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Özet. Dairesel-hiperbolik Fibonacci ve Lucas kuaterniyonlarının bazı özelliklerini araştırıyoruz (kısaca CHFLQ ile
gösterilen). Ayrıca negatif indislilerini tanıtıyoruz ve kombinatorik toplamlarını elde ediyoruz. Son olarak bu CHFLQ
kuaterniyonlarının genel bir toplamını, üstel ve Poisson üreteç fonksiyonlarını sunuyoruz.
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Abstract. We investigate some properties of circular-hyperbolic Fibonacci and Lucas quaternions (CHFLQ for short).
Also, we introduce their negative subscripts and obtain combinatorial sums. Finally, we present a general summation,
exponential and Poisson generating functions of the CHFLQ.

Keywords: binomial coefficient, circular-hyperbolic Fibonacci quaternions, circular-hyperbolic Lucas quaternions, hy-
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1. Introduction

The real quaternions were first described by Irish mathematician William Rowan Hamilton in 1843.
Hamilton [10] introduced a set of real quaternions which can be represented as

H = {q = q0 + q1i + q2j + q3k | q0, q1, q2, q3 ∈ R}
where

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Also, there has been an increasing interest on quaternions that play an important role in various
areas such as computer sciences, physics, differential geometry, quantum physics, signal, color image
processing, geostatics and analysis [1, 6, 22].

Another type of numbers is hyperbolic numbers. The set including the number h which is not a
real number but its square is equal to 1, is called a set of hyperbolic numbers and defined as

H = {z = x+ yh |x, y ∈ R} .
The work on the hyperbolic numbers can be found in [3, 5, 7, 17, 20].

Circular-hyperbolic numbers, [5], w can be expressed in the form as

CH = {w = z1 + z2h | z1, z2 ∈ C} ,
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where i2 = −1, h2 = 1, h 6= ±1, ih = −hi, (ih)2 = 1 and C is set of complex number. For any two
circular-hyperbolic numbers w1 = z1 + z2h and w2 = z3 + z4h, they write

• w1 ± w2 = (z1 ± z3) + (z2 ± z4)h (addition and subtraction),
• w1 × w2 = (z1z3 + z2z4) + (z1z4 + z2z3)h (multiplication),

• w1
w2

= (z1z3−z2z4)
z23−z24

+ (z2z3−z1z4)
z23−z24

h (z3 6= z4) (division).

If Re(w2) 6= 0,then the division is possible. The circular-hyperbolic numbers are defined by the basis
1, i, h, ih. The base elements of the circular-hyperbolic numbers satisfy the following multiplication
scheme (Table 1).

x 1 i h ih
1 1 i h ih
i i −1 ih −h
h h −ih 1 −i
ih ih h i 1

Table 1. Multiplication of the circular-hyperbolic numbers ([2], Table 1)

The circular-hyperbolic numbers, just like quaternions, are a generalization of complex hyper-
bolic numbers by means of entities specified by four-component numbers. But hyperbolic and dual-
hyperbolic numbers are commutative, whereas, circular-hyperbolic numbers are non-commutative.
Moreover, the multiplication of these numbers gives the circular-hyperbolic numbers [2, 5].
On the other hand, for n ≥ 2, the Fibonacci and Lucas numbers are defined as [16]

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 (1.1)

and

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1. (1.2)

In recently years, Fibonacci, Lucas quaternions and hyperbolic numbers cover a wide range of interest
in modern mathematics as they appear in the comprehensive works of [2, 4, 8, 9, 11, 12, 13, 14, 15,
18, 19, 21]. For example in [2], the CHFLQ are defined as

CHFn = Fn + Fn+1i + Fn+2h + Fn+3ih (1.3)

and

CHLn = Ln + Ln+1i + Ln+2h + Ln+3ih, (1.4)

where n ∈ N. Also, the author found identity and Binet formulas of these quaternions as follows

CHFn+1 + CHFn−1 = CHLn, (1.5)

CHFn =
α̂αn − β̂βn

α− β
(1.6)

and

CHLn = α̂αn + β̂βn, (1.7)

where α = 1+
√
5

2 , β = 1−
√
5

2 , α̂ = (1 + αi + α2h + α3ih), β̂ = (1 + βi + β2h + β3ih).
It is known that, the matrices for the Fibonacci numbers are

Un =

(
Fn+1 Fn
Fn Fn−1

)
, U =

(
1 1
1 0

)
. (1.8)

In this study, we obtain a new matrix Qn similar to the above matrix Un for the CHFLQ. Also, we
define the negative subscripts of these quaternions. We give several properties and different sums for
the CHFLQ.
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2. Main results

Firstly, we define the CHFLQ with negative subscripts for n ∈ N.

