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Abstract
In this paper, it is proved that no special spacelike Frenet curve is a Bertrand curve in E4

2 . Therefore, a
generalization of spacelike Bertrand curve is defined and this is called as spacelike (1,3)-Bertrand curve in E4

2 .
Moreover, the characterizations of spacelike (1,3)-Bertrand curves are given in E4

2 .
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1. Introduction
The characterization of a regular curve is one of the important and interesting problems in the theory of curves. The Bertrand
curves found by J. Bertrand in 1850 have an important place in differential geometry. These curves are specific examples of
parallel (offset) curves that have an important place in computer-aided design and computer-aided manufacturing [1]. In E3, a
C∞-special Frenet curve γ is called a Bertrand curve if there exists another C∞-special Frenet curve γ∗, such that the principal
normal vector fields of γ and γ∗ coincide at the corresponding points [2], [3].

There are many important papers on the Bertrand curves [4], [5]. Izumiya and Takeuchi proved in their work that Bertrand
curves can be obtained from spherical curves in E3 [6]. The Bertrand curves corresponding to constant parameter curves of
constant slope surfaces are investigated [7]. When we investigated the properties of the Bertrand curves in En, it is easy to
see that either κ2 or κ3 is zero which means that Bertrand curves in En are degenerate curves [3]. This result was restated by
Matsuda and Yorozu [2]. They proved that there were not any special Bertrand curves in En and defined a new kind, which is
called (1,3)-Bertrand curves in 4-dimensional Euclidean space. Uçum et al. examined the (1,3)-Bertrand curves concerning
the casual character of the plane spanned by {N(s), B2(s)} in E4

1 [8].
In this paper, we proved that no special spacelike Frenet curve is a Bertrand curve in E4

2 . Additionally, we gave the
characterizations of spacelike (1,3)-Bertrand curve in E4

2 .

2. Preliminaries
To meet the requirements in the upcoming sections, the basic elements of the theory of curves in the semi Euclidean space E4

2
are briefly presented in this section. A more complete elementary information can be found in [9].

The semi-Euclidean space E4
2 is an Euclidean space provided with standard flat metric given by

g =−da2
1 −da2

2 +da2
3 +da2

4,

where (a1,a2,a3,a4) is a rectangular coordinate system of the E4
2 . A vector w in E4

2 is called a spacelike, timelike or null
(lightlike) if hold g(w,w) > 0, g(w,w) < 0 or g(w,w) = 0 and w ̸= 0, respectively. The norm of a vector w is given by
∥w∥=

√
|g(w,w)|. Therefore, w is a unit vector if g(w,w) =±1. Similarly, an arbitrary curve γ = γ(s) in E4

2 can locally be
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spacelike, timelike or null (lightlike) if all of its velocity vectors γ ′(s) are spacelike, timelike or null (lightlike), respectively.
The velocity of the curve γ is given by ∥γ ′∥. Thus, a spacelike curve γ is said to be parametrized by arc length function s if
g(γ ′,γ ′) = 1. Two vectors u and w in E4

1 are said to be orthogonal if g(u,w) = 0 [9]. Also,

i. Let us assume that u and w are spacelike vectors, then

• if they span a spacelike plane, there is a unique number 0 ≤ θ ≤ π such that g(u,w) = ∥u∥∥w∥cosθ .

• if they span a timelike plane, there is a unique number θ ≥ 0 such that g(u,w) = ε ∥u∥∥w∥coshθ , where ε =+1 or
ε =−1 according to sgn(u2) = sgn(w2) or sgn(u2) ̸= sgn(w2), respectively.

ii. Let us assume that u and w are timelike vectors, then there is a unique number θ ≥ 0 such that g(u,w) = ε ∥u∥∥w∥coshθ ,
where ε =+1 or ε =−1 according to u and w have different time-orientation or the same time-orientation, respectively.

iii. Let us assume that u is spacelike and w is timelike, then there is a unique number θ ≥ 0 such that
g(u,w) = ε ∥u∥∥w∥sinhθ , where ε =+1 or ε =−1 according to sgn(u2) = sgn(w1) or sgn(u2) ̸= sgn(w1), respectively.
The corresponding number θ given above will be called simply the angle between u and w [10].

