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Abstract

This paper is devoted to the study existence of locally/globally mild solutions for fractional differential
equations with ψ-Caputo derivative with a nonlocal initial condition. We firstly establish the local existence
by making use usual fixed point arguments, where computations and estimates are essentially based on
continuous and bounded properties of the Mittag-Leffler functions. Secondly, we establish the called ψ-
Hölder continuity of solutions, which shows how |u(t′)−u(t)| tends to zero with respect to a small difference
|ψ(t′)−ψ(t)|β , β ∈ (0, 1). Finally, by using contradiction arguments, we discuss on the existence of a global
solution or maximal mild solution with blowup at finite time.
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1. Introduction

Fractional calculus is a branch of mathematics that studies integrals and derivatives of non-integer order. It is
thought about as a generalization of classical calculus. In fractional calculus, fractional differential equations
(FDEs) have an important role in numerous fields of study carried out by mathematicians, physicists, and
engineers. In recent years, FDEs have gained much attention from many authors [1, 2, 3, 4, 5, 9, 11]. The
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topic of existence, uniqueness of solutions and their properties is specially studied by making uses of many
types of fixed point theorem [6, 7, 8, 10].

In this paper, we consider the problem of finding a function X = X(t), t ≥ 0, that satisfies the following
FDE with ψ-Caputo derivative{

CDα,ψX(t) + λX(t) = F (t,X(t)), t > 0,

X(0) +G(X) = X0,
(1)

where CDα,ψ is the ψ-Caputo derivative of fractional order α ∈ (0, 1), defined by

CDα,ψX(t) :=
1

Γ(1− α)

1

ψ′(t)

d

dt

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))−αX(s)ds, 0 < α < 1,

λ > 0, ψ is continuously differentiable and strictly increasing function on [0,∞), F,G are functions that will
be specified later, and X0 is a given initial value.

A simple case of the ψ-function is ψ(t) = t, t ≥ 0, where the ψ-Caputo derivative operator CDα,ψ coincides
with the usual Caputo’s derivative CDα. In this case, the existence, regularity, and solution properties for
the problem (1) has been studied by many authors, such as [6, 7, 8, 10] and references therein.

Now, let us briefly mention existing results of the problem. In 2018, Almeida-Malinowska-Monteiro [12,
Section 3] studied fractional differential equations with a Caputo derivative with respect to a kernel function{

CDα,ψ
a+ X(t) = F (t,X(t)), t ∈ [a, b], 0 < α 6∈ N,

X
[k]
ψ (a) = Xk

a , k = 0, 1, 2, ..., n− 1,
(2)

where n = [α] + 1, X [k]
ψ (t) := [(1/ψ′(t))d/dt]kX(t), and Xk

a , k = 0, 1, 2, ..., n − 1, are given numbers. By
considering the globally Lipschitz assumption

|F (t, x)− F (t, y)| ≤ L|x− y|, ∀x, y ∈ R, ∀t ∈ [a, b],

the authors showed that Problem (2) has a mild solution with a sufficiently small coefficient L. Moreover,
by the linear growth assumption

|F (t, x)| ≤ L0 + L1|x|, ∀x ∈ R, ∀t ∈ [a, b],

they also proved that Problem (2) has a locally mild solution in the interval [a, a + h] (with small length
h > 0). Samet-Aydi [13] studied Lyapunov-type inequalities for an anti-periodic fractional boundary value
problem involving ψ-Caputo fractional derivative. Derbazi-Baitiche [14, Theorem 2] discussed the coupled
systems of ψ-Caputo differential equations with initial conditions

CDα,ψ
a+ X(t) = F1(t,X(t), Y (t)), t ∈ [a, b],

Dα,ψ
a+ Y (t) = F2(t,X(t), Y (t)), t ∈ [a, b],

(X(a);Y (a)) = (Xa, Ya),

(3)

in Banach spaces, where the fractional order α belongs to (0, 1]. They constructed the local existence of an
integral solution with a small restriction on coefficients of the nonlinearities F1, F2 or small length b−a of the
time interval, where the MönchâĂŹs fixed point theorem and the technique of measures of noncompactness
had been combined. We also refer the reader to the papers [15, 16, 17] and references therein for related
problems.

Problems with nonlocal (initial/boundary) condition have developed a rapidly growing area. With this
type of problems, investigations are not only motivated by theoretical interest, but also by the fact that life
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sciences problems. Involving in ψ fractional derivative, we refer to the works [18, 19, 20, 21] and references
therein.

In the mentioned results above, considered problems have been studied with the nonlinearities satisfying
globally Lipschitz or linear growth assumptions. Besides, these results only gave local existence of mild
solutions. In this work, we shall study the existence of a global solution or maximal mild solution with
blowup at finite time for Problem (1), where the nonlinearity F is assumed to be locally Lipschitz continuity.

Our contributions are explained as follows:

• We firstly establish the local existence of a mild solution u ∈ C([0, T0];R) by making use usual fixed
point arguments, where computations and estimates are essentially based on continuous and bounded
properties of the Mittag-Leffler functions. This result is local since we need a sufficiently small condition
on T0.

