, and 

anomaly healing operations beforehand. Our analysis approaches 

traffic decomposition requirements for different purposes in a 

univariate, offline, parametric, and supervised way. For further 

research area, another solution which is unsupervised, online with 

limited history, non-parametric, multi-variate (ie. base station 

capacity limitations due to resource block unavailability or 

several connected UE counts) can be studied. Decomposing the 

seasonal impact of newly deployed base stations with low-quality 

history is also another further research area based on our 

discussions with subject matter experts. 
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