Let {T (s),N(s),B1(s),B2(s)} denotes the moving Frenet frame along γ in the semi-Euclidean space E4
2 , then T (s), N(s), B1(s)

and B2(s) are called the tangent, the principal normal, the first binormal, and the second binormal vector fields of γ , respectively.
A unit speed curve γ is said to be a Frenet curve if g(γ ′′,γ ′′) ̸= 0. Let γ be a C∞ special spacelike Frenet curve with spacelike

principal normal, timelike both first binormal and second binormal vector fields in E4
2 , parametrized by arc length function s.

Moreover, non-zero C∞ scalar functions κ1, κ2 and κ3 be the first, second, and third curvatures of γ , respectively. Then for the
C∞ special spacelike Frenet curve γ , the Frenet formula is given by

T ′ = κ1N (1)
N′ = −κ1T +κ2B1

B′
1 = κ2N +κ3B2

B′
2 = −κ3B1,

where T, N, B1 and B2 mutually orthogonal vector fields satisfying

g(T,T ) = g(N,N) = 1,g(B1,B1) = g(B2,B2) =−1. (2)

Let γ be a C∞ special timelike Frenet curve with timelike principal normal, spacelike both first binormal and second binormal
vector fields in E4

2 , parametrized by arc length function s. Then for the C∞ special timelike Frenet curve γ , the Frenet formula is
given by

T ′ = −κ1N

N′ = κ1T +κ2B1

B′
1 = κ2N +κ3B2 (3)

B′
2 = −κ3B1,

where T, N, B1 and B2 mutually orthogonal vector fields satisfying

g(T,T ) = g(N,N) =−1,g(B1,B1) = g(B2,B2) = 1 (4)

(for the semi-Euclidean space En+1
v , see [11], [12]).

Definition 1. Let (I,α), (I,β ) be coordinate neighbourhoods of the curves α, β ∈ En. Let {V1(s), ...,Vr(s)} ,{V ∗
1 (s), ...,V

∗
r (s)}

be the Frenet r-frame at the points α(s) and β (s) (s ∈ I). If V2(s), V ∗
2 (s) are linearly dependent for ∀s ∈ I, the curve pair

(α,β ) is called a Bertrand curve pair [13].

3. Spacelike Bertrand curves in E4
2

The following two theorems related to Bertrand curves in E2
1 and E3

1 are well known.

Theorem 2. In E2
1 , every spacelike C∞-planar curve is a Bertrand curve [14].
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Theorem 3. In E3
1 , a C∞-special spacelike Frenet curve with first and second curvatures κ1 and κ2 is a spacelike Bertrand curve

if and only if there exists a linear relation aκ1 +bκ2 = 1, for all s ∈ L, where a, b are nonzero constant real numbers [14], [15].

Now, let us investigate Bertrand curves in E4
2 .

Definition 4. A C∞-special spacelike Frenet curve γ : L → E4
2 is called spacelike Bertrand curve if there exists an another

C∞-special Frenet curve γ∗ : L∗ → E4
2 , distinct from γ , and a regular C∞-map ϕ : L → L∗, (s∗ = ϕ(s), dϕ

ds ̸= 0, for all s ∈ L),
such that curve has the same 1-normal line at each pair of corresponding points γ(s) and γ∗(s∗) = γ∗(ϕ(s)) under ϕ . Here, s
and s∗ are arc length parameters of the curves γ and γ∗, respectively. In this case, γ∗ is called a Bertrand mate of the spacelike
curve γ .

Definition 5. Let the curve γ∗ with the Frenet vector fields {T ∗,N∗,B∗
1,B

∗
2} be a Bertrand mate of curve γ with the Frenet

vector fields {T,N,B1,B2}. There are two possibilities for the Bertrand mate γ∗ of the spacelike curve γ;

1. The Bertrand mate γ∗ of the spacelike curve γ is also spacelike. Thus the vector fields are related by

T ∗(s∗) = ε(T (s)coshθ +B1 sinhθ),

since the plane spanned by T and T ∗ will be timelike according to the frame (1).

2. The Bertrand mate γ∗ of the spacelike curve γ is timelike. Thus the vector fields are related by

T ∗(s∗) = ε(T (s)sinhθ +B1 coshθ).

Theorem 6. In E4
2 , no C∞-special spacelike Frenet curve is a Bertrand curve.