• Secondly, we establish the called ψ-Hölder continuity of solutions, which answer the question: How
does |u(t′)− u(t)| tend to zero with respect to |ψ(t′)− ψ(t)|β , β ∈ (0, 1)? Here, the essential tool is to
use differentiation of the Mittag-Leffler functions.

• Finally, by using contradiction arguments, we discuss on the existence of a global solution or maximal
mild solution with blowup at finite time. More specifically, we show that Problem (13) has a globally
mild solution u ∈ C([0,∞);R), or there exists Tmax <∞ such that Problem (13) has a maximal mild
solution u ∈ C([0, Tmax);R) with lim supt→T−max

|X(t)| =∞.

The organization of this paper is divided into five sections. In Section 2, we recall some basic preliminaries,
contained functional spaces, Mittag-Leffler functions, and integral representation of solutions. In Section 3,
the local existence of a mild solution will be presented. Thereafter, we establish ψ-Hölder continuity of
solutions in Section 4. Finally, maximal mild solution will be discussed in Section 5.

2. Preliminaries

2.1. Functional spaces and Mittag-Leffler functions
In this part, we present some basic functional spaces, where we will find solutions of the considered problem.
Firstly, let C([0, T ];R) be the space of all continuous functions from [0, T ] to R, which is endowed with the
norm

‖X‖C([0,T ];R) := sup
0≤t≤T

|X(t)|, ∀X ∈ C([0, T ];R).

For σ ∈ (0, 1), we define the called ψ-Hölder continuous space

Cσψ([0, T ];R) =

{
X ∈ C([0, T ];R)

∣∣∣ sup
0≤t6=t′≤T

|X(t′)−X(t)|
|ψ(t′)− ψ(t)|σ

<∞
}

corresponding to the norm

‖X‖Cσψ([0,T ];R) := sup
0≤t,t′≤T, ψ(t′)6=ψ(t)

|X(t′)−X(t)|
|ψ(t′)− ψ(t)|σ

,

for all X ∈ Cσψ([0, T ];R).

In the theory of FDEs, the called Mittag-Leffler functions naturally appear, and they are important in
establishing the existence of solutions. It is thought about as a generalization of the usually exponential
function. These functions are defined by

Eα,β(z) =
∞∑
k=1

zk

Γ(αk + β)
, z ∈ C, α > 0, β ∈ R.
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Let us recall the following basic results of Mittag-Leffler functions, where their proofs can be found in many
literature of fractional calculus.

Lemma 2.1 ([1, 2, 3]). Assume that 0 < α < 1. Then, there exists a positive constant C0 = C0(α) such that

Eα,β(−z) ≥ 0, β ∈ {1;α}, Eα,1(−z) + Eα,α(−z) ≤ C0

1 + z
, ∀z ≥ 0.

Lemma 2.2 ([1, 2, 3]). Assume that 0 < α < 1. Then, for λ > 0, and z > 0, the below differentiation hold

∂zEα,1(−λzα) = −λzα−1Eα,α(−λzα),

∂z(z
α−1Eα,α(−λzα)) = zα−2Eα,α−1(−λzα).

2.2. Integral representation for solutions
In this part, we shall present some basic definitions of mild solution, its continuation, and maximal solution,
which are based on the following integral representation for solutions of Problem (1)

X(t) =Eα,1(−λ(ψ(t)− ψ(0))α)X0 + Eα,1(−λ(ψ(t)− ψ(0))α)G(X)

+

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds. (4)

Here, this representation can be directly obtained by using the Laplace transform and its inverse, e.g. see [22,
Section 5] for more details. Since this work focuses on studying mild solutions (see below for its definition)
of Problem (1), we skip the proof of (4).

Definition 2.3 (Mild solutions). A function X in C([0, T ];R) is said to be a locally mild solution of Problem
(1) in [0, T ] if it satisfies the integral equation (4). Morevoer, if a continuous function X : [0,∞)→ R satisfies
(4), then it is called a globally mild solution of Problem (1).

Definition 2.4 (Continuation of mild solutions). Let X ∈ C([0, T ];R) be a mild solution of Problem (1) in
[0, T ]. If there exists a time T̃ > T , and a function X̃ ∈ C([0, T̃ ];R) such that X̃|[0,T ] = X and X̃ is a mild
solution of Problem (1) in [0, T̃ ], then X̃ is called a continuation of X.

Definition 2.5 (Maximal solution). If a continuous function X : [0, T∗)→ R satisfies that

• X|[0,T ] is a mild solution of Problem (1) in [0, T ] for all T ∈ (0, T∗),

• X has no continuation,

then it is said to be a maximal mild solution Problem (1).

3. Existence of locally mild solution

In this section, we present our main results, which are the existence of locally mild solutions. We consider
the following assumptions on the nonlinearities F,G.