Definition 1. The CHFLQ with negative subscripts are defined as

CHF−n = F−n + F−n+1i + F−n+2h + F−n+3ih (2.1)

and
CHL−n = L−n + L−n+1i + L−n+2h + L−n+3ih. (2.2)

From the equalities F−n = (−1)n+1Fn and L−n = (−1)nLn, we have

CHF−n =

{
−Fn + Fn−1i− Fn−2h + Fn−3ih, n is even
Fn − Fn−1i + Fn−2h− Fn−3ih, n is odd

, (2.3)

and

CHL−n =

{
Ln − Ln−1i + Ln−2h− Ln−3ih, n is even
−Ln + Ln−1i− Ln−2h + Ln−3ih, n is odd

. (2.4)

The following theorem gives us the matrix of the CHFLQ.

Theorem 1. For n integer numbers, we have

Qn = QUn = UnQ, (2.5)

where

Qn =

(
CHFn+1 CHFn
CHFn CHFn−1

)
, Q =

(
1 + i + 2h + 3ih i + h + 2ih

i + h + 2ih 1 + h + ih

)
(2.6)

and Un is given by the equation (1.8).

Proof. Using the recurrence relations in (1.1) and (1.3), we success the desired equation. �

Theorem 2. For n,m > 0 integers, the identities related with the CHFLQ are follow:

i) Fn+1CHFm+1 + FnCHFm = CHFn+m+1,
ii) Fn+1CHLm+1 + FnCHLm = CHLn+m+1.

Proof. i) Given the matrices Un+mQ, UmQ as the equations (1.8) and in Theorem 1, and con-
sidering the first row first column elements of the product Un (UmQ), which is equal to the
first row first column elements of matrix Qn+m we get the result.

ii) From the well-known identity Fm+1 + Fm−1 = Lm and the property CHFm+1 + CHFm−1 =
CHLm in equation (1.5), by considering the first row first column elements of the prod-
uct Un

(
(Um+1 + Um−1)Q

)
, which is equal to the first row first column elements of matrix

Un+m+1Q+ Un+m−1Q we obtain the result.
�

The properties in the following theorem are called Honsberger identity of the CHFLQ. The Hons-
berger identity in i) for the circular-hyperbolic Fibonacci quaternions was given by Aydin ([2], Theorem
2). She used the definition of the circular-hyperbolic Fibonacci quaternions, but we get the Honsberger
identity by using the Q matrix.

Theorem 3. For m,n ≥ 0 integers, we have

i) CHFn+1CHFm+1+CHFnCHFm = CHFn+m+1+CHFn+m+2i+CHFn+m+3h+CHFn+m+4ih,
ii) CHFn+1CHLm+1+CHFnCHLm = CHLn+m+1+CHLn+m+2i+CHLn+m+3h+CHLn+m+4ih.

Proof. i) Given the matrices QUn, UmQ as the equations (1.8) and in Theorem 1, and consid-
ering the first row first column elements of the product (QUn) (UmQ), which is equal to the
first row first column elements of matrix Q (Un+mQ) we get the result.

ii) From the well-known identity Fm+1 + Fm−1 = Lm and the property CHFm+1 + CHFm−1 =
CHLm in equation (1.5), by considering the first row first column elements of the product
(QUn)

(
(Um+1 + Um−1)Q

)
, which is equal to the first row first column elements of matrix

Q
(
Un+m+1Q+ Un+m−1Q

)
we obtain the result.