Proof. Let γ∗ be a mate of Bertrand curve γ in E4
2 . Also, the pair of γ(s) and γ∗(s∗) be the corresponding points of γ and γ∗,

respectively. Then for all s ∈ L the curve γ∗ is given by

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+α(s)N(s), (5)

where α is C∞-function on L. By differentiating the equation (5) with respect to s, then

ϕ
′(s)

d(γ∗(s∗))
ds∗

= γ
′(s)+α

′(s)N(s)+α(s)N′(s)

is obtained. Here and hereafter, the subscript prime denotes the differentiation with respect to s. By using the Frenet formulas,
it is seen that

ϕ
′(s)T ∗(s∗) = [1−α(s)κ1(s)]T (s)+α

′(s)N(s)+α(s)κ2(s)B1(s).

Considering N(s) and N∗(ϕ(s)) are coincident and g(T ∗(ϕ(s)),N(s)) = 0 for all s ∈ L, we get

α
′(s) = 0

that is, α is a constant function on L. Thus, the differentiation of the equation (5) with respect to s is

ϕ
′(s)T ∗(s∗) = [1−ακ1(s)]T (s)+ακ2(s)B1(s). (6)

By the fact that γ and γ∗ are spacelike curves, the tangent vector field of Bertrand mate of γ can be given by

T ∗(ϕ(s)) = T ∗(s∗) = ε(T (s)coshθ +B1 sinhθ), (7)

where θ is a hyperbolic angle between the spacelike tangent vector fields T ∗(s∗) and T (s). According to the equations (6) and
(7), the hyperbolic functions are defined by

coshθ =
1−ακ1(s)

εϕ ′(s)
, sinh(θ) =

ακ2(s)
εϕ ′(s)

. (8)

By differentiating the equation (7) and applying Frenet formulas,

ϕ
′(s)

d(T ∗(s∗))
ds∗

= ε[
d(coshθ(s))

ds
T +(κ1 coshθ(s)+κ2 sinhθ(s))N +

d(sinhθ(s))
ds

B1 +κ3 sinhθ(s)B2]

is obtained. Since N(s) is coincident with N∗(s∗), from the above equation, it is seen that

κ3 sinhθ(s) = 0.

If we notice that κ3 is different from zero, then sinhθ(s) = 0. Considering the equations (8) and κ2(s) ̸= 0, then α(s) = 0. In
that time the equation (5) implies that γ∗ is coincident with γ . This is a contradiction. ■
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By the fact that γ is spacelike curve and γ∗ is timelike curve, the tangent vector field of Bertrand mate of γ can be given by

T ∗(s∗) = ε(T (s)sinhθ +B1 coshθ). (9)

According to the equations (6) and (9), the hyperbolic functions are defined by

sinhθ =
1−ακ1(s)

εϕ ′(s)
, cosh(θ) =

ακ2(s)
εϕ ′(s)

. (10)

By differentiating the equation (9) and applying Frenet formulas,

ϕ
′(s)

d(T ∗(s∗))
ds∗

= ε[
d(sinhθ(s))

ds
T +(κ1 sinhθ(s)+κ2 coshθ(s))N +

d(coshθ(s))
ds

B1 +κ3 coshθ(s)B2] (11)

is obtained. Since N(s) is coincident with N∗(s∗), from the equation (11), it is seen that

κ3 coshθ(s) = 0.

If we notice that κ3 is different from zero, then coshθ(s) = 0. Considering the equation (10) and κ2(s) ̸= 0, then α(s) = 0. In
that time the equation (5) implies that γ∗ is coincident with γ . This is a contradiction. So, the proof is completed.

4. Spacelike (1,3)-Bertrand curves in E4
2

In this section, we introduce the concept of spacelike (1,3)-Bertrand curve in E4
2 .

Definition 7. Let γ : I ⊆ R → E4
2 be a C∞-special Frenet curve. The plane spanned by the principal normal vector N(s) and the

second binormal vector B2(s) is called the (1,3)-normal plane of γ at the point s ∈ I.

Definition 8. Let γ : I ⊆ R → E4
2 and γ∗ : I∗ ⊆ R → E4

2 be C∞-special Frenet curves. If the Frenet (1,3)-normal plane of γ

coincides with the (1,3)-normal plane of γ∗ at corresponding points, then γ is called a (1,3)-Bertrand curve and γ∗ is called
the (1,3)-Bertrand mate curve of γ .

Let γ : I ⊆ R → E4
2 be a spacelike (1,3)-Bertrand curve with the Frenet frame {T,N,B1,B2} and the curvatures κ1,κ2,κ3

and γ∗ : I∗ ⊆ R → E4
2 be a (1,3)-Bertrand mate curve of γ with the Frenet frame {T ∗,N∗,B∗

1,B
∗
2} and the curvatures κ∗

1 ,κ
∗
2 ,κ

∗
3 .