• (H1) The function F : [0,∞) × R −→ R is continuous and there exist constants LF > 0, p > 1 such
that

|F (t, x)− F (t, y)| ≤LF (|x|p−1 + |y|p−1)|x− y|, |F (t, x)| ≤ LF |x|p,

for all x, y ∈ R and t ≥ 0.
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• (H2) The function G : C([0, T ];R) −→ R is continuous and there exist a constant LG > 0 such that

|G(X)−G(Y )| ≤LG‖X − Y ‖C([0,T ];R), |G(X)| ≤ LG‖X‖C([0,T ];R),

for all X,Y ∈ C([0, T ];R) and T ∈ (0,∞).

In the following theorem, we discuss the existence of a locally mild solution of Problem (1), where
the method has been built from the usual fixed point argument, bounded properties of the Mittag-Leffler
functions, and the Lebesgue’s dominated convergence theorem.

Lemma 3.1. Let F be defined by the locally Lipschitz assumption (H1), and X ∈ C([0, T ];R) with T ∈ (0,∞).
Then, the following function

t 7→ TFX(t) :=

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds

is continuous on [0, T ].

Proof. Let t, h be satisfied that 0 ≤ t < t + h ≤ T . Then, by making some direct computations and using
the triangle inequality, one has

|TFX(t+ h)− TFX(t)| ≤
ˆ t

0
It,hF,1(s)|F (s,X(s))|ds

+

ˆ t

0
It,hF,2(s)|F (s,X(s))|ds

+

ˆ t+h

t
It,hF,3(s)|F (s,X(s))|ds, (5)

where the integrands are given by

It,hF,1(s) := ψ′(s)
∣∣(ψ(t+ h)− ψ(s))α−1 − (ψ(t)− ψ(s))α−1

∣∣Eα,α(−λ(ψ(t+ h)− ψ(s))α),

It,hF,2(s) := ψ′(s)(ψ(t)− ψ(s))α−1
∣∣Eα,α(−λ(ψ(t+ h)− ψ(s))α)− Eα,α(−λ(ψ(t)− ψ(s))α)

∣∣,
It,hF,3(s) := ψ′(s)(ψ(t+ h)− ψ(s))α−1Eα,α(−λ(ψ(t+ h)− ψ(s))α).

It is sufficient to prove that the right hand side of (5) tends to zero as h approaches zero from the right.
The first term

´ t
0 I

t,h
F,1(s)|F (s,X(s))|ds can be estimated as follows. It is useful to recall that ψ is an increasing

function of t. Therefore, (ψ(t+h)−ψ(s))α−1 < (ψ(t)−ψ(s))α−1 for all 0 < s < t. By the bounded property
(2.1) of the Mittag-Leffler function Eα,α, we deduce that∣∣(ψ(t+ h)− ψ(s))α−1 − (ψ(t)− ψ(s))α−1

∣∣Eα,α(−λ(ψ(t+ h)− ψ(s))α)

=
[
(ψ(t)− ψ(s))α−1 − (ψ(t+ h)− ψ(s))α−1

]
Eα,α(−λ(ψ(t+ h)− ψ(s))α)

≤ C0

[
(ψ(t)− ψ(s))α−1 − (ψ(t+ h)− ψ(s))α−1

]
.

Consequently, by the locally Lipschitz continuity of the nonlinearity F ,ˆ t

0
It,hF,1(s)|F (s,X(s))|ds

≤ C0

ˆ t

0
ψ′(s)

[
(ψ(t)− ψ(s))α−1 − (ψ(t+ h)− ψ(s))α−1

]
|F (s,X(s))|ds

≤ C0LF

ˆ t

0
ψ′(s)

[
(ψ(t)− ψ(s))α−1 − (ψ(t+ h)− ψ(s))α−1

]
|X(s)|pds

≤ C0LF ‖X‖pC([0,T ];R)

ˆ t

0
ψ′(s)

[
(ψ(t)− ψ(s))α−1 − (ψ(t+ h)− ψ(s))α−1

]
ds

≤ 2C0LF ‖X‖pC([0,T ];R)
(ψ(t+ h)− ψ(t))α

α

h→0+−−−−→ 0,
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where the lateral limit holds by the continuity of ψ function.

Now, we proceed to consider the second integral on the right hand side of (5). Since the composite function
s 7→ Eα,α(−λ(ψ(t)−ψ(s))α) is continuous on [0, t], the integrand tends to zero as h→ 0+. In order to prove
that

´ t
0 I

t,h
F,2(s)|F (s,X(s))|ds → 0 as h → 0+, it is necessary to show the integrand is integrable on [0, t]

due to the Lebesgue’s dominated convergence theorem. Indeed, the bounded property of the Mittag-Leffler
function Eα,α(−z) reads that∣∣Eα,α(−λ(ψ(t+ h)− ψ(s))α)− Eα,α(−λ(ψ(t)− ψ(s))α)

∣∣ ≤ 2C0,

which subsequently implies

It,hF,2(s)|F (s,X(s))| ≤ 2C0LFψ
′(s)(ψ(t)− ψ(s))α−1‖X‖pC([0,T ];R),

where we have used the assumption (H1). It is useful to note that the function s 7→ ψ′(s)(ψ(t)−ψ(s))α−1 is
obviously integrable on the interval [0, t]. Summarily, we conclude that the limit

´ t
0 I

t,h
F,2(s)|F (s,X(s))|ds→ 0

holds as h→ 0+.