�

If we take m = n− 1 in Theorem 3, we obtain the following results:

Corollary 1. For n ≥ 1 integers, we have
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i) CHFn+1CHFn + CHFnCHFn−1 = CHF 2n + CHF 2n+1i + CHF 2n+2h + CHF 2n+3ih,
ii) CHFn+1CHLn + CHFnCHLn−1 = CHL2n + CHL2n+1i + CHL2n+2h + CHL2n+3ih.

If we take m = n in Theorem 3, we obtain the following results:

Corollary 2. For n ≥ 0 integers, we have

i) CHF 2
n+1 + CHF 2

n = CHF 2n+1 + CHF 2n+2i + CHF 2n+3h + CHF 2n+4ih,
ii) CHFn+1CHLn+1 + CHFnCHLn = CHL2n+1 + CHL2n+2i + CHL2n+3h + CHL2n+4ih.

The properties in the following theorem are called Vajda identity of the CHFLQ.

Theorem 4. For n, r, s integers, we have

i) CHFn+rCHFn+s − CHFnCHFn+r+s = (−1)nFr [2Fs − 2Fs−1i + 2Fs+2h + (Fs + 2Fs−2) ih],
ii) CHLn+rCHLn+s−CHLnCHLn+r+s = 5(−1)n+1Fr [2Fs − 2Fs−1i + 2Fs+2h + (Fs + 2Fs−2) ih].

Proof. i) By using the equation (1.6), we acquire

CHFn+rCHFn+s − CHFnCHFn+r+s =(
α̂αn+r − β̂βn+r

α− β

)(
α̂αn+s − β̂βn+s

α− β

)
−

(
α̂αn − β̂βn

α− β

)(
α̂αn+r+s − β̂βn+r+s

α− β

)

= (−1)nFr

(
β̂α̂αs − α̂β̂βs

α− β

)
.

By taking into account the equalities αβ = −1, α̂β̂ = 2 + 2αi + 2β2h +
(
2α2 + 1

)
ih and

β̂α̂ = 2 + 2βi + 2α2h +
(
2β2 + 1

)
ih, we get

CHFn+rCHFn+s − CHFnCHFn+r+s = (−1)nFr [2Fs − 2Fs−1i + 2Fs+2h + (Fs + 2Fs−2) ih] .

ii) The proof is done similar to i).
�

If we take s = −r in Theorem 4, we obtain the following results:

Corollary 3. For n, r integers, we have

i) CHFn+rCHFn−r − CHF 2
n = (−1)n+r+1Fr [2Fr + 2Fr+1i + 2Fr−2h + (Fr + 2Fr+2) ih],

ii) CHLn+rCHLn−r − CHL2
n = 5(−1)n+rFr [2Fr + 2Fr+1i + 2Fr−2h + (Fr + 2Fr+2) ih].

If we take −s = r = 1 in Theorem 4, we obtain the following results:

Corollary 4. For n integers, we have

i) CHFn+1CHFn−1 − CHF 2
n = (−1)n (2 + 2i + 2h + 5ih),

ii) CHLn+1CHLn−1 − CHL2
n = 5(−1)n+1 (2 + 2i + 2h + 5ih).

If we take s = 1, r = m− n in Theorem 6, we obtain the following results:

Corollary 5. For n,m integers, we have

i) CHFmCHFn+1 − CHFnCHFm+1 = (−1)nFm−n (2 + 4h + 3ih),
ii) CHLmCHLn+1 − CHLnCHLm+1 = 5(−1)n+1Fm−n (2 + 4h + 3ih).

We obtain the binomial summations of the circular-hyperbolic Fibonacci quaternions in the following
theorem.

Theorem 5. For n ∈ N, the identities are hold:

i)
∑n

k=0

(
n
k

)
CHF k = CHF 2n,

ii)
∑n

k=0

(
n
k

)
CHF k+1 = CHF 2n+1,

iii)
∑n

k=0

(
n
k

)
(−1)kCHF k = (−1)nCHF−n,

iv)
∑n

k=0

(
n
k

)
CHF 4k = 3nCHF 2n,

v)
∑n

k=0

(
n
k

)
2n−kCHF 5k = 5nCHF 2n,

vi)
∑n

k=0

(
n
k

)
3n−kCHF 6k = 8nCHF 2n,

vii)
∑n

k=0

(
n
k

)
(−2)kCHF 2k = (−1)nCHF 3n,

viii)
∑n

k=0

(
n
k

)
(−2)kCHF 5k = (−5)nCHF 3n.
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Proof. i) From the equation (1.6), we write

n∑
k=0

(
n

k

)
CHF k =

n∑
k=0

(
n

k

)(
α̂αk − β̂βk

α− β

)

=
α̂

α− β
(1 + α)n − β̂

α− β
(1 + β)n .