Theorem 9. Let γ be a C∞-special spacelike Frenet curve with non-zero curvatures κ1, κ2, κ3 in E4
2 . Then γ is a spacelike

(1,3)-Bertrand curve whose the Bertrand mate γ∗ is also spacelike, if and only if there exists the constant real numbers α, β ,
µ, δ satisfying

1. ακ2(s)−βκ3(s) ̸= 0,
2. µ[ακ2(s)−βκ3(s)]+ακ1(s) = 1,µ = coshθ0(s)(sinhθ0(s))−1,
3. δκ3(s) = µκ1(s)+κ2(s),δ = coshφ0(s)(sinhφ0(s))−1,
4. (κ2

1 +κ2
2 −κ2

3 )µ +κ1κ2(µ
2 +1) ̸= 0, for all s ∈ I, where the plane sp(T,T ∗) and the plane sp(N,N∗) are timelike.

Proof. Assume that γ is a spacelike (1,3)-Bertrand curve parametrized by arc-length s and with nonzero curvature functions
κ1,κ2,κ3 and the curve γ∗ is the (1,3)-Bertrand mate curve of the curve γ, with arc-length s∗. Then the timelike plane
spanned by {N(s),B2(s)} coincides with the plane spanned by {N∗(s∗),B∗

2(s
∗)}. Since {N(s),B2(s)} = {N∗(s∗),B∗

2(s
∗)} ,

{N∗(s),B∗
2(s)} is a timelike plane and γ∗ can be a spacelike or timelike curve with timelike (1,3)-normal plane. Then we can

write the curve γ∗ as follows:

γ
∗(s∗) = γ

∗(ϕ(s)) = γ(s)+α(s)N(s)+β (s)B2(s) (12)

for all s∗ ∈ I∗,s ∈ I, where α(s) and β (s) are C∞-functions on I. Differentiating (12) with respect to s and using the Frenet
formula (1), we get

ϕ
′(s)T ∗(s∗) = [1−ακ1]T (s)+α

′(s)N(s)+ [ακ2 −βκ3]B1(s)+β
′(s)B2(s). (13)

Multiplying equation (13) by N(s) and B2(s), respectively, we have

α
′(s) = 0,β ′(s) = 0,
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that is, α and β are constant functions on I. Then, we find

ϕ
′(s)T ∗(s∗) = [1−ακ1(s)]T (s)+ [ακ2(s)−βκ3(s)]B1(s) (14)

from the equality (13). Since T (s) is spacelike and T ∗(s∗) is spacelike or timelike, then

±(ϕ ′(s))2 = [1−ακ1(s)]2 − [ακ2(s)−βκ3(s)]2. (15)

Also, if γ∗ is a spacelike curve and the plane spanned by {T,T ∗} is timelike, then we can write

T ∗(s∗) = ε(coshθ(s)T (s)+ sinhθ(s)B1(s)) (16)

coshθ(s) =
1−ακ1(s)

εϕ ′(s)
, sinhθ(s) =

ακ2(s)−βκ3(s)
εϕ ′(s)

,

where θ is a hyperbolic angle between the tangent vector fields T (s) and T ∗(s∗) of γ and γ∗. By differentiating the equation
(16) with respect to and applying Frenet formulas,

ϕ
′(s)κ∗

1 N∗ = ε
d(coshθ(s))

ds
T + ε[κ1 coshθ(s)+κ2 sinhθ(s)]N + ε

d(sinhθ(s))
ds

B1 + εκ3 sinhθ(s)B2

is obtained. Since N∗(s∗) is a linear combination N(s) and B2(s), it easily seen that

d(coshθ(s))
ds

= 0,
d(sinhθ(s))

ds
= 0

that is, θ is a constant function on I with value θ0. Thus, we rewrite the equation (16) as

T ∗(s∗) = ε(coshθ0(s)T (s)+ sinhθ0(s)B1(s)) (17)

and

εϕ
′(s)coshθ0(s) = 1−ακ1(s) (18)

εϕ
′(s)sinhθ0(s) = ακ2(s)−βκ3(s) (19)

for all s ∈ I. According to these last two equations, it is seen that

(1−ακ1(s))sinhθ0(s) = (ακ2(s)−βκ3(s))coshθ0(s) (20)

If sinhθ0(s) = 0, then it satisfies coshθ0 = 1 and T ∗(s∗) = T (s). The differentiation of this equality with respect to s is