Next, we will consider the the last integral on the right hand side of (5). By employing the same techniques
as above estimates, one can check the following chain

ˆ t+h

t
It,hF,3(s)|F (s,X(s))|ds ≤C0

ˆ t+h

t
ψ′(s)(ψ(t+ h)− ψ(s))α−1|F (s,X(s))|ds

≤C0LF ‖X‖pC([0,T ];R)

ˆ t+h

t
ψ′(s)(ψ(t+ h)− ψ(s))α−1ds

=C0LF ‖X‖pC([0,T ];R)
(ψ(t+ h)− ψ(t))α

α

h→0+−−−−→ 0, (6)

which concludes the proof.

Theorem 3.2. Let F,G be defined by the assumptions (H1)-(H2). If C0LG < 1, then Problem (1) has only
a locally mild solution.

Proof. Firstly, it follows from C0LG < 1 that one can find 0 < K < 1 satisfying C0LG < K. We also observe
that the function T 7→ (ψ(T ) − ψ(0))α is increasing of T . Moreover, it tends to zero as T → 0+ by its
continuity. Hence, there exists T0 > 0 such that

ψ(T0) <

(
1

LFα−1

) 1
α
(

2C0

K − C0LG

)− p
α

|X0|
1
α
− p
α + ψ(0), (7)

which subsequently ensures

2C0|X0|
K − C0LG

<

(
α(K − C0LG)

2C0LF (ψ(T0)− ψ(0))α

)1/(p−1)
.

So, one can find a positive number R0 such that

2C0|X0|
K − C0LG

< R0 <

(
α(K − C0LG)

2C0LF (ψ(T0)− ψ(0))α

)1/(p−1)
. (8)

Let us denote the ball BR0 := {u ∈ C([0, T0];R) | ‖u‖C([0,T0];R) ≤ R0}. Then, BR0 is a closed convex,
nonempty subset of C([0, T0];R). On this ball, we define the mapping

T X(t) :=Eα,1(−λ(ψ(t)− ψ(0))α)X0 + Eα,1(−λ(ψ(t)− ψ(0))α)G(X)

+

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds

= : TX0(t) + TGX(t) + TFX(t), t ∈ [0, T0]. (9)
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where TFX is defined by Lemma 3.1. We will prove that T has a unique fixed point, which is a mild solution
of Problem (1). The proof will be divided into two steps by using contraction map theorem, bounded
properties of the Mittag-Leffler functions, and the Lebesgue’s dominated convergence theorem.

Step 1. Proving T well-defined on BR0 : It is useful to recall that the Mittag-Leffler function z 7→ Eα,1(−z) is
a continuous on [0,∞). Therefore, by the continuity and increasing assumption of ψ-function, the composite
function t 7→ Eα,1(−λ(ψ(t) − ψ(0))α) is continuous on [0, T0]. Hence, for t, h such that 0 ≤ t < t + h ≤ T0,
we have

|TX0(t+ h)− TX0(t)| ≤
∣∣Eα,1(−λ(ψ(t+ h)− ψ(0))α)− Eα,1(−λ(ψ(t)− ψ(0))α)

∣∣|X0|,

which invokes that TX0(t+ h)−TX0(t)→ 0 as h→ 0+. On the other hand, the assumption (H2) guarantees
that |G(X)| ≤ LG‖X‖C([0,T0];R). Hence, by similarly argument as above, there hold

|TGX(t+ h)− TGX(t)|
≤
∣∣Eα,1(−λ(ψ(t+ h)− ψ(0))α)− Eα,1(−λ(ψ(t)− ψ(0))α)

∣∣|G(X)|
≤
∣∣Eα,1(−λ(ψ(t+ h)− ψ(0))α)− Eα,1(−λ(ψ(t)− ψ(0))α)

∣∣LG‖X‖C([0,T0];R),

which consequently yields that TGX(t+ h)− TGX(t)→ 0 as h→ 0+.

By the above arguments and applying Lemma 3.1, the continuity of T X is concluded. Hence, it is
necessary to prove that T BR0 ⊂ BR0 . For this purpose, we now let X ∈ BR0 . Then, by the bounded property
of the Mittag-Leffler function Eα,1, it is obvious that |TX0(t)| + |TGX(t)| ≤ C0|X0| + C0LG‖X‖C([0,T0];R).
Moreover, by the assumption (H1) also,

|TFX(t)| ≤
∣∣∣∣ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds

∣∣∣∣
≤C0

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1|F (s,X(s))|ds

≤C0 LF α
−1 (ψ(T0)− ψ(0))α ‖X‖pC([0,T0];R).