By considering the well-known equalities 1 +α = α2, 1 + β = β2 and again the equation (1.6),
we obtain claimed result.

iii) By considering the equation (1.3) and the Binet formula of Fibonacci numbers, we get
n∑
k=0

(
n

k

)
(−1)kCHF k =

n∑
k=0

(
n

k

)
(−1)k (Fk + Fk+1i + Fk+2h + Fk+3ih)

=
1

α− β

n∑
k=0

(
n

k

)(
(−α)k − (−β)k

)
+

i

α− β

n∑
k=0

(
n

k

)(
α(−α)k − β(−β)k

)
+

h

α− β

n∑
k=0

(
n

k

)(
α2(−α)k − β2(−β)k

)
+

ih

α− β

n∑
k=0

(
n

k

)(
α3(−α)k − β3(−β)k

)
.

By taking account the equalities α+ β = 1, αβ = −1 and Definition 1, we obtain
n∑
k=0

(
n

k

)
(−1)kCHF k = −Fn + Fn−1i− Fn−2h + Fn−3ih

= (−1)nCHF−n.
In the same way, the other parts of the theorem can be proved. �

We present the binomial summations of the circular-hyperbolic Lucas quaternions in the following
proposition. Because the proof of these summations are similar to the circular-hyperbolic Fibonacci
quaternions in above theorem, we omit the proof.

Proposition 1. For n ∈ N, the equalities are satisfied:

i)
∑n

k=0

(
n
k

)
CHLk = CHL2n,

ii)
∑n

k=0

(
n
k

)
CHLk+1 = CHL2n+1,

iii)
∑n

k=0

(
n
k

)
(−1)kCHLk = (−1)nCHL−n,

iv)
∑n

k=0

(
n
k

)
CHL4k = 3nCHL2n,

v)
∑n

k=0

(
n
k

)
2n−kCHL5k = 5nCHL2n,

vi)
∑n

k=0

(
n
k

)
3n−kCHL6k = 8nCHL2n,

vii)
∑n

k=0

(
n
k

)
(−2)kCHL2k = (−1)nCHL3n,

viii)
∑n

k=0

(
n
k

)
(−2)kCHL5k = (−5)nCHL3n.

We obtain the generalized summations of the CHFLQ in the following theorem.

Theorem 6. For n,m ≥ 1 and j ≥ 0 integers, the identities are hold:

i)
∑n−1

i=0 CHFmi+j =
(−1)mCHFmn+j−m−CHFmn+j−(−1)mCHF j−m+CHF j

(−1)m−Lm+1 ,

ii)
∑n−1

i=0 CHLmi+j =
(−1)mCHLmn+j−m−CHLmn+j−(−1)mCHLj−m+CHLj

(−1)m−Lm+1 .

Proof. We omit Fibonacci case since the proof is quite similar. From the equation (1.7), we write

n−1∑
i=0

CHLmi+j =

n−1∑
i=0

(
α̂αmi+j + β̂βmi+j

)
= α̂αj

αmn − 1

αm − 1
+ β̂βj

βmn − 1

βm − 1
.
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By considering the well-known equality αβ = −1 and the Binet formula of Lucas numbers, we get

n−1∑
i=0

CHLmi+j =
α̂
(
(−1)mαmn+j−m − αmn+j − αjβm + αj

)
+ β̂

(
(−1)mβmn+j−m − βmn+j − αmβj + βj

)
(−1)m − Lm + 1

.

From again the equation (1.7), we obtain

n−1∑
i=0

CHLmi+j =
(−1)mCHLmn+j−m − CHLmn+j − (−1)mCHLj−m + CHLj

(−1)m − Lm + 1
.