ϕ
′(s)κ∗

1 (s
∗)N∗(s∗) = κ1(s)N(s),

that is, N(s) is linear dependence with N∗(s). According to Theorem 6 this is a contradiction. Thus, only the case of
sinhθ0(s) ̸= 0 must be considered. The equation (20) satisfies

ακ2(s)−βκ3(s) ̸= 0

that is, the relation given in the first clause of the theorem is proved. ■

Since sinhθ0(s) ̸= 0, the equation (20) can be rewritten as

1 =
coshθ0(s)
sinhθ0(s)

(ακ2(s)−βκ3(s))+ακ1(s).

Let us denote the constant value µ = coshθ0(s)(sinhθ0(s))−1 by the constant real number µ , then µ is an element of interval
(−∞,−1)∪ (1,∞) and

µ(ακ2(s)−βκ3(s))+ακ1(s) = 1.

This proves the relation given in the second clause of the theorem.
By differentiating the equation (17) with respect to s and applying Frenet formulas, we have

ϕ
′(s)κ∗

1 (s
∗)N∗(s∗) = ε[(coshθ0(s)κ1 + sinhθ0(s)κ2)N + sinhθ0(s)κ3B2]
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for all s ∈ I. Taking into consideration the equations (18), (19) and the second clause of the theorem, the above equality satisfy

(ϕ ′(s)κ∗
1 (s

∗))2 = (ακ2(s)−βκ3(s))2[(µκ1(s)+κ2(s))2 −κ
2
3 (s)](ϕ

′(s))−2.

From the equation (15) and the second clause of the theorem, we get

(ϕ ′(s))2 = (µ2 −1)[ακ2(s)−βκ3(s)]2.

Thus, we obtain

(ϕ ′(s)κ∗
1 (s

∗))2 =
1

µ2 −1
[(µκ1(s)+κ2(s))2 −κ

2
3 (s)]. (21)

On the other hand, since the vector field N∗ is spacelike, if the plane spanned by {N,N∗} is timelike, we can give

N∗(s∗) = ε(coshφ(s)N(s)+ sinhφ(s)B2(s)). (22)

From the equations (18), (19) and the second clause of the theorem, we obtain

coshφ(s) =
[ακ2(s)−βκ3(s)](µκ1(s)+κ2(s))

ε(ϕ ′(s))2κ∗
1 (s

∗)
, (23)

sinhφ(s) =
[ακ2(s)−βκ3(s)]κ3(s)

ε(ϕ ′(s))2κ∗
1 (s

∗)
, (24)

for all s ∈ I and φ(s) ∈C∞-function on I. By differentiating the equation (22) with respect to s and applying Frenet formulas,
we have

d(coshφ(s))
ds

= 0,
d(sinhφ(s))

ds
= 0

that is, φ(s) is a constant function on I with value φ0. Let us denote δ = coshφ0(s)(sinhφ0(s))−1 by the constant real number
δ , then δ ∈ (−∞,−1)∪ (1,∞). The ratio of (23) and (24) holds

δ =
µκ1(s)+κ2(s)

κ3(s)
,

that is, δκ3(s) = µκ1(s)+κ2(s) for all s ∈ I. Thus the third clause of the theorem is obtained. Moreover, we can give

ϕ
′(s)κ∗

2 (s
∗)B∗

1(s
∗) = ε[−coshφ0(s)κ1T +(coshφ0(s)κ2 − sinhφ0(s)κ3)B1]+ϕ

′(s)κ∗
1 (s

∗)T ∗.

If we substitute the equations (14), (23) and (24) into the above equality, we obtain

ϕ
′(s)κ∗

2 (s
∗)B∗

1(s) = (ϕ ′(s))−2(κ∗
1 (s

∗))−1[D(s)T +E(s)B1],

where

D(s) = (ϕ ′(s)κ∗
1 (s

∗))2(1−ακ1)− (ακ2 −βκ3)(µκ1 +κ2)κ1

E(s) = [(ϕ ′(s)κ∗
1 (s

∗))2 +µκ1κ2 +κ
2
2 −κ

2
3 ](ακ2 −βκ3).

for all s ∈ I. By the second clause of the theorem and the equation (21), D(s) and E(s) can be rewritten as;

D(s) = (µ2 −1)−1(ακ2 −βκ3)[(κ
2
1 +κ

2
2 −κ

2
3 )µ +κ1κ2(µ

2 +1)]
E(s) = (µ2 −1)−1(ακ2 −βκ3)µ[(κ

2
1 +κ

2
2 −κ

2
3 )µ +κ1κ2(µ

2 +1)].