Summarily, we have

|T X(t)| ≤ |TX0(t)|+ |TGX(t)|+ |TFX(t)|
≤C0|X0|+ C0LG‖X‖C([0,T0];R) + C0LFα

−1(ψ(T0)− ψ(0))α‖X‖pC([0,T0];R)

≤C0|X0|+ C0LGR+ C0LFα
−1(ψ(T0)− ψ(0))αRp0 (10)

By employing the conditions (7) and (8) together, we derive

C0|X0|+ C0LGR0 + C0LFα
−1(ψ(T0)− ψ(0))αRp0

≤ K − C0LG
2

R0 + C0LGR0 +
K − C0LG

2
R0 = KR0, (11)

Thus, |T X(t)| ≤ R0 for all t ∈ [0, T0], namely, T BR0 ⊂ BR0 .

Step 2. T is a contraction mapping. Let us arbitrarily take X,Y ∈ BR0 , and make slightly modifying tech-
niques in the previous step. Firstly, by using the locally Lipschitz assumption (H1) on F , one can see
that

|F (s,X(s))− F (s, Y (s))| ≤ LF
(
‖X‖p−1C([0,T0];R) + ‖Y ‖p−1C([0,T0];R)

)
‖X − Y ‖C([0,T0];R).
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which according shows

|TFX(t)− TFY (t)| ≤
ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1|F (s,X(s))− F (s, Y (s))|ds

≤C0LF

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1(|X(s)|p−1 + |Y (s)|p−1)|X(s)− Y (s)|ds

≤ 2C0LFR
p−1
0

(ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1ds

)
‖X − Y ‖C([0,T0];R)

= 2C0LFR
p−1
0 α−1(ψ(T0)− ψ(0))α‖X − Y ‖C([0,T0];R).

By using the conditions (7) and (8) similarly as (11), one get

|TFX(t)− TFY (t)| ≤ (K − C0LG)‖X − Y ‖C([0,T0];R) (12)

Finally, taking the above estimate together gives that

|T X(t)− T Y (t)| ≤ |TGX(t)− TGY (t)|+ |TFX(t)− TFY (t)| ≤ K‖X − Y ‖C([0,T0];R).

Since 0 < K < 1, we conclude that T is a contraction mapping. Thus, it possesses only a fixed point in BR0 ,
which is the unique locally mild solution of the problem.

Corollary 3.3. In Theorem 3.2, it requires the condition C0LG to establish the existence of a locally mild
solution. Hence, this result holds for the case G ≡ 0. Namely, Theorem 3.2 also concludes that the problem{

CDα,ψX(t) + λX(t) = F (t,X(t)), t > 0,

X(0) = X0.
(13)

has a locally mild solution in C([0, T0];R), where F satisfies the assumption (H1).

Remark 3.3.1. Let us discuss the condition (7). Since the power 1/α − p/α is negative, we can observe
that: if the initial value X0 is large enough, then it requires that the local existence time T0 is sufficiently
small.

Remark 3.3.2. In the case ψ(t) = t, the ψ-Caputo derivative CDα,ψ becomes the well-known Caputo deriva-
tive CDα. The respective problems for this fractional derivative have been studied by many authors, such as,
[]...

4. ψ-Hölder continuity

This section discusses Hölder continuity of the mild solution given in Section 3. More clearly, we will show
that the difference |u(t′)− u(t)| is bounded by |ψ(t′)− ψ(t)|β with a parameter β ∈ (0, 1). Suitably, we call
this by ψ-Hölder continuity of the solution.

In the following theorem, ψ-Hölder continuity of the solution will be obtained, where techniques in Lemma
3.1 can be improved by making use differentiation and bounded properties of the Mittag-Leffler functions.

Theorem 4.1 (ψ-Hölder continuity). Assume that F,G fulfills the assumptions (H1)-(H2) with C0LG < 1.
Let u ∈ C([0, T ];R) be a mild solution of Problem (1). Then, u ∈ Cα(1−γα)ψ ([0, T ];R) for γα ∈ [0, 1], and it
satisfies the estimate

|u(t′)− u(t)| . |ψ(t′)− ψ(t)|α(1−γα), ∀t, t′ ∈ [0, T ]. (14)
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Proof. For the sake of convenience, we assume that 0 ≤ t < t′ ≤ T . By differentiation of the Mittag-Leffler
function Eα,1 given in Lemma 2.2, we have the following composite differentiation

∂sEα,1(−λ(ψ(s)− ψ(0))α) = ψ′(s)(ψ(s)− ψ(0))α−1Eα,α(−λ(ψ(s)− ψ(0))α).