�

If we take m = 1, j = 0 in Theorem 6, we obtain the following results:

Corollary 6. The identities are hold:

i)
∑n−1

i=0 CHF i = CHFn+1 − CHF 1,

ii)
∑n−1

i=0 CHLi = CHLn+1 − CHL1.

If we take m = 2, j = 1 in Theorem 6, we get the following results:

Corollary 7. The identities are hold:

i)
∑n−1

i=0 CHF 2i+1 = CHF 2n − CHF 0,

ii)
∑n−1

i=0 CHL2i+1 = CHL2n − CHL0.

If we take m = 2, j = 0 in Theorem 6, we obtain the following results:

Corollary 8. The identities are hold:

i)
∑n−1

i=0 CHF 2i = CHF 2n−1 − CHF−1,

ii)
∑n−1

i=0 CHL2i = CHL2n−1 − CHL−1.

Here we acquire the exponential and Poisson generating functions for the CHFLQ.

Theorem 7. i) The exponential generating function for the circular-hyperbolic Fibonacci quater-
nions is

∞∑
n=0

CHFn
tn

n!
=
α̂eαt − β̂eβt

α− β
,

ii) The exponential generating function for the circular-hyperbolic Lucas quaternions is

∞∑
n=0

CHLn
tn

n!
= α̂eαt + β̂eβt,

iii) The Poisson generating function for the circular-hyperbolic Fibonacci quaternions is

∞∑
n=0

CHFn
e−ttn

n!
=
α̂e(α−1)t − β̂e(β−1)t

α− β
,

iv) The Poisson generating function for the circular-hyperbolic Lucas quaternions is

∞∑
n=0

CHLn
e−ttn

n!
= α̂e(α−1)t + β̂e(β−1)t.

Proof. i) From the equation (1.6) and the MacLaurin expansion for the exponential function,
we have

∞∑
n=0

CHFn
tn

n!
=

∞∑
n=0

(
α̂αn − β̂βn

α− β

)
tn

n!

=
α̂

α− β

∞∑
n=0

αntn

n!
− β̂

α− β

∞∑
n=0

βntn

n!

=
α̂eαt − β̂eβt

α− β
.
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ii) By using the equation (1.7) and the MacLaurin expansion for the exponential function, we get

∞∑
n=0

CHLn
tn

n!
=

∞∑
n=0

(
α̂αn + β̂βn

) tn
n!

= α̂
∞∑
n=0

αntn

n!
+ β̂

∞∑
n=0

βntn

n!

= α̂eαt + β̂eβt.

iii) From the equation (1.6) and the MacLaurin expansion for the exponential function, we have

∞∑
n=0

CHFn
e−ttn

n!
=

∞∑
n=0

(
α̂αn − β̂βn

α− β

)
e−ttn

n!

=
α̂e(α−1)t − β̂e(β−1)t

α− β
.

iv) By using the equation (1.7) and the MacLaurin expansion for the exponential function, we get

∞∑
n=0

CHLn
e−ttn

n!
=

∞∑
n=0

(
α̂αn + β̂βn

) e−ttn
n!

= α̂e(α−1)t + β̂e(β−1)t.

�

Conclusion

In this paper, the CHFLQ have been investigated. Many of the properties of these quaternions
are proved by the fundamental algebraic operations and simple matrix algebra. Actually, the results
presented here have the potential to motivate further studies of the subject of the circular-hyperbolic
Horadam quaternions including the CHFLQ.
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[4] Cihan A., Azak A.Z., Güngör M.A., Tosun M., A study of Dual Hyperbolic Fibonacci and Lucas numbers, An. St.

Univ. Ovidius Constanta, 27(1), 35–48, (2019).
[5] Dattoli G., Licciardi S., Pidatella R.M., Sabia E., Hybrid complex numbers: The matrix version, Adv. Appl. Clifford

Algebras, 28(3), 58, (2018).
[6] Dixon G.M., Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics,

Kluvwer Academic Publishers, ISBN 0-7923-2890-6, (1994).
[7] Gargoubi H., Kossentini S., f−algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebras, 26(4),

1211–1233, (2016).
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