By the fact that ϕ ′(s)κ∗
2 (s

∗)B∗
1(s) ̸= 0 for all s ∈ I, it is proved that

(κ2
1 +κ

2
2 −κ

2
3 )µ +κ1κ2(µ

2 +1) ̸= 0.

This is the last clause of the theorem.
Now, we will prove the sufficient condition of the theorem.
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Thus, we assume that γ is a spacelike C∞-special Frenet curve in E4
2 with curvatures κ1,κ2,κ3 satisfying the all clause of

the theorem for the constant real numbers α, β , µ, δ . We define a spacelike curve γ∗ by

γ
∗(s∗) = γ(s)+αN(s)+βB2(s), (25)

where s is the arc length parameter of γ . By differentiating this equation with respect to s and applying Frenet formulas,

ϕ
′(s)T ∗(s∗) = [1−ακ1(s)]T (s)+ [ακ2(s)−βκ3(s)]B1(s)

is obtained. Considering the second clause of the theorem, this equation is rewritten as;

ϕ
′(s)T ∗(s∗) = [ακ2(s)−βκ3(s)](µT (s)+B1(s))

for all s ∈ I. From the first clause of the theorem it is seen that γ∗ is regular curve. Thus, arc length parameter of γ∗ denoted by
s∗ can be given by

s∗ = ϕ(s) =
s∫

0

∥∥∥∥dγ∗

dt

∥∥∥∥dt,

where ϕ : I → I is a regular map. The differentiation of ϕ with respect to s is

ϕ
′(s) =

√
µ2 −1[ακ2(s)−βκ3(s)].

Also, here we notice that µ ∈ (−∞,−1)∪ (1,∞) and µ2 −1 > 0. Differentiating the equation (25) with respect to s, we get

ϕ
′(s)

dγ∗(s∗)
ds∗

= [ακ2(s)−βκ3(s)](µT (s)+B1(s)).

Now, let us define a unit vector field T ∗ along γ∗ by dγ∗(s∗)
ds∗ , then

T ∗(ϕ(s)) = (µ2 −1)−
1
2 (µT (s)+B1(s)). (26)

By differentiating this equation with respect to s and using Frenet formulas,

ϕ
′(s)

dT ∗(ϕ(s))
ds∗

= (µ2 −1)−
1
2 [(µκ1(s)+κ2(s))N(s)+κ3(s)B2(s)]

and

∥∥∥∥dT ∗(ϕ(s))
ds∗

∥∥∥∥=

√∣∣(µκ1(s)+κ2(s))2 −κ2
3 (s)

∣∣
ϕ ′(s)

√
µ2 −1

.

By the third clause of the theorem, it is seen that√∣∣(µκ1(s)+κ2(s))2 −κ2
3 (s)

∣∣=√
|δ 2 −1|κ2

3

and we notice that δ ∈ (−∞,−1)∪ (1,∞) and µ2 −1 > 0. Thus, we can write

∥∥∥∥dT ∗(ϕ(s))
ds∗

∥∥∥∥=

√
(δ 2 −1)κ2

3

ϕ ′(s)
√

µ2 −1
.

Since κ3 > 0 and ϕ(s)> 0 for all s ∈ I, we obtain

κ
∗
1 (s

∗) =

∥∥∥∥dT ∗(ϕ(s))
ds∗

∥∥∥∥> 0. (27)
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Thus, N∗(s∗) spacelike unit vector field can be defined by

N∗(s∗) = N∗(ϕ(s)) =
1

κ∗
1 (ϕ(s))

T ∗′(ϕ(s))

=
(µκ1(s)+κ2(s))N(s)+κ3(s)B2(s)√

(µκ1(s)+κ2(s))2 −κ2
3 (s)

. (28)

Also,

N∗(s∗) = ε(coshξ (s)N(s)+ sinhξ (s)B2(s)) (29)

coshξ (s) =
µκ1(s)+κ2(s)

ε

√
(µκ1(s)+κ2(s))2 −κ2

3 (s)

sinhξ (s) =
κ3(s)

ε

√
(µκ1(s)+κ2(s))2 −κ2

3 (s)

for all s ∈ I. Here ξ is a C∞-function on I. By differentiating the equation (29) with respect to s and using the Frenet formulas,
we get

ϕ
′(s)

d(N∗(ϕ(s))
ds∗

= ε[−κ1 coshξ (s)T +
d(coshξ (s))

ds
N +((κ2 coshξ (s)−κ3 sinhξ (s))B1 +

d(sinhξ (s))
ds

B2].