Therefore, upon the fundamental theorem of Calculus, there hold

|TX0(t′)− TX0(t)| ≤
∣∣Eα,1(−λ(ψ(t′)− ψ(0))α)− Eα,1(−λ(ψ(t)− ψ(0))α)

∣∣|X0|

=

∣∣∣∣ ˆ t′

t
∂sEα,1(−λ(ψ(s)− ψ(0))α)ds

∣∣∣∣|X0|

=λ|X0|
ˆ t′

t
ψ′(s)(ψ(s)− ψ(0))α−1Eα,α(−λ(ψ(s)− ψ(0))α)ds

≤λ|X0|
ˆ t′

t
ψ′(s)(ψ(s)− ψ(0))α−1

C0

1 + λ(ψ(s)− ψ(0))α
ds

≤λ|X0|
ˆ t′

t
ψ′(s)(ψ(s)− ψ(0))α−1(λ(ψ(s)− ψ(0)))−αγαds,

where we have used the boundedness of Mittag-Leffler functions given in Lemma 2.1 and note that 1 +
λ(ψ(s) − ψ(0))α ≥ (λ(ψ(s) − ψ(0)))−αγα for γα ∈ [0, 1]. Therefore, by making some direct computations,
one has

|TX0(t′)− TX0(t)| ≤λ|X0|
ˆ t′

t
ψ′(s)(ψ(s)− ψ(0))α(1−γα)−1ds

=λ|X0|
(ψ(t′)− ψ(0))α(1−γα) − (ψ(t)− ψ(0))α(1−γα)

α(1− γα)
.

Since α(1 − γα) ∈ (0, 1), the difference (ψ(t′) − ψ(0))α(1−γα) − (ψ(t) − ψ(0))α(1−γα) is less than or equal to
(ψ(t′)− ψ(t))α(1−γα). This implies

|TX0(t′)− TX0(t)| ≤ λ|X0|
α(1− γα)

(ψ(t′)− ψ(t))α(1−γα).

Similarly, by using the assumption (H2), we can derive the estimate

|TGX(t′)− TGX(t)| ≤
λLG‖X‖C([0,T ];R)

α(1− γα)
(ψ(t′)− ψ(t))α(1−γα).

Let us establish the ψ-Hölder continuity of the term TFX. For 0 < s < r, applying differentiation of the
Mittag-Leffler function Eα,α in Lemma 2.2 yields that

∂r
[
(ψ(r)− ψ(s))α−1Eα,α(−λ(ψ(r)− ψ(s))α)

]
= ψ′(r)(ψ(r)− ψ(s))α−2Eα,α−1(−λ(ψ(r)− ψ(s))α).
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We then use the fundamental theorem of Calculus to obtain

TFX(t+ h)− TFX(t)

=

ˆ t

0

ˆ t′

t
ψ′(s)∂r

[
(ψ(r)− ψ(s))α−1Eα,α(−λ(ψ(r)− ψ(s))α)

]
F (s,X(s))drds

+

ˆ t′

t
ψ′(s)(ψ(t′)− ψ(s))α−1Eα,α(−λ(ψ(t′)− ψ(s))α)|F (s,X(s))|ds

=

ˆ t

0

ˆ t′

t
ψ′(s)ψ′(r)(ψ(r)− ψ(s))α−2Eα,α−1(−λ(ψ(r)− ψ(s))α)F (s,X(s))drds

+

ˆ t′

t
ψ′(s)(ψ(t′)− ψ(s))α−1Eα,α(−λ(ψ(t′)− ψ(s))α)F (s,X(s))ds

=:

ˆ t

0

ˆ t′

t
IF,4(r, s)F (s,X(s))drds+

ˆ t′

t
IF,5(t

′, s)F (s,X(s))ds. (15)

The second term above can be estimated similarly as (6), which helps to read that∣∣∣∣ˆ t′

t
IF,5(t

′, s)F (s,X(s))ds

∣∣∣∣ ≤ C0LF
α
‖X‖pC([0,T ];R)(ψ(t′)− ψ(t))α(1−γα),

where we have used the assumption (H1). By using this assumption and making some direct computations,
we estimate the first term of (15) as follows∣∣∣∣ ˆ t

0

ˆ t′

t
IF,4(r, s)F (s,X(s))drds

∣∣∣∣
≤ C0LF ‖X‖pC([0,T ];R)

ˆ t

0

ˆ t′

t
ψ′(s)ψ′(r)(ψ(r)− ψ(s))α(1−γα)−2drds

= C0LF ‖X‖pC([0,T ];R)

ˆ t

0
ψ′(s)

(ψ(t)− ψ(s))α(1−γα)−1 − (ψ(t′)− ψ(s))α(1−γα)−1

1− α(1− γα)
ds

= C0LF ‖X‖pC([0,T ];R)
(ψ(t)− ψ(s))α(1−γα) − (ψ(t′)− ψ(s))α(1−γα) + (ψ(t′)− ψ(t))α(1−γα)

α(1− γα)[1− α(1− γα)]
,

where it is useful to note that α(1 − γα) ∈ (0, 1). Since the function ψ is increasing, the difference (ψ(t) −
ψ(s))α(1−γα) − (ψ(t′) − ψ(s))α(1−γα) is obviously negative. By skipping this difference, we derive the below
estimate ∣∣∣∣ˆ t

0

ˆ t′

t
IF,4(r, s)F (s,X(s))drds

∣∣∣∣
≤ C0LF
α(1− γα)[1− α(1− γα)]

‖X‖pC([0,T ];R)(ψ(t′)− ψ(t))α(1−γα).