The differentiation of the third clause of the theorem with respect to s is

(µκ
′
1(s)+κ

′
2(s))κ3(s)− (µκ1(s)+κ2(s))κ ′

3(s) = 0.

Substituting this equation, we get

d(coshξ (s))
ds

= 0,
d(sinhξ (s))

ds
= 0

that is, ξ is a constant function on I with value ξ0. Thus, we write

coshξ0(s) =
µκ1(s)+κ2(s)

ε

√
(µκ1(s)+κ2(s))2 −κ2

3 (s)
, (30)

sinhξ0(s) =
κ3(s)

ε

√
(µκ1(s)+κ2(s))2 −κ2

3 (s)
. (31)

Also, we get

ϕ
′(s)

d(N∗(ϕ(s))
ds∗

= ε[−κ1 coshξ0(s)T +(κ2 coshξ0(s)−κ3 sinhξ0(s))B1]. (32)

Then, from the equation (29), it satisfies

N∗(s∗) = ε(coshξ0(s)N(s)+ sinhξ0(s)B2(s)). (33)

By considering the equations (26) and (27), we obtain

κ
∗
1 (s

∗)T ∗(ϕ(s)) = (µT (s)+B1(s))
(µκ1(s)+κ2(s))2 −κ2

3 (s)

ϕ ′(s)(µ2 −1)
√

(µκ1(s)+κ2(s))2 −κ2
3 (s)

.

Also, by substituting the equations (30) and (31) into equation (32), we get

d(N∗(ϕ(s))
ds∗

=− (µκ1 +κ2)κ1

ϕ ′(s)
√
(µκ1 +κ2)2 −κ2

3

T +
(µκ1 +κ2)κ2 −κ2

3

ϕ ′(s)
√

(µκ1 +κ2)2 −κ2
3

B1,
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for s ∈ I. By the last two equations, we obtain

d(N∗(ϕ(s))
ds∗

+κ
∗
1 (s

∗)T ∗(ϕ(s)) =
A(s)
C(s)

T (s)+
B(s)
C(s)

B1(s),

where

A(s) = (κ2
1 +κ

2
2 −κ

2
3 )µ +(µ2 +1)κ1κ2

B(s) = µ[(κ2
1 +κ

2
2 −κ

2
3 )µ +(µ2 +1)κ1κ2]

C(s) = ϕ
′(s)(µ2 −1)

√
(µκ1 +κ2)2 −κ2

3 ̸= 0.

By the fact that

κ
∗
2 (ϕ(s)) =

∥∥∥∥d(N∗(ϕ(s))
ds∗

+κ
∗
1 (s

∗)T ∗(ϕ(s))
∥∥∥∥> 0,

for all s ∈ I, we see

κ
∗
2 (ϕ(s)) =

∣∣(κ2
1 +κ2

2 −κ2
3 )µ +(µ2 +1)κ1κ2

∣∣
ϕ ′(s)

√
[(µκ1 +κ2)2 −κ2

3 ](µ
2 −1)

.

Thus, we can define a unit vector field B∗
1(s

∗) along γ by

B∗
1(s

∗) = B∗
1(ϕ(s)) =

1
κ∗

2 (ϕ(s))
[
d(N∗(ϕ(s))

ds∗
+κ

∗
1 (s

∗)T ∗(ϕ(s)],

such that

B∗
1(s

∗) =
1√

µ2 −1
(T (s)+µB1(s)). (34)

Also, since B∗
2(s

∗) = ε(sinhξ0(s)N(s)+ coshξ0(s)B2(s)) for all s ∈ I, another unit vector field B∗
2(s

∗) along γ can

B∗
2(s

∗) =
κ3(s)√

(µκ1(s)+κ2(s))2 −κ2
3 (s)

N(s)+
µκ1(s)+κ2(s)√

(µκ1(s)+κ2(s))2 −κ2
3 (s)

B2(s). (35)

Now, from the equations (26), (28), (34) and (35), it is seen that

det[T ∗(s∗),N∗(s∗),B∗
1(s

∗),B∗
2(s

∗)] = det[T (s),N(s),B1(s),B2(s)] = 1.