The conclusion of the theorem and the desired inequality are immediately obtained by taking the above
estimates together.

Remark 4.1.1. In the case ψ(t) = t, the ψ-Hölder continuity becomes the usual Hölder continuity. If the
ψ-function is already Hölder continuous of exponent σ ∈ (0, 1), then we can deduce from the inequality (14)
that

|u(t′)− u(t)| . |ψ(t′)− ψ(t)|α(1−γα) . |t′ − t|σα(1−γα),

for all t, t′ ∈ [0, T ]. Then, u is Hölder continuous with the exponent σα(1− γα).
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5. Maximal solution

In this section, we will study existence of the maximal mild solution to our problem with the initial value
condition instead of nonlocal condition. Explicitly, we will study Problem (13). We will show that Problem
(13) has a globally mild solution u ∈ C([0,∞);R), or there exists a time Tmax <∞ such that Problem (13)
has a maximal mild solution u ∈ C([0, Tmax);R) with blowup at the finite time Tmax.

For the purpose, we firstly present the following lemma, where we show that any mild solution X ∈
C([0, T ];R) always has a continuation.

Lemma 5.1. (Continuation) Assume that F satisfies (H1). Let X ∈ C([0, T ];R) be a mild solution of
Problem (13). Then, it has a unique continuation.

Proof. We will prove this lemma by making uses of usual fixed point arguments also. According to the proof
of Theorem 3.2, we recall that X is the unique solution of the following integral equation in the interval [0, T ]

X(t) =Eα,1(−λ(ψ(t)− ψ(0))α)X0

+

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds. (16)

Let us denote M := sup{|X(t)| | 0 ≤ t ≤ T}, N := M + X(T ), and take a real number ρ such that
0 < ρ <M. Then, there always exists a sufficiently small number ε > 0 such that the following conditions
hold for all t ∈ [T, T + ε]

|X0|
∣∣Eα,1(−λ(ψ(t)− ψ(0))α)− Eα,1(−λ(ψ(T )− ψ(0))α)

∣∣ ≤ ρ

8
,ˆ t

T
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)ds ≤ ρ

8N p
,

ˆ T

0
ψ′(s)(ψ(t)− ψ(s))α−1

∣∣Eα,α(−λ(ψ(t)− ψ(s))α)− Eα,α(−λ(ψ(T )− ψ(s))α)
∣∣ds ≤ ρ

8N p
,

ˆ T

0
ψ′(s)

∣∣(ψ(t)− ψ(s))α−1 − (ψ(T )− ψ(s))α−1
∣∣Eα,α(−λ(ψ(T )− ψ(s))α)ds ≤ ρ

8N p
,

where the integrands are obviously integrable. With the parameters ρ, ε as above, we now define the following
space

Vρ,ε =
{
X̃ ∈ C([0, T + ε];R)

∣∣∣ X̃|[0,T ] = X and |X(t)−X(T )| ≤ ρ, ∀t ∈ [T, T + ε]
}
,

and the mapping T̃ : Vρ,ε → C([0, T + ε];R) as follows

T̃ X̃(t) :=Eα,1(−λ(ψ(t)− ψ(0))α)X0

+

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s, X̃(s))ds, (17)

for all t ∈ [0, T + ε].

By Lemma 3.1, T̃ X̃ is a continuous function of t on the interval [0, T + ε]. Moreover, since X̃|[0,T ] = X,
we can observe from (16) and (17) that T̃ X̃|[0,T ] = X. Hence, in order to show that the mapping T̃ is
well-defined, we need to prove the below inequality

|T̃ X̃(t)−X(T )| ≤ ρ, ∀t ∈ [T, T + ε]. (18)
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Let us consider t ∈ [T, T + ε]. Then, we also imply from the equations (16)-(17), and the identity X(s) =
X̃|[0,T ](s) for all s ∈ [0, T ] (since X̃ ∈ Vρ,ε) that

T̃ X̃(t)−X(T ) :=
(
Eα,1(−λ(ψ(t)− ψ(0))α)X0 − Eα,1(−λ(ψ(T )− ψ(0))α)X0

)
+

( ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s, X̃(s))ds

−
ˆ T

0
ψ′(s)(ψ(T )− ψ(s))α−1Eα,α(−λ(ψ(T )− ψ(s))α)F (s,X(s))ds

)
=
(
Eα,1(−λ(ψ(t)− ψ(0))α)X0 − Eα,1(−λ(ψ(T )− ψ(0))α)X0

)
+

(ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s, X̃(s))ds

−
ˆ T

0
ψ′(s)(ψ(T )− ψ(s))α−1Eα,α(−λ(ψ(T )− ψ(s))α)F (s, X̃(s))ds

)
=: JX0(t, T ) + JF (t, T ).

By choosing parameter ε as the beginning of this proof, we have |JX0(t, T )| ≤ ρ/8. Besides, upon the assump-
tion (H1), we can bound the nonlinear term |F (s, X̃(s))| by N p. Henceforth, by some direct computations,
one can derive

|JF (t, T )| ≤ N p

ˆ t

T
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)ds

+N p

ˆ T

0
ψ′(s)(ψ(t)− ψ(s))α−1

∣∣Eα,α(−λ(ψ(t)− ψ(s))α)− Eα,α(−λ(ψ(T )− ψ(s))α)
∣∣ds

+N p

ˆ T

0
ψ′(s)

∣∣(ψ(t)− ψ(s))α−1 − (ψ(T )− ψ(s))α−1
∣∣Eα,α(−λ(ψ(T )− ψ(s))α)ds,

which consequently yields |JF (t, T )| ≤ 3ρ/8. Summarily, we obtain (18), namely, the mapping T̃ is well-
defined on Vρ,ε. Finally, by slightly modifying the above estimates, we can show that T̃ is a contraction
mapping, and so it possesses a unique fixed point in Vρ,ε. This is the unique continuation of X. We complete
the proof.

Thanks to the above lemma, we shall establish the existence of a globally mild solution or a maximal
mild solution with blowup at the finite time Tmax in the following lemma.

Theorem 5.2 (Maximal solution). Assume that F satisfies the assumption (H1). Then,

i) Problem (13) has a globally mild solution X ∈ C([0,∞);R); or

ii) There exists Tmax = Tmax(X0) < ∞ such that Problem (13) has a maximal local mild solution X ∈
C([0, Tmax);R) with lim supt→T−max

|X(t)| =∞.

Proof. We will prove this theorem by contradiction. Firstly, we denote

W :=
{
T ∈ (0,∞)

∣∣∣Problem (13) has a unique mild solutionX ∈ C([0, T ];R)
}
, (19)

and Tmax := supW. Here, we note that Tmax can be equaled to positive infinity. If Tmax =∞, then the part
i occurs. Conversely, if the time Tmax is finite, namely Tmax <∞, then we shall prove lim supt→T−max

|X(t)| =
∞. By contradiction, let us assume that there really exists a positive constant M such that |X(t)| ≤M for
all t ∈ [0, Tmax).

Let {Tn|n = 1, 2, ...} be a non-negative, non-decreasing sequence such that limn→∞ Tn = Tmax. For
n ≥ 1, k ≥ 1, by making same computations and arguments as the proof of Lemma 3.1, one can check the
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below chain

|X(Tn+k)−X(Tn)|
≤
∣∣Eα,1(−λ(ψ(Tn+k)− ψ(0))α)− Eα,1(−λ(ψ(Tn)− ψ(0))α)

∣∣|X0|

+
2∑
j=1

ˆ Tn

0
Rn,kF,j(s)|F (s,X(s))|ds+

ˆ Tn+k

Tn

Rn,kF,3(s)|F (s,X(s))|ds

≤
∣∣Eα,1(−λ(ψ(Tn+k)− ψ(0))α)− Eα,1(−λ(ψ(Tn)− ψ(0))α)

∣∣|X0|

+

2∑
j=1

LFM
p

ˆ Tn

0
Rn,kF,j(s)ds+ LFM

p

ˆ Tn+k

Tn

Rn,kF,3(s)ds
n,k→∞−−−−−→ 0,

where the kernels Rn,kF,j , j = 1, 2, 3, are given by

Rn,kF,1(s) := ψ′(s)
∣∣(ψ(Tn+k)− ψ(s))α−1 − (ψ(Tn)− ψ(s))α−1

∣∣Eα,α(−λ(ψ(Tn+k)− ψ(s))α),

Rn,kF,2(s) := ψ′(s)(ψ(Tn)− ψ(s))α−1
∣∣Eα,α(−λ(ψ(Tn+k)− ψ(s))α)− Eα,α(−λ(ψ(Tn)− ψ(s))α)

∣∣,
Rn,kF,3(s) := ψ′(s)(ψ(Tn+k)− ψ(s))α−1Eα,α(−λ(ψ(Tn+k)− ψ(s))α).

Hence, {X(Tn)|n ≥ 1} is a Cauchy sequence. Consequently, the limit limn→∞X(Tn) = finitely exists, which
allows to extend the function X to [0, Tmax] such that

X(t) =Eα,1(−λ(ψ(t)− ψ(0))α)X0

+

ˆ t

0
ψ′(s)(ψ(t)− ψ(s))α−1Eα,α(−λ(ψ(t)− ψ(s))α)F (s,X(s))ds,

for all t ∈ [0, Tmax]. Now, due to Lemma 5.1, this solution has a continuation to an interval [0, Tmax +
ε] with some ε > 0. This is a contradiction with (19). Therefore, by contraction, if Tmax < ∞, then
lim supt→T−max

|X(t)| =∞.
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