T ∗(s∗), N∗(s∗), B∗
1(s

∗), B∗
2(s

∗) are mutually orthogonal vector fields satisfying

g(T ∗(s∗),T ∗(s∗)) = g(N∗(s∗),N∗(s∗)) = 1
g(B∗

1(s
∗),B∗

1(s
∗)) = g(B∗

2(s
∗),B∗

2(s
∗)) =−1.

Thus the tetrahedron {T ∗(s∗),N∗(s∗),B∗
1(s

∗),B∗
2(s

∗)} along γ∗ is an orthonormal frame where T ∗(s∗) and N∗(s∗) are spacelike
vector fields, B∗

1(s
∗) and B∗

2(s
∗) are timelike vector fields. On the other hand, by considering the equation (34) and the

differentiation of the equation (35), we obtain

κ
∗
3 (s

∗) =

〈
dB∗

2(s
∗)

ds∗
,B∗

1(s
∗)

〉
=

κ1(s)κ3(s)(µ −1)

ϕ ′(s)
√
[(µκ1 +κ2)2 −κ2

3 ](µ
2 −1)

> 0,

for all s ∈ I. Therefore, γ is a C∞-special curve in E4
2 and the Frenet (1,3)-normal plane at the corresponding point

γ∗(s∗) = γ∗(ϕ(s)) of γ∗. Thus, (γ,γ∗) is a mate of (1,3)-Bertrand curve in E4
2 . Finally, the proof of the theorem is completed.
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Example 10. (The spacelike curve equation given in [16]) Let γ(s) be a unit speed spacelike curve in E4
2 given by

γ(s) =
1

15
√

2
(sinh(3

√
5s),9cosh(

√
5s),9sinh(

√
5s),cosh(3

√
5s)).

We easily obtain the Frenet vectors and curvatures as follows:

T (s) =
1√
10

(cosh(3
√

5s),3sinh(
√

5s),3cosh(
√

5s),sinh(3
√

5s)),

N(s) =
1√
2
(sinh(3

√
5s),cosh(

√
5s),sinh(

√
5s),cosh(3

√
5s)),

B1(s) =
1√
10

(3cosh(3
√

5s),
1
4

sinh(
√

5s),
1
4

cosh(
√

5s),3sinh(3
√

5s)),

B2(s) =
1√
2
(sinh(3

√
5s),−3

4
cosh(

√
5s),−3

4
sinh(

√
5s),cosh(3

√
5s)).

The curvatures of γ are κ1(s) = 3,κ2(s) = 4 and κ3(s) = 5. Let us take α = β =− 4
15 ,µ = 27

4 and δ = 97
20 . Then, it is obvious

that the relations given in Theorem 9 are hold. Therefore the curve γ is a (1,3)-Bertrand curve in E4
2 and the (1,3)-Bertrand

mate curve γ∗ of the curve γ is a spacelike curve given as follows:

γ
∗(s) =

1
15
√

2
(−7sinh(3

√
5s),8cosh(

√
5s),8sinh(

√
5s),−7cosh(3

√
5s)).

Theorem 11. Let γ be a C∞-special spacelike Frenet curve with non-zero curvatures κ1, κ2, κ3 in E4
2 . Then γ is a spacelike

(1,3)-Bertrand curve whose the Bertrand mate γ∗ is timelike, if and only if there exist the constant real numbers α, β , µ, δ

satisfying

1. ακ2(s)−βκ3(s) ̸= 0
2. µ(ακ2(s)−βκ3(s))+ακ1(s) = 1,µ = sinhθ0(s)(coshθ0(s))−1

3. δκ3(s) = µκ1(s)+κ2(s),δ = sinhφ0(s)(coshφ0(s))−1

4. κ1κ2(µ
2 +1)− (κ2

1 +κ2
2 −κ2

3 )µ ̸= 0
for all s ∈ I.

Proof. If γ∗ is a timelike curve, the proof is made similarly to the proof of Theorem 9, taking into account the equations (3), (4)
and the equality

T ∗(s∗) = ε(sinhθ(s)T (s)+ coshθ(s)B1(s)).

■

5. Conclusions
In this paper, we proved that, no special spacelike Frenet curve is a Bertrand curve in E4

2 . Therefore, we defined a generalization
of spacelike Bertrand curve and we called it as spacelike (1,3)-Bertrand curve in E4

2 . Moreover, we gave the characterizations
of spacelike (1,3)-Bertrand curve in E4

2 